3aa0 Citations

Two distinct mechanisms for actin capping protein regulation--steric and allosteric inhibition.

OpenAccess logo PLoS Biol 8 e1000416 (2010)
Related entries: 3aa1, 3aa6, 3aa7, 3aaa

Cited: 52 times
EuropePMC logo PMID: 20625546

Abstract

The actin capping protein (CP) tightly binds to the barbed end of actin filaments, thus playing a key role in actin-based lamellipodial dynamics. V-1 and CARMIL proteins directly bind to CP and inhibit the filament capping activity of CP. V-1 completely inhibits CP from interacting with the barbed end, whereas CARMIL proteins act on the barbed end-bound CP and facilitate its dissociation from the filament (called uncapping activity). Previous studies have revealed the striking functional differences between the two regulators. However, the molecular mechanisms describing how these proteins inhibit CP remains poorly understood. Here we present the crystal structures of CP complexed with V-1 and with peptides derived from the CP-binding motif of CARMIL proteins (CARMIL, CD2AP, and CKIP-1). V-1 directly interacts with the primary actin binding surface of CP, the C-terminal region of the alpha-subunit. Unexpectedly, the structures clearly revealed the conformational flexibility of CP, which can be attributed to a twisting movement between the two domains. CARMIL peptides in an extended conformation interact simultaneously with the two CP domains. In contrast to V-1, the peptides do not directly compete with the barbed end for the binding surface on CP. Biochemical assays revealed that the peptides suppress the interaction between CP and V-1, despite the two inhibitors not competing for the same binding site on CP. Furthermore, a computational analysis using the elastic network model indicates that the interaction of the peptides alters the intrinsic fluctuations of CP. Our results demonstrate that V-1 completely sequesters CP from the barbed end by simple steric hindrance. By contrast, CARMIL proteins allosterically inhibit CP, which appears to be a prerequisite for the uncapping activity. Our data suggest that CARMIL proteins down-regulate CP by affecting its conformational dynamics. This conceptually new mechanism of CP inhibition provides a structural basis for the regulation of the barbed end elongation in cells.

Articles - 3aa0 mentioned but not cited (3)

  1. Two distinct mechanisms for actin capping protein regulation--steric and allosteric inhibition. Takeda S, Minakata S, Koike R, Kawahata I, Narita A, Kitazawa M, Ota M, Yamakuni T, Maéda Y, Nitanai Y. PLoS Biol 8 e1000416 (2010)
  2. Mechanism for CARMIL protein inhibition of heterodimeric actin-capping protein. Kim T, Ravilious GE, Sept D, Cooper JA. J Biol Chem 287 15251-15262 (2012)
  3. Structural Investigations of N-carbamoylputrescine Amidohydrolase from Medicago truncatula: Insights into the Ultimate Step of Putrescine Biosynthesis in Plants. Sekula B, Ruszkowski M, Malinska M, Dauter Z. Front Plant Sci 7 350 (2016)


Reviews citing this publication (12)

  1. Capping protein regulators fine-tune actin assembly dynamics. Edwards M, Zwolak A, Schafer DA, Sept D, Dominguez R, Cooper JA. Nat Rev Mol Cell Biol 15 677-689 (2014)
  2. Retromer-mediated endosomal protein sorting: all WASHed up! Seaman MN, Gautreau A, Billadeau DD. Trends Cell Biol 23 522-528 (2013)
  3. Endosomal receptor trafficking: Retromer and beyond. Wang J, Fedoseienko A, Chen B, Burstein E, Jia D, Billadeau DD. Traffic 19 578-590 (2018)
  4. Control of polarized assembly of actin filaments in cell motility. Carlier MF, Pernier J, Montaville P, Shekhar S, Kühn S, Cytoskeleton Dynamics and Motility group. Cell Mol Life Sci 72 3051-3067 (2015)
  5. Regulators of actin filament barbed ends at a glance. Shekhar S, Pernier J, Carlier MF. J Cell Sci 129 1085-1091 (2016)
  6. Multiple Conformations of F-actin. Oda T, Maéda Y. Structure 18 761-767 (2010)
  7. Endosome-to-TGN Trafficking: Organelle-Vesicle and Organelle-Organelle Interactions. Tu Y, Zhao L, Billadeau DD, Jia D. Front Cell Dev Biol 8 163 (2020)
  8. Fuzziness enables context dependence of protein interactions. Miskei M, Gregus A, Sharma R, Duro N, Zsolyomi F, Fuxreiter M. FEBS Lett 591 2682-2695 (2017)
  9. Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies. Sarowar T, Grabrucker AM. Neural Plast 2016 8051861 (2016)
  10. Structural features and interfacial properties of WH2, β-thymosin domains and other intrinsically disordered domains in the regulation of actin cytoskeleton dynamics. Renault L, Deville C, van Heijenoort C. Cytoskeleton (Hoboken) 70 686-705 (2013)
  11. Striated muscle proteins are regulated both by mechanical deformation and by chemical post-translational modification. Solís C, Russell B. Biophys Rev 13 679-695 (2021)
  12. Actin Bundles Dynamics and Architecture. Rajan S, Kudryashov DS, Reisler E. Biomolecules 13 450 (2023)

