2zu2 Citations

Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and peptidomimetic compounds.

OpenAccess logo J Biol Chem 284 7646-55 (2009)
Related entries: 2ztx, 2zty, 2ztz, 2zu1, 2zu3, 2zu4, 2zu5

Cited: 93 times
EuropePMC logo PMID: 19144641

Abstract

Human coxsackievirus (CV) belongs to the picornavirus family, which consists of over 200 medically relevant viruses. In picornavirus, a chymotrypsin-like protease (3C(pro)) is required for viral replication by processing the polyproteins, and thus it is regarded as an antiviral drug target. A 3C-like protease (3CL(pro)) also exists in human coronaviruses (CoV) such as 229E and the one causing severe acute respiratory syndrome (SARS). To combat SARS, we previously had developed peptidomimetic and zinc-coordinating inhibitors of 3CL(pro). As shown in the present study, some of these compounds were also found to be active against 3C(pro) of CV strain B3 (CVB3). Several crystal structures of 3C(pro) from CVB3 and 3CL(pro) from CoV-229E and SARS-CoV in complex with the inhibitors were solved. The zinc-coordinating inhibitor is tetrahedrally coordinated to the His(40)-Cys(147) catalytic dyad of CVB3 3C(pro). The presence of specific binding pockets for the residues of peptidomimetic inhibitors explains the binding specificity. Our results provide a structural basis for inhibitor optimization and development of potential drugs for antiviral therapies.

Reviews - 2zu2 mentioned but not cited (1)

  1. Targeting novel structural and functional features of coronavirus protease nsp5 (3CLpro, Mpro) in the age of COVID-19. Roe MK, Junod NA, Young AR, Beachboard DC, Stobart CC. J Gen Virol 102 (2021)

Articles - 2zu2 mentioned but not cited (24)

  1. Porcine Epidemic Diarrhea Virus 3C-Like Protease Regulates Its Interferon Antagonism by Cleaving NEMO. Wang D, Fang L, Shi Y, Zhang H, Gao L, Peng G, Chen H, Li K, Xiao S. J Virol 90 2090-2101 (2016)
  2. A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Hattori SI, Higashi-Kuwata N, Hayashi H, Allu SR, Raghavaiah J, Bulut H, Das D, Anson BJ, Lendy EK, Takamatsu Y, Takamune N, Kishimoto N, Murayama K, Hasegawa K, Li M, Davis DA, Kodama EN, Yarchoan R, Wlodawer A, Misumi S, Mesecar AD, Ghosh AK, Mitsuya H. Nat Commun 12 668 (2021)
  3. Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and peptidomimetic compounds. Lee CC, Kuo CJ, Ko TP, Hsu MF, Tsui YC, Chang SC, Yang S, Chen SJ, Chen HC, Hsu MC, Shih SR, Liang PH, Wang AH. J Biol Chem 284 7646-7655 (2009)
  4. Potential Broad Spectrum Inhibitors of the Coronavirus 3CLpro: A Virtual Screening and Structure-Based Drug Design Study. Berry M, Fielding BC, Gamieldien J. Viruses 7 6642-6660 (2015)
  5. Structural basis for the dimerization and substrate recognition specificity of porcine epidemic diarrhea virus 3C-like protease. Ye G, Deng F, Shen Z, Luo R, Zhao L, Xiao S, Fu ZF, Peng G. Virology 494 225-235 (2016)
  6. Identification of mutation resistance coldspots for targeting the SARS-CoV2 main protease. Krishnamoorthy N, Fakhro K. IUBMB Life 73 670-675 (2021)
  7. Porcine Deltacoronavirus nsp5 Cleaves DCP1A To Decrease Its Antiviral Activity. Zhu X, Chen J, Tian L, Zhou Y, Xu S, Long S, Wang D, Fang L, Xiao S. J Virol 94 e02162-19 (2020)
  8. The crystal structure of main protease from mouse hepatitis virus A59 in complex with an inhibitor. Cui W, Cui S, Chen C, Chen X, Wang Z, Yang H, Zhang L. Biochem Biophys Res Commun 511 794-799 (2019)
  9. In Silico and In Vitro Identification of Pan-Coronaviral Main Protease Inhibitors from a Large Natural Product Library. Shahhamzehei N, Abdelfatah S, Efferth T. Pharmaceuticals (Basel) 15 308 (2022)
  10. Analysis of the Hosts and Transmission Paths of SARS-CoV-2 in the COVID-19 Outbreak. Dong R, Pei S, Yin C, He RL, Yau SS. Genes (Basel) 11 E637 (2020)
  11. X-Ray Structure and Inhibition of 3C-like Protease from Porcine Epidemic Diarrhea Virus. St John SE, Anson BJ, Mesecar AD. Sci Rep 6 25961 (2016)
  12. QSAR based virtual screening derived identification of a novel hit as a SARS CoV-229E 3CLpro Inhibitor: GA-MLR QSAR modeling supported by molecular Docking, molecular dynamics simulation and MMGBSA calculation approaches. Jawarkar RD, Bakal RL, Zaki MEA, Al-Hussain S, Ghosh A, Gandhi A, Mukerjee N, Samad A, Masand VH, Lewaa I. Arab J Chem 15 103499 (2022)
  13. 1,2,4 triazolo[1,5-a] pyrimidin-7-ones as novel SARS-CoV-2 Main protease inhibitors: In silico screening and molecular dynamics simulation of potential COVID-19 drug candidates. Kavitha K, Sivakumar S, Ramesh B. Biophys Chem 267 106478 (2020)
  14. Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E. Zhu Y, Scholle F, Kisthardt SC, Xie DY. Virology 571 21-33 (2022)
  15. A Structural Comparison of SARS-CoV-2 Main Protease and Animal Coronaviral Main Protease Reveals Species-Specific Ligand Binding and Dimerization Mechanism. Ho CY, Yu JX, Wang YC, Lin YC, Chiu YF, Gao JY, Lai SJ, Chen MJ, Huang WC, Tien N, Chen Y. Int J Mol Sci 23 5669 (2022)
  16. The main protease of SARS-CoV-2 cleaves histone deacetylases and DCP1A, attenuating the immune defense of the interferon-stimulated genes. Song L, Wang D, Abbas G, Li M, Cui M, Wang J, Lin Z, Zhang XE. J Biol Chem 299 102990 (2023)
  17. Green Synthesized Zinc Oxide Nanoparticles Based on Cestrum diurnum L. of Potential Antiviral Activity against Human Corona 229-E Virus. Alrabayah IN, Elhawary SS, Kandil ZA, El-Kadder EMA, Moemen YS, Saleh AM, El Raey MA. Molecules 28 266 (2022)
  18. Insights from incorporating quantum computing into drug design workflows. Lau B, Emani PS, Chapman J, Yao L, Lam T, Merrill P, Warrell J, Gerstein MB, Lam HYK. Bioinformatics 39 btac789 (2023)
  19. The Structure of the Porcine Deltacoronavirus Main Protease Reveals a Conserved Target for the Design of Antivirals. Wang F, Chen C, Wang Z, Han X, Shi P, Zhou K, Liu X, Xiao Y, Cai Y, Huang J, Zhang L, Yang H. Viruses 14 486 (2022)
  20. Conserved protein targets for developing pan-coronavirus drugs based on sequence and 3D structure similarity analyses. Ma M, Yang Y, Wu L, Zhou L, Shi Y, Han J, Xu Z, Zhu W. Comput Biol Med 145 105455 (2022)
  21. research-article Machine intelligence design of 2019-nCoV drugs. Gao K, Nguyen DD, Wang R, Wei GW. bioRxiv 2020.01.30.927889 (2020)
  22. Repurposing dyphylline as a pan-coronavirus antiviral therapy. Wang Y, Rajpoot S, Li P, Lavrijsen M, Ma Z, Hirani N, Saqib U, Pan Q, Baig MS. Future Med Chem 14 685-699 (2022)
  23. In silico Study Phytosterol Cymbopogon citratus and Curcuma longa as Inhibitor Agent 3C-Like Protease SARS-CoV-2. Watuguly T, Bare Y, Ratih Tirto Sari D, Kustarini Samsuria I. Pak J Biol Sci 25 867-874 (2022)
  24. Structural differences in 3C-like protease (Mpro) from SARS-CoV and SARS-CoV-2: molecular insights revealed by Molecular Dynamics Simulations. Parmar M, Thumar R, Patel B, Athar M, Jha PC, Patel D. Struct Chem 1-18 (2022)


Reviews citing this publication (19)

  1. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. Hilgenfeld R. FEBS J 281 4085-4096 (2014)
  2. Potential SARS-CoV-2 main protease inhibitors. Banerjee R, Perera L, Tillekeratne LMV. Drug Discov Today 26 804-816 (2021)
  3. What coronavirus 3C-like protease tells us: From structure, substrate selectivity, to inhibitor design. Xiong M, Su H, Zhao W, Xie H, Shao Q, Xu Y. Med Res Rev 41 1965-1998 (2021)
  4. Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Gioia M, Ciaccio C, Calligari P, De Simone G, Sbardella D, Tundo G, Fasciglione GF, Di Masi A, Di Pierro D, Bocedi A, Ascenzi P, Coletta M. Biochem Pharmacol 182 114225 (2020)
  5. Recent development of 3C and 3CL protease inhibitors for anti-coronavirus and anti-picornavirus drug discovery. Ramajayam R, Tan KP, Liang PH. Biochem Soc Trans 39 1371-1375 (2011)
  6. Atlas of coronavirus replicase structure. Neuman BW, Chamberlain P, Bowden F, Joseph J. Virus Res 194 49-66 (2014)
  7. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. Hu Q, Xiong Y, Zhu GH, Zhang YN, Zhang YW, Huang P, Ge GB. MedComm (2020) 3 e151 (2022)
  8. A Patent Review on SARS Coronavirus Main Protease (3CLpro ) Inhibitors. Chia CSB, Xu W, Shuyi Ng P. ChemMedChem 17 e202100576 (2022)
  9. Picornaviral 3C protease inhibitors and the dual 3C protease/coronaviral 3C-like protease inhibitors. Wang HM, Liang PH. Expert Opin Ther Pat 20 59-71 (2010)
  10. Design and Evaluation of Anti-SARS-Coronavirus Agents Based on Molecular Interactions with the Viral Protease. Akaji K, Konno H. Molecules 25 E3920 (2020)
  11. The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Jin Z, Wang H, Duan Y, Yang H. Biochem Biophys Res Commun 538 63-71 (2021)
  12. Structural Biology of the Enterovirus Replication-Linked 5'-Cloverleaf RNA and Associated Virus Proteins. Pascal SM, Garimella R, Warden MS, Ponniah K. Microbiol Mol Biol Rev 84 e00062-19 (2020)
  13. Therapeutic approaches against coronaviruses acute respiratory syndrome. Servidio C, Stellacci F. Pharmacol Res Perspect 9 e00691 (2021)
  14. Review on development of potential inhibitors of SARS-CoV-2 main protease (MPro). Katre SG, Asnani AJ, Pratyush K, Sakharkar NG, Bhope AG, Sawarkar KT, Nimbekar VS. Futur J Pharm Sci 8 36 (2022)
  15. Trace element homeostasis in the neurological system after SARS-CoV-2 infection: Insight into potential biochemical mechanisms. de Jesus JR, Galazzi RM, Lopes Júnior CA, Arruda MAZ. J Trace Elem Med Biol 71 126964 (2022)
  16. Enteroviruses and coronaviruses: similarities and therapeutic targets. Marjomäki V, Kalander K, Hellman M, Permi P. Expert Opin Ther Targets 25 479-489 (2021)
  17. Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery-Genetics Alliance Perspective. Pozzi C, Vanet A, Francesconi V, Tagliazucchi L, Tassone G, Venturelli A, Spyrakis F, Mazzorana M, Costi MP, Tonelli M. J Med Chem 66 3664-3702 (2023)
  18. Picornavirus 3C Proteins Intervene in Host Cell Processes through Proteolysis and Interactions with RNA. Mondal S, Sarvari G, Boehr DD. Viruses 15 2413 (2023)
  19. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Li X, Song Y. Eur J Med Chem 260 115772 (2023)

Articles citing this publication (49)

  1. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Nature 582 289-293 (2020)
  2. α-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment. Zhang L, Lin D, Kusov Y, Nian Y, Ma Q, Wang J, von Brunn A, Leyssen P, Lanko K, Neyts J, de Wilde A, Snijder EJ, Liu H, Hilgenfeld R. J Med Chem 63 4562-4578 (2020)
  3. The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. Mukherjee A, Morosky SA, Delorme-Axford E, Dybdahl-Sissoko N, Oberste MS, Wang T, Coyne CB. PLoS Pathog 7 e1001311 (2011)
  4. Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses. Kim Y, Lovell S, Tiew KC, Mandadapu SR, Alliston KR, Battaile KP, Groutas WC, Chang KO. J Virol 86 11754-11762 (2012)
  5. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Nguyen TT, Woo HJ, Kang HK, Nguyen VD, Kim YM, Kim DW, Ahn SA, Xia Y, Kim D. Biotechnol Lett 34 831-838 (2012)
  6. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Günther S, Reinke PYA, Fernández-García Y, Lieske J, Lane TJ, Ginn HM, Koua FHM, Ehrt C, Ewert W, Oberthuer D, Yefanov O, Meier S, Lorenzen K, Krichel B, Kopicki JD, Gelisio L, Brehm W, Dunkel I, Seychell B, Gieseler H, Norton-Baker B, Escudero-Pérez B, Domaracky M, Saouane S, Tolstikova A, White TA, Hänle A, Groessler M, Fleckenstein H, Trost F, Galchenkova M, Gevorkov Y, Li C, Awel S, Peck A, Barthelmess M, Schlünzen F, Lourdu Xavier P, Werner N, Andaleeb H, Ullah N, Falke S, Srinivasan V, França BA, Schwinzer M, Brognaro H, Rogers C, Melo D, Zaitseva-Doyle JJ, Knoska J, Peña-Murillo GE, Mashhour AR, Hennicke V, Fischer P, Hakanpää J, Meyer J, Gribbon P, Ellinger B, Kuzikov M, Wolf M, Beccari AR, Bourenkov G, von Stetten D, Pompidor G, Bento I, Panneerselvam S, Karpics I, Schneider TR, Garcia-Alai MM, Niebling S, Günther C, Schmidt C, Schubert R, Han H, Boger J, Monteiro DCF, Zhang L, Sun X, Pletzer-Zelgert J, Wollenhaupt J, Feiler CG, Weiss MS, Schulz EC, Mehrabi P, Karničar K, Usenik A, Loboda J, Tidow H, Chari A, Hilgenfeld R, Uetrecht C, Cox R, Zaliani A, Beck T, Rarey M, Günther S, Turk D, Hinrichs W, Chapman HN, Pearson AR, Betzel C, Meents A. Science 372 642-646 (2021)
  7. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor. Kim Y, Liu H, Galasiti Kankanamalage AC, Weerasekara S, Hua DH, Groutas WC, Chang KO, Pedersen NC. PLoS Pathog 12 e1005531 (2016)
  8. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Drayman N, DeMarco JK, Jones KA, Azizi SA, Froggatt HM, Tan K, Maltseva NI, Chen S, Nicolaescu V, Dvorkin S, Furlong K, Kathayat RS, Firpo MR, Mastrodomenico V, Bruce EA, Schmidt MM, Jedrzejczak R, Muñoz-Alía MÁ, Schuster B, Nair V, Han KY, O'Brien A, Tomatsidou A, Meyer B, Vignuzzi M, Missiakas D, Botten JW, Brooke CB, Lee H, Baker SC, Mounce BC, Heaton NS, Severson WE, Palmer KE, Dickinson BC, Joachimiak A, Randall G, Tay S. Science 373 931-936 (2021)
  9. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. Park JY, Ko JA, Kim DW, Kim YM, Kwon HJ, Jeong HJ, Kim CY, Park KH, Lee WS, Ryu YB. J Enzyme Inhib Med Chem 31 23-30 (2016)
  10. Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava. Park JY, Kim JH, Kwon JM, Kwon HJ, Jeong HJ, Kim YM, Kim D, Lee WS, Ryu YB. Bioorg Med Chem 21 3730-3737 (2013)
  11. The newly emerged SARS-like coronavirus HCoV-EMC also has an "Achilles' heel": current effective inhibitor targeting a 3C-like protease. Ren Z, Yan L, Zhang N, Guo Y, Yang C, Lou Z, Rao Z. Protein Cell 4 248-250 (2013)
  12. Enterovirus 71 and coxsackievirus A16 3C proteases: binding to rupintrivir and their substrates and anti-hand, foot, and mouth disease virus drug design. Lu G, Qi J, Chen Z, Xu X, Gao F, Lin D, Qian W, Liu H, Jiang H, Yan J, Gao GF. J Virol 85 10319-10331 (2011)
  13. Crystal structure of human enterovirus 71 3C protease. Cui S, Wang J, Fan T, Qin B, Guo L, Lei X, Wang J, Wang M, Jin Q. J Mol Biol 408 449-461 (2011)
  14. Crystal structures of enterovirus 71 3C protease complexed with rupintrivir reveal the roles of catalytically important residues. Wang J, Fan T, Yao X, Wu Z, Guo L, Lei X, Wang J, Wang M, Jin Q, Cui S. J Virol 85 10021-10030 (2011)
  15. 3C protease of enterovirus 68: structure-based design of Michael acceptor inhibitors and their broad-spectrum antiviral effects against picornaviruses. Tan J, George S, Kusov Y, Perbandt M, Anemüller S, Mesters JR, Norder H, Coutard B, Lacroix C, Leyssen P, Neyts J, Hilgenfeld R. J Virol 87 4339-4351 (2013)
  16. Synthesis and evaluation of pyrazolone compounds as SARS-coronavirus 3C-like protease inhibitors. Ramajayam R, Tan KP, Liu HG, Liang PH. Bioorg Med Chem 18 7849-7854 (2010)
  17. Repositioning of 8565 Existing Drugs for COVID-19. Gao K, Nguyen DD, Chen J, Wang R, Wei GW. J Phys Chem Lett 11 5373-5382 (2020)
  18. Insights into cleavage specificity from the crystal structure of foot-and-mouth disease virus 3C protease complexed with a peptide substrate. Zunszain PA, Knox SR, Sweeney TR, Yang J, Roqué-Rosell N, Belsham GJ, Leatherbarrow RJ, Curry S. J Mol Biol 395 375-389 (2010)
  19. Inhibitory zinc sites in enzymes. Maret W. Biometals 26 197-204 (2013)
  20. Metal impurities cause false positives in high-throughput screening campaigns. Hermann JC, Chen Y, Wartchow C, Menke J, Gao L, Gleason SK, Haynes NE, Scott N, Petersen A, Gabriel S, Vu B, George KM, Narayanan A, Li SH, Qian H, Beatini N, Niu L, Gan QF. ACS Med Chem Lett 4 197-200 (2013)
  21. Perspectives on SARS-CoV-2 Main Protease Inhibitors. Gao K, Wang R, Chen J, Tepe JJ, Huang F, Wei GW. J Med Chem 64 16922-16955 (2021)
  22. Focal adhesion kinase is a component of antiviral RIG-I-like receptor signaling. Bozym RA, Delorme-Axford E, Harris K, Morosky S, Ikizler M, Dermody TS, Sarkar SN, Coyne CB. Cell Host Microbe 11 153-166 (2012)
  23. Structural Basis for Inhibiting Porcine Epidemic Diarrhea Virus Replication with the 3C-Like Protease Inhibitor GC376. Ye G, Wang X, Tong X, Shi Y, Fu ZF, Peng G. Viruses 12 E240 (2020)
  24. Conserved interactions required for inhibition of the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Shitrit A, Zaidman D, Kalid O, Bloch I, Doron D, Yarnizky T, Buch I, Segev I, Ben-Zeev E, Segev E, Kobiler O. Sci Rep 10 20808 (2020)
  25. Macrocyclic inhibitors of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus. Mandadapu SR, Weerawarna PM, Prior AM, Uy RA, Aravapalli S, Alliston KR, Lushington GH, Kim Y, Hua DH, Chang KO, Groutas WC. Bioorg Med Chem Lett 23 3709-3712 (2013)
  26. Zinc and SARS‑CoV‑2: A molecular modeling study of Zn interactions with RNA‑dependent RNA‑polymerase and 3C‑like proteinase enzymes. Pormohammad A, Monych NK, Turner RJ. Int J Mol Med 47 326-334 (2021)
  27. Virtual screening identification of novel severe acute respiratory syndrome 3C-like protease inhibitors and in vitro confirmation. Nguyen TT, Ryu HJ, Lee SH, Hwang S, Breton V, Rhee JH, Kim D. Bioorg Med Chem Lett 21 3088-3091 (2011)
  28. Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments. Becker D, Kaczmarska Z, Arkona C, Schulz R, Tauber C, Wolber G, Hilgenfeld R, Coll M, Rademann J. Nat Commun 7 12761 (2016)
  29. A Novel Enterovirus 71 (EV71) Virulence Determinant: The 69th Residue of 3C Protease Modulates Pathogenicity. Li B, Yue Y, Zhang Y, Yuan Z, Li P, Song N, Lin W, Liu Y, Gu L, Meng H. Front Cell Infect Microbiol 7 26 (2017)
  30. Structural basis for antiviral inhibition of the main protease, 3C, from human enterovirus 93. Costenaro L, Kaczmarska Z, Arnan C, Janowski R, Coutard B, Solà M, Gorbalenya AE, Norder H, Canard B, Coll M. J Virol 85 10764-10773 (2011)
  31. Inhibition of Enterovirus 71 replication by 7-hydroxyflavone and diisopropyl-flavon7-yl Phosphate. Wang J, Su H, Zhang T, Du J, Cui S, Yang F, Jin Q. PLoS One 9 e92565 (2014)
  32. Application of a cell-based protease assay for testing inhibitors of picornavirus 3C proteases. van der Linden L, Ulferts R, Nabuurs SB, Kusov Y, Liu H, George S, Lacroix C, Goris N, Lefebvre D, Lanke KH, De Clercq K, Hilgenfeld R, Neyts J, van Kuppeveld FJ. Antiviral Res 103 17-24 (2014)
  33. Coxsackievirus B3 Responds to Polyamine Depletion via Enhancement of 2A and 3C Protease Activity. Dial CN, Tate PM, Kicmal TM, Mounce BC. Viruses 11 E403 (2019)
  34. Human coronavirus OC43 3CL protease and the potential of ML188 as a broad-spectrum lead compound: homology modelling and molecular dynamic studies. Berry M, Fielding B, Gamieldien J. BMC Struct Biol 15 8 (2015)
  35. Protein structural heterogeneity: A hypothesis for the basis of proteolytic recognition by the main protease of SARS-CoV and SARS-CoV-2. Behnam MAM. Biochimie 182 177-184 (2021)
  36. Benserazide, the first allosteric inhibitor of Coxsackievirus B3 3C protease. Kim BK, Cho JH, Jeong P, Lee Y, Lim JJ, Park KR, Eom SH, Kim YC. FEBS Lett 589 1795-1801 (2015)
  37. Systematic Search for SARS-CoV-2 Main Protease Inhibitors for Drug Repurposing: Ethacrynic Acid as a Potential Drug. Isgrò C, Sardanelli AM, Palese LL. Viruses 13 106 (2021)
  38. Structure and mechanism of Escherichia coli glutathionylspermidine amidase belonging to the family of cysteine; histidine-dependent amidohydrolases/peptidases. Pai CH, Wu HJ, Lin CH, Wang AH. Protein Sci 20 557-566 (2011)
  39. Structure of the HRV-C 3C-Rupintrivir Complex Provides New Insights for Inhibitor Design. Yuan S, Fan K, Chen Z, Sun Y, Hou H, Zhu L. Virol Sin 35 445-454 (2020)
  40. Terpyridine platinum(II) complexes inhibit cysteine proteases by binding to active-site cysteine. Lo YC, Su WC, Ko TP, Wang NC, Wang AH. J Biomol Struct Dyn 29 267-282 (2011)
  41. Crystal structure of a highly conserved enteroviral 5' cloverleaf RNA replication element. Das NK, Hollmann NM, Vogt J, Sevdalis SE, Banna HA, Ojha M, Koirala D. Nat Commun 14 1955 (2023)
  42. Structural similarities between SARS-CoV2 3CLpro and other viral proteases suggest potential lead molecules for developing broad spectrum antivirals. Bafna K, Cioffi CL, Krug RM, Montelione GT. Front Chem 10 948553 (2022)
  43. Structure of Senecavirus A 3C Protease Revealed the Cleavage Pattern of 3C Protease in Picornaviruses. Meng K, Zhang L, Xue X, Xue Q, Sun M, Meng G. J Virol 96 e0073622 (2022)
  44. DWV 3C Protease Uncovers the Diverse Catalytic Triad in Insect RNA Viruses. Yuan X, Kadowaki T. Microbiol Spectr 10 e0006822 (2022)
  45. Discovery and mechanism of action of Thonzonium bromide from an FDA-approved drug library with potent and broad-spectrum inhibitory activity against main proteases of human coronaviruses. Wang R, Zhai G, Zhu G, Wang M, Gong X, Zhang W, Ge G, Chen H, Chen L. Bioorg Chem 130 106264 (2023)
  46. Discovery of C-12 dithiocarbamate andrographolide analogues as inhibitors of SARS-CoV-2 main protease: In vitro and in silico studies. Nutho B, Wilasluck P, Deetanya P, Wangkanont K, Arsakhant P, Saeeng R, Rungrotmongkol T. Comput Struct Biotechnol J 20 2784-2797 (2022)
  47. Discovery of inhibitors against SARS-CoV-2 main protease using fragment-based drug design. Shao HP, Wang TH, Zhai HL, Bi KX, Zhao BQ. Chem Biol Interact 371 110352 (2023)
  48. From head to toe of the norovirus 3C-like protease. Someya Y. Biomol Concepts 3 41-56 (2012)
  49. The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion. Chen TH, Tsai MJ, Chang CS, Xu L, Fu YS, Weng CF. J Infect Public Health 16 42-54 (2023)