2zsc Citations

Tamavidins--novel avidin-like biotin-binding proteins from the Tamogitake mushroom.

Abstract

Novel biotin-binding proteins, referred to herein as tamavidin 1 and tamavidin 2, were found in a basidiomycete fungus, Pleurotus cornucopiae, known as the Tamogitake mushroom. These are the first avidin-like proteins to be discovered in organisms other than birds and bacteria. Tamavidin 1 and tamavidin 2 have amino acid sequences with 31% and 36% identity, respectively, to avidin, and 47% and 48% identity, respectively, to streptavidin. Unlike any other biotin-binding proteins, tamavidin 1 and tamavidin 2 are expressed as soluble proteins at a high level in Escherichia coli. Recombinant tamavidin 2 was purified as a tetrameric protein in a single step by 2-iminobiotin affinity chromatography, with a yield of 5 mg per 100 mL culture of E. coli. The kinetic parameters measured by a BIAcore biosensor indicated that recombinant tamavidin 2 binds biotin with high affinity, in a similar manner to binding by avidin and streptavidin. The overall crystal structure of recombinant tamavidin 2 is similar to that of avidin and streptavidin. However, recombinant tamavidin 2 is immunologically distinct from avidin and streptavidin. Tamavidin 2 and streptavidin are very similar in terms of the arrangement of the residues interacting with biotin, but different with regard to the number of hydrogen bonds to biotin carboxylate. Recombinant tamavidin 2 is more stable than avidin and streptavidin at high temperature, and nonspecific binding to DNA and human serum by recombinant tamavidin 2 is lower than that for avidin. These findings highlight tamavidin 2 as a probable powerful tool, in addition to avidin and streptavidin, in numerous applications of biotin-binding proteins.

Reviews citing this publication (1)

  1. Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. Dundas CM, Demonte D, Park S. Appl Microbiol Biotechnol 97 9343-9353 (2013)

Articles citing this publication (32)

  1. Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Lim KH, Huang H, Pralle A, Park S. Biotechnol Bioeng 110 57-67 (2013)
  2. Plug-and-play pairing via defined divalent streptavidins. Fairhead M, Krndija D, Lowe ED, Howarth M. J Mol Biol 426 199-214 (2014)
  3. Detailed characterization of the solution kinetics and thermodynamics of biotin, biocytin and HABA binding to avidin and streptavidin. Delgadillo RF, Mueser TC, Zaleta-Rivera K, Carnes KA, González-Valdez J, Parkhurst LJ. PLoS One 14 e0204194 (2019)
  4. Structural and functional characteristics of xenavidin, the first frog avidin from Xenopus tropicalis. Määttä JA, Helppolainen SH, Hytönen VP, Johnson MS, Kulomaa MS, Airenne TT, Nordlund HR. BMC Struct Biol 9 63 (2009)
  5. Structural adaptation of a thermostable biotin-binding protein in a psychrophilic environment. Meir A, Bayer EA, Livnah O. J Biol Chem 287 17951-17962 (2012)
  6. Tamavidin, a versatile affinity tag for protein purification and immobilization. Takakura Y, Oka N, Kajiwara H, Tsunashima M, Usami S, Tsukamoto H, Ishida Y, Yamamoto T. J Biotechnol 145 317-322 (2010)
  7. Biotin-binding proteins in the defense of mushrooms against predators and parasites. Bleuler-Martinez S, Schmieder S, Aebi M, Künzler M. Appl Environ Microbiol 78 8485-8487 (2012)
  8. Toxicity of Potential Fungal Defense Proteins towards the Fungivorous Nematodes Aphelenchus avenae and Bursaphelenchus okinawaensis. Tayyrov A, Schmieder SS, Bleuler-Martinez S, Plaza DF, Künzler M. Appl Environ Microbiol 84 e02051-18 (2018)
  9. Zebavidin--an avidin-like protein from zebrafish. Taskinen B, Zmurko J, Ojanen M, Kukkurainen S, Parthiban M, Määttä JA, Leppiniemi J, Jänis J, Parikka M, Turpeinen H, Rämet M, Pesu M, Johnson MS, Kulomaa MS, Airenne TT, Hytönen VP. PLoS One 8 e77207 (2013)
  10. Cell-permeable capsids as universal antigen carrier for the induction of an antigen-specific CD8+ T-cell response. Akhras S, Toda M, Boller K, Himmelsbach K, Elgner F, Biehl M, Scheurer S, Gratz M, Vieths S, Hildt E. Sci Rep 7 9630 (2017)
  11. Tamavidin 2-REV: an engineered tamavidin with reversible biotin-binding capability. Takakura Y, Sofuku K, Tsunashima M. J Biotechnol 164 19-25 (2013)
  12. A proximity biotinylation-based approach to identify protein-E3 ligase interactions induced by PROTACs and molecular glues. Yamanaka S, Horiuchi Y, Matsuoka S, Kido K, Nishino K, Maeno M, Shibata N, Kosako H, Sawasaki T. Nat Commun 13 183 (2022)
  13. The highly dynamic oligomeric structure of bradavidin II is unique among avidin proteins. Leppiniemi J, Meir A, Kähkönen N, Kukkurainen S, Määttä JA, Ojanen M, Jänis J, Kulomaa MS, Livnah O, Hytönen VP. Protein Sci 22 980-994 (2013)
  14. BioID screening of biotinylation sites using the avidin-like protein Tamavidin 2-REV identifies global interactors of stimulator of interferon genes (STING). Motani K, Kosako H. J Biol Chem 295 11174-11183 (2020)
  15. Electrochemical immunoassay for Salmonella Typhimurium based on magnetically collected Ag-enhanced DNA biobarcode labels. Pratiwi FW, Rijiravanich P, Somasundrum M, Surareungchai W. Analyst 138 5011-5018 (2013)
  16. Tamavidin 2-HOT, a highly thermostable biotin-binding protein. Takakura Y, Suzuki J, Oka N, Kakuta Y. J Biotechnol 169 1-8 (2014)
  17. Evaluation of irreversible protein thermal inactivation caused by breakage of disulphide bonds using methanethiosulphonate. Futami J, Miyamoto A, Hagimoto A, Suzuki S, Futami M, Tada H. Sci Rep 7 12471 (2017)
  18. A novel chimeric avidin with increased thermal stability using DNA shuffling. Taskinen B, Airenne TT, Jänis J, Rahikainen R, Johnson MS, Kulomaa MS, Hytönen VP. PLoS One 9 e92058 (2014)
  19. Intercellular production of tamavidin 1, a biotin-binding protein from Tamogitake mushroom, confers resistance to the blast fungus Magnaporthe oryzae in transgenic rice. Takakura Y, Oka N, Suzuki J, Tsukamoto H, Ishida Y. Mol Biotechnol 51 9-17 (2012)
  20. Functional characterization of avidins in amphioxus Branchiostoma japonicum: Evidence for a dual role in biotin-binding and immune response. Guo X, Xin J, Wang P, Du X, Ji G, Gao Z, Zhang S. Dev Comp Immunol 70 106-118 (2017)
  21. High-level expression of tamavidin 2 in human cells by codon-usage optimization. Takakura Y, Katayama S, Nagata Y. Biosci Biotechnol Biochem 79 610-616 (2015)
  22. Multiplexed Affinity Characterization of Protein Binders Directly from a Crude Cell Lysate by Covalent Capture on Suspension Bead Arrays. Huovinen T, Lindenburg L, Minter R, Hollfelder F. Anal Chem 93 2166-2173 (2021)
  23. A reversible cell penetrating peptide-cargo linkage allows dissection of cell penetrating peptide- and cargo-dependent effects on internalization and identifies new functionalities of putative endolytic peptides. Morris DP, Snipes LC, Hill SA, Woods MM, Mbugua MM, Wade LR, McMurry JL. Front Pharmacol 13 1070464 (2022)
  24. Bacterial avidins are a widely distributed protein family in Actinobacteria, Proteobacteria and Bacteroidetes. Laitinen OH, Kuusela TP, Kukkurainen S, Nurminen A, Sinkkonen A, Hytönen VP. BMC Ecol Evol 21 53 (2021)
  25. Crystal structure of afifavidin reveals common features of molecular assemblage in the bacterial dimeric avidins. Avraham O, Bayer EA, Livnah O. FEBS J 285 4617-4630 (2018)
  26. Facile Synthesis and Characterization of a Novel Tamavidin-Luciferase Reporter Fusion Protein for Universal Signaling Applications. Broyles DB, Dikici E, Daunert S, Deo SK. Adv Biosyst 4 e1900166 (2020)
  27. Influence of Endogenous Factors of Food Matrices on Avidin-Biotin Immunoassays for the Detection of Bacitracin and Colistin in Food. Burkin MA, Galvidis IA, Eremin SA. Foods 11 219 (2022)
  28. Insights into the structure of mature streptavidin C1 from Streptomyces cinnamonensis reveal the self-binding of the extension C-terminal peptide to biotin-binding sites. Jeon BJ, Kim S, Kim MS, Lee JH, Kim BS, Hwang KY. IUCrJ 8 168-177 (2021)
  29. Structural characterization of core-bradavidin in complex with biotin. Agrawal N, Määttä JAE, Kulomaa MS, Hytönen VP, Johnson MS, Airenne TT. PLoS One 12 e0176086 (2017)
  30. Expression of various biotin-binding proteins in transgenic tobacco confers resistance to potato tuber moth, Phthorimaea operculella (Zeller) (fam. Gelechiidae). Murray C, Markwick NP, Kaji R, Poulton J, Martin H, Christeller JT. Transgenic Res 19 1041-1051 (2010)
  31. Immobilization of lipid nanorods onto two-dimensional crystals of protein tamavidin 2 for high-speed atomic force microscopy. Noshiro D, Noda NN. STAR Protoc 4 102633 (2023)
  32. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Stud Mycol 104 1-85 (2023)