Articles citing this publication (37)

  1. Formin and capping protein together embrace the actin filament in a ménage à trois. Shekhar S, Kerleau M, Kühn S, Pernier J, Romet-Lemonne G, Jégou A, Carlier MF. Nat Commun 6 8730 (2015)
  2. Profilin Interaction with Actin Filament Barbed End Controls Dynamic Instability, Capping, Branching, and Motility. Pernier J, Shekhar S, Jegou A, Guichard B, Carlier MF. Dev Cell 36 201-214 (2016)
  3. In vivo proximity proteomics of nascent synapses reveals a novel regulator of cytoskeleton-mediated synaptic maturation. Spence EF, Dube S, Uezu A, Locke M, Soderblom EJ, Soderling SH. Nat Commun 10 386 (2019)
  4. Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges. Fujiwara I, Remmert K, Piszczek G, Hammer JA. Proc Natl Acad Sci U S A 111 E1970-9 (2014)
  5. The interaction of capping protein with the barbed end of the actin filament. Kim T, Cooper JA, Sept D. J Mol Biol 404 794-802 (2010)
  6. Common variant of leucine-rich repeat-containing 16A (LRRC16A) gene is associated with gout susceptibility. Sakiyama M, Matsuo H, Shimizu S, Chiba T, Nakayama A, Takada Y, Nakamura T, Takada T, Morita E, Naito M, Wakai K, Inoue H, Tatsukawa S, Sato J, Shimono K, Makino T, Satoh T, Suzuki H, Kanai Y, Hamajima N, Sakurai Y, Ichida K, Shimizu T, Shinomiya N. Hum Cell 27 1-4 (2014)
  7. Twinfilin uncaps filament barbed ends to promote turnover of lamellipodial actin networks. Hakala M, Wioland H, Tolonen M, Kotila T, Jegou A, Romet-Lemonne G, Lappalainen P. Nat Cell Biol 23 147-159 (2021)
  8. Polarized Rac-dependent protrusions drive epithelial intercalation in the embryonic epidermis of C. elegans. Walck-Shannon E, Reiner D, Hardin J. Development 142 3549-3560 (2015)
  9. CAPZA1 determines the risk of gastric carcinogenesis by inhibiting Helicobacter pylori CagA-degraded autophagy. Tsugawa H, Mori H, Matsuzaki J, Sato A, Saito Y, Imoto M, Suematsu M, Suzuki H. Autophagy 15 242-258 (2019)
  10. CARMIL family proteins as multidomain regulators of actin-based motility. Stark BC, Lanier MH, Cooper JA. Mol Biol Cell 28 1713-1723 (2017)
  11. CapZ and actin capping dynamics increase in myocytes after a bout of exercise and abates in hours after stimulation ends. Lin YH, Li J, Swanson ER, Russell B. J Appl Physiol (1985) 114 1603-1609 (2013)
  12. A novel mode of capping protein-regulation by twinfilin. Johnston AB, Hilton DM, McConnell P, Johnson B, Harris MT, Simone A, Amarasinghe GK, Cooper JA, Goode BL. Elife 7 e41313 (2018)
  13. CARMIL leading edge localization depends on a non-canonical PH domain and dimerization. Zwolak A, Yang C, Feeser EA, Ostap EM, Svitkina T, Dominguez R. Nat Commun 4 2523 (2013)
  14. CPI motif interaction is necessary for capping protein function in cells. Edwards M, McConnell P, Schafer DA, Cooper JA. Nat Commun 6 8415 (2015)
  15. Cancer Stem-Cell Marker CD44v9-Positive Cells Arise From Helicobacter pylori-Infected CAPZA1-Overexpressing Cells. Tsugawa H, Kato C, Mori H, Matsuzaki J, Kameyama K, Saya H, Hatakeyama M, Suematsu M, Suzuki H. Cell Mol Gastroenterol Hepatol 8 319-334 (2019)
  16. Structure of the autophagic E2 enzyme Atg10. Hong SB, Kim BW, Kim JH, Song HK. Acta Crystallogr D Biol Crystallogr 68 1409-1417 (2012)
  17. The Arp1/11 minifilament of dynactin primes the endosomal Arp2/3 complex. Fokin AI, David V, Oguievetskaia K, Derivery E, Stone CE, Cao L, Rocques N, Molinie N, Henriot V, Aumont-Nicaise M, Hinckelmann MV, Saudou F, Le Clainche C, Carter AP, Romet-Lemonne G, Gautreau AM. Sci Adv 7 eabd5956 (2021)
  18. Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ. Lin YH, Warren CM, Li J, McKinsey TA, Russell B. Cell Signal 28 1015-1024 (2016)
  19. The structure of the actin filament uncapping complex mediated by twinfilin. Mwangangi DM, Manser E, Robinson RC. Sci Adv 7 eabd5271 (2021)
  20. V-1 regulates capping protein activity in vivo. Jung G, Alexander CJ, Wu XS, Piszczek G, Chen BC, Betzig E, Hammer JA. Proc Natl Acad Sci U S A 113 E6610-E6619 (2016)
  21. Actin capping protein and its inhibitor CARMIL: how intrinsically disordered regions function. Takeda S, Koike R, Nitanai Y, Minakata S, Maéda Y, Ota M. Phys Biol 8 035005 (2011)
  22. Pivotal and distinct role for Plasmodium actin capping protein alpha during blood infection of the malaria parasite. Ganter M, Rizopoulos Z, Schüler H, Matuschewski K. Mol Microbiol 96 84-94 (2015)
  23. Allosteric Coupling of CARMIL and V-1 Binding to Capping Protein Revealed by Hydrogen-Deuterium Exchange. Johnson B, McConnell P, Kozlov AG, Mekel M, Lohman TM, Gross ML, Amarasinghe GK, Cooper JA. Cell Rep 23 2795-2804 (2018)
  24. Cyclic mechanical strain of myocytes modifies CapZβ1 post translationally via PKCε. Lin YH, Swanson ER, Li J, Mkrtschjan MA, Russell B. J Muscle Res Cell Motil 36 329-337 (2015)
  25. Conformational dynamics of capping protein and interaction partners: simulation studies. Lukman S, Robinson RC, Wales D, Verma CS. Proteins 80 1066-1077 (2012)
  26. Dynactin 3D structure: implications for assembly and dynein binding. Imai H, Narita A, Maéda Y, Schroer TA. J Mol Biol 426 3262-3271 (2014)
  27. Genetic analysis of VCP and WASH complex genes in a German cohort of sporadic ALS-FTD patients. Türk M, Schröder R, Khuller K, Hofmann A, Berwanger C, Ludolph AC, Dekomien G, Müller K, Weishaupt JH, Thiel CT, Clemen CS. Neurobiol Aging 56 213.e1-213.e5 (2017)
  28. Comprehensive analysis of motions in molecular dynamics trajectories of the actin capping protein and its inhibitor complexes. Koike R, Takeda S, Maéda Y, Ota M. Proteins 84 948-956 (2016)
  29. The origin and evolution of human glutaminases and their atypical C-terminal ankyrin repeats. Pasquali CC, Islam Z, Adamoski D, Ferreira IM, Righeto RD, Bettini J, Portugal RV, Yue WW, Gonzalez A, Dias SMG, Ambrosio ALB. J Biol Chem 292 11572-11585 (2017)
  30. Conservation and divergence between cytoplasmic and muscle-specific actin capping proteins: insights from the crystal structure of cytoplasmic Cap32/34 from Dictyostelium discoideum. Eckert C, Goretzki A, Faberova M, Kollmar M. BMC Struct Biol 12 12 (2012)
  31. Structure of the kidney slit diaphragm adapter protein CD2-associated protein as determined with electron microscopy. Adair BD, Altintas MM, Möller CC, Arnaout MA, Reiser J. J Am Soc Nephrol 25 1465-1473 (2014)
  32. Comparative Analysis of CPI-Motif Regulation of Biochemical Functions of Actin Capping Protein. McConnell P, Mekel M, Kozlov AG, Mooren OL, Lohman TM, Cooper JA. Biochemistry 59 1202-1215 (2020)
  33. Evolutionary tuning of barbed end competition allows simultaneous construction of architecturally distinct actin structures. Wirshing ACE, Rodriguez SG, Goode BL. J Cell Biol 222 e202209105 (2023)
  34. Structure and function of an atypical homodimeric actin capping protein from the malaria parasite. Bendes ÁÁ, Kursula P, Kursula I. Cell Mol Life Sci 79 125 (2022)
  35. Crystal structure of human V-1 in the apo form. Takeda S, Koike R, Nagae T, Fujