2z3r Citations

Crystal structure of the IL-15-IL-15Ralpha complex, a cytokine-receptor unit presented in trans.

Nat Immunol 8 1001-7 (2007)
Cited: 54 times
EuropePMC logo PMID: 17643103

Abstract

Interleukin 15 (IL-15) and IL-2, which promote the survival of memory CD8(+) T cells and regulatory T cells, respectively, bind receptor complexes that share beta- and gamma-signaling subunits. Receptor specificity is provided by unique, nonsignaling alpha-subunits. Whereas IL-2 receptor-alpha (IL-2Ralpha) is expressed together in cis with the beta- and gamma-subunits on T cells and B cells, IL-15Ralpha is expressed in trans on antigen-presenting cells. Here we present a 1.85-A crystal structure of the human IL-15-IL-15Ralpha complex. The structure provides insight into the molecular basis of the specificity of cytokine recognition and emphasizes the importance of water in generating this very high-affinity complex. Despite very low IL-15-IL-2 sequence homology and distinct receptor architecture, the topologies of the IL-15-IL-15Ralpha and IL-2-IL-2Ralpha complexes are very similar. Our data raise the possibility that IL-2, like IL-15, might be capable of being presented in trans in the context of its unique receptor alpha-chain.

Articles - 2z3r mentioned but not cited (3)

  1. Architecture of Eph receptor clusters. Himanen JP, Yermekbayeva L, Janes PW, Walker JR, Xu K, Atapattu L, Rajashankar KR, Mensinga A, Lackmann M, Nikolov DB, Dhe-Paganon S. Proc Natl Acad Sci U S A 107 10860-10865 (2010)
  2. A Fusion Protein Complex that Combines IL-12, IL-15, and IL-18 Signaling to Induce Memory-Like NK Cells for Cancer Immunotherapy. Becker-Hapak MK, Shrestha N, McClain E, Dee MJ, Chaturvedi P, Leclerc GM, Marsala LI, Foster M, Schappe T, Tran J, Desai S, Neal CC, Pence P, Wong P, Wagner JA, Russler-Germain DA, Zhu X, Spanoudis CM, Gallo VL, Echeverri CA, Ramirez LL, You L, Egan JO, Rhode PR, Jiao JA, Muniz GJ, Jeng EK, Prendes CA, Sullivan RP, Berrien-Elliott MM, Wong HC, Fehniger TA. Cancer Immunol Res 9 1071-1087 (2021)
  3. Identification of a gene for an ancient cytokine, interleukin 15-like, in mammals; interleukins 2 and 15 co-evolved with this third family member, all sharing binding motifs for IL-15Rα. Dijkstra JM, Takizawa F, Fischer U, Friedrich M, Soto-Lampe V, Lefèvre C, Lenk M, Karger A, Matsui T, Hashimoto K. Immunogenetics 66 93-103 (2014)


Reviews citing this publication (10)

  1. Structural biology of shared cytokine receptors. Wang X, Lupardus P, Laporte SL, Garcia KC. Annu Rev Immunol 27 29-60 (2009)
  2. Insights into cytokine-receptor interactions from cytokine engineering. Spangler JB, Moraga I, Mendoza JL, Garcia KC. Annu Rev Immunol 33 139-167 (2015)
  3. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Waldmann TA. Cancer Immunol Res 3 219-227 (2015)
  4. Interleukin-15 in the treatment of cancer. Waldmann TA. Expert Rev Clin Immunol 10 1689-1701 (2014)
  5. Signalling, inflammation and arthritis: Crossed signals: the role of interleukin-15 and -18 in autoimmunity. Carroll HP, Paunovic V, Gadina M. Rheumatology (Oxford) 47 1269-1277 (2008)
  6. A biophysical approach to IL-2 and IL-15 receptor function: localization, conformation and interactions. Bodnár A, Nizsalóczki E, Mocsár G, Szalóki N, Waldmann TA, Damjanovich S, Vámosi G. Immunol Lett 116 117-125 (2008)
  7. Heterodimeric IL-15 in Cancer Immunotherapy. Bergamaschi C, Stravokefalou V, Stellas D, Karaliota S, Felber BK, Pavlakis GN. Cancers (Basel) 13 837 (2021)
  8. Structural insights into the common γ-chain family of cytokines and receptors from the interleukin-7 pathway. Walsh ST. Immunol Rev 250 303-316 (2012)
  9. Engineering cytokines for cancer immunotherapy: a systematic review. Fu Y, Tang R, Zhao X. Front Immunol 14 1218082 (2023)
  10. A method for making alignments of related protein sequences that share very little similarity; shark interleukin 2 as an example. Dijkstra JM. Immunogenetics 73 35-51 (2021)

Articles citing this publication (41)

  1. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. LaPorte SL, Juo ZS, Vaclavikova J, Colf LA, Qi X, Heller NM, Keegan AD, Garcia KC. Cell 132 259-272 (2008)
  2. IL-15Ralpha chaperones IL-15 to stable dendritic cell membrane complexes that activate NK cells via trans presentation. Mortier E, Woo T, Advincula R, Gozalo S, Ma A. J Exp Med 205 1213-1225 (2008)
  3. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Dudek M, Pfister D, Donakonda S, Filpe P, Schneider A, Laschinger M, Hartmann D, Hüser N, Meiser P, Bayerl F, Inverso D, Wigger J, Sebode M, Öllinger R, Rad R, Hegenbarth S, Anton M, Guillot A, Bowman A, Heide D, Müller F, Ramadori P, Leone V, Garcia-Caceres C, Gruber T, Seifert G, Kabat AM, Mallm JP, Reider S, Effenberger M, Roth S, Billeter AT, Müller-Stich B, Pearce EJ, Koch-Nolte F, Käser R, Tilg H, Thimme R, Boettler T, Tacke F, Dufour JF, Haller D, Murray PJ, Heeren R, Zehn D, Böttcher JP, Heikenwälder M, Knolle PA. Nature 592 444-449 (2021)
  4. Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. Ring AM, Lin JX, Feng D, Mitra S, Rickert M, Bowman GR, Pande VS, Li P, Moraga I, Spolski R, Ozkan E, Leonard WJ, Garcia KC. Nat Immunol 13 1187-1195 (2012)
  5. Novel human interleukin-15 agonists. Zhu X, Marcus WD, Xu W, Lee HI, Han K, Egan JO, Yovandich JL, Rhode PR, Wong HC. J Immunol 183 3598-3607 (2009)
  6. A synaptic basis for paracrine interleukin-2 signaling during homotypic T cell interaction. Sabatos CA, Doh J, Chakravarti S, Friedman RS, Pandurangi PG, Tooley AJ, Krummel MF. Immunity 29 238-248 (2008)
  7. Characterization and favorable in vivo properties of heterodimeric soluble IL-15·IL-15Rα cytokine compared to IL-15 monomer. Chertova E, Bergamaschi C, Chertov O, Sowder R, Bear J, Roser JD, Beach RK, Lifson JD, Felber BK, Pavlakis GN. J Biol Chem 288 18093-18103 (2013)
  8. Crystal Structure of the interleukin-15.interleukin-15 receptor alpha complex: insights into trans and cis presentation. Olsen SK, Ota N, Kishishita S, Kukimoto-Niino M, Murayama K, Uchiyama H, Toyama M, Terada T, Shirouzu M, Kanagawa O, Yokoyama S. J Biol Chem 282 37191-37204 (2007)
  9. Crystal structures of the pro-inflammatory cytokine interleukin-23 and its complex with a high-affinity neutralizing antibody. Beyer BM, Ingram R, Ramanathan L, Reichert P, Le HV, Madison V, Orth P. J Mol Biol 382 942-955 (2008)
  10. The exon-3-encoded domain of IL-15ralpha contributes to IL-15 high-affinity binding and is crucial for the IL-15 antagonistic effect of soluble IL-15Ralpha. Bouchaud G, Garrigue-Antar L, Solé V, Quéméner A, Boublik Y, Mortier E, Perdreau H, Jacques Y, Plet A. J Mol Biol 382 1-12 (2008)
  11. CD122 signaling in CD8+ memory T cells drives costimulation-independent rejection. Mathews DV, Dong Y, Higginbotham LB, Kim SC, Breeden CP, Stobert EA, Jenkins J, Tso JY, Larsen CP, Adams AB. J Clin Invest 128 4557-4572 (2018)
  12. An efficient platform for screening expression and crystallization of glycoproteins produced in human cells. Lee JE, Fusco ML, Saphire EO. Nat Protoc 4 592-604 (2009)
  13. IL15 modification enables CAR T cells to act as a dual targeting agent against tumor cells and myeloid-derived suppressor cells in GBM. Zannikou M, Duffy JT, Levine RN, Seblani M, Liu Q, Presser A, Arrieta VA, Chen CJ, Sonabend AM, Horbinski CM, Lee-Chang C, Miska J, Lesniak MS, Gottschalk S, Balyasnikova IV. J Immunother Cancer 11 e006239 (2023)
  14. Bifunctional TGF-β trap/IL-15 protein complex elicits potent NK cell and CD8+ T cell immunity against solid tumors. Liu B, Zhu X, Kong L, Wang M, Spanoudis C, Chaturvedi P, George V, Jiao JA, You L, Egan JO, Echeverri C, Gallo VL, Xing J, Ravelo K, Prendes C, Antolinez J, Denissova J, Muniz GJ, Jeng EK, Rhode PR, Wong HC. Mol Ther 29 2949-2962 (2021)
  15. No requirement of trans presentations of IL-15 for human CD8 T cell proliferation. Ota N, Takase M, Uchiyama H, Olsen SK, Kanagawa O. J Immunol 185 6041-6048 (2010)
  16. Discovery of a novel IL-15 based protein with improved developability and efficacy for cancer immunotherapy. Hu Q, Ye X, Qu X, Cui D, Zhang L, Xu Z, Wan H, Zhang L, Tao W. Sci Rep 8 7675 (2018)
  17. Comment IL-2 and IL-15 signaling complexes: different but the same. Ikemizu S, Chirifu M, Davis SJ. Nat Immunol 13 1141-1142 (2012)
  18. Complement-activated interferon-γ-primed human endothelium transpresents interleukin-15 to CD8+ T cells. Xie CB, Jiang B, Qin L, Tellides G, Kirkiles-Smith NC, Jane-Wit D, Pober JS. J Clin Invest 130 3437-3452 (2020)
  19. Contributions of interfacial residues of human Interleukin15 to the specificity and affinity for its private alpha-receptor. Sakamoto S, Caaveiro JM, Sano E, Tanaka Y, Kudou M, Tsumoto K. J Mol Biol 389 880-894 (2009)
  20. Crosstalk between IL-15Rα+ tumor-associated macrophages and breast cancer cells reduces CD8+ T cell recruitment. Zhang W, Zhang Q, Yang N, Shi Q, Su H, Lin T, He Z, Wang W, Guo H, Shen P. Cancer Commun (Lond) 42 536-557 (2022)
  21. E. coli expression and purification of human and cynomolgus IL-15. Ward A, Anderson M, Craggs RI, Maltby J, Grahames C, Davies RA, Finch D, Pattison D, Oakes H, Mallinder PR. Protein Expr Purif 68 42-48 (2009)
  22. Elevated expression of transmembrane IL-15 in immune cells correlates with the development of murine lupus: a potential target for immunotherapy against SLE. Bo H, Wei XQ, Dong H, Zhang Y, Lv P, Liu W, Koutoulaki A, Gao XM. Scand J Immunol 69 119-129 (2009)
  23. A conserved sugar bridge connected to the WSXWS motif has an important role for transport of IL-21R to the plasma membrane. Siupka P, Hamming OT, Kang L, Gad HH, Hartmann R. Genes Immun 16 405-413 (2015)
  24. Characterization of recombinant human IL-15 deamidation and its practical elimination through substitution of asparagine 77. Nellis DF, Michiel DF, Jiang MS, Esposito D, Davis R, Jiang H, Korrell A, Knapp GC, Lucernoni LE, Nelson RE, Pritt EM, Procter LV, Rogers M, Sumpter TL, Vyas VV, Waybright TJ, Yang X, Zheng AM, Yovandich JL, Gilly JA, Mitra G, Zhu J. Pharm Res 29 722-738 (2012)
  25. A novel multimeric IL15/IL15Rα-Fc complex to enhance cancer immunotherapy. Xu H, Buhtoiarov IN, Guo H, Cheung NV. Oncoimmunology 10 1893500 (2021)
  26. Interleukin-15:Interleukin-15 receptor α scaffold for creation of multivalent targeted immune molecules. Wong RL, Liu B, Zhu X, You L, Kong L, Han KP, Lee HI, Chavaillaz PA, Jin M, Wang Y, Rhode PR, Wong HC. Protein Eng Des Sel 24 373-383 (2011)
  27. Enhancement of the inhibitory effect of an IL-15 antagonist peptide by alanine scanning. Savio AS, Acosta OR, Pérez HG, Alvarez YR, Chico A, Pérez HG, Ojeda MO, Aguero CA, Estévez M, Nieto GG. J Pept Sci 18 25-29 (2012)
  28. Lymph node fibroblastic reticular cells regulate differentiation and function of CD4 T cells via CD25. Kim D, Kim M, Kim TW, Choe YH, Noh HS, Jeon HM, Kim H, Lee Y, Hur G, Lee KM, Shin K, Lee SI, Lee SH. J Exp Med 219 e20200795 (2022)
  29. The anti-inflammatory potential of cefazolin as common gamma chain cytokine inhibitor. Żyżyńska-Granica B, Trzaskowski B, Dutkiewicz M, Zegrocka-Stendel O, Machcińska M, Bocian K, Kowalewska M, Koziak K. Sci Rep 10 2886 (2020)
  30. Mechanistic model of natural killer cell proliferative response to IL-15 receptor stimulation. Zhao YM, French AR. PLoS Comput Biol 9 e1003222 (2013)
  31. Pharmacophore guided discovery of small-molecule interleukin 15 inhibitors. Żyżyńska-Granica B, Trzaskowski B, Niewieczerzał S, Filipek S, Zegrocka-Stendel O, Dutkiewicz M, Krzeczyński P, Kowalewska M, Koziak K. Eur J Med Chem 136 543-547 (2017)
  32. The interleukin-15 system suppresses T cell-mediated autoimmunity by regulating negative selection and nT(H)17 cell homeostasis in the thymus. Hou MS, Huang ST, Tsai MH, Yen CC, Lai YG, Liou YH, Lin CK, Liao NS. J Autoimmun 56 118-129 (2015)
  33. Ancient Cytokine Interleukin 15-Like (IL-15L) Induces a Type 2 Immune Response. Yamaguchi T, Chang CJ, Karger A, Keller M, Pfaff F, Wangkahart E, Wang T, Secombes CJ, Kimoto A, Furihata M, Hashimoto K, Fischer U, Dijkstra JM. Front Immunol 11 549319 (2020)
  34. Dendritic cell-expressed common gamma-chain recruits IL-15 for trans-presentation at the murine immunological synapse. Beilin C, Choudhuri K, Bouma G, Malinova D, Llodra J, Stokes DL, Shimaoka M, Springer TA, Dustin ML, Thrasher AJ, Burns SO. Wellcome Open Res 3 84 (2018)
  35. Evolution of interleukin-15 for higher E. coli expression and solubility. Béhar G, Solé V, Defontaine A, Maillasson M, Quéméner A, Jacques Y, Tellier C. Protein Eng Des Sel 24 283-290 (2011)
  36. Cytotopic (Cyto-) IL-15 as a New Immunotherapy for Prostate Cancer: Recombinant Production in Escherichia coli and Purification. Esteves AM, Papaevangelou E, Smolarek D, Dasgupta P, Galustian C. Front Mol Biosci 8 755764 (2021)
  37. Minimum degree of overlap between IL-9R and IL-2R on human T lymphoma cells: A quantitative CLSM and FRET analysis. Nizsalóczki E, Nagy P, Mocsár G, Szabó Á, Csomós I, Waldmann TA, Vámosi G, Mátyus L, Bodnár A. Cytometry A 93 1106-1117 (2018)
  38. Pressuromodulation at the cell membrane as the basis for small molecule hormone and peptide regulation of cellular and nuclear function. Sarin H. J Transl Med 13 372 (2015)
  39. Mechanistic and Structural Insights on the IL-15 System through Molecular Dynamics Simulations. Sousa RP, Laurent AD, Quéméner A, Mortier E, Questel JL. Molecules 24 E3261 (2019)
  40. New, Low-Molecular Weight Chemical Compounds Inhibiting Biological Activity of Interleukin 15. Krzeczyński P, Dutkiewicz M, Zegrocka-Stendel O, Trzaskowski B, Koziak K. Molecules 28 2287 (2023)
  41. Design and characterisation of a novel interleukin-15 receptor alpha fusion protein and analysis of interleukin-15 complexation. Schmid AS, Neri D. PLoS One 14 e0219313 (2019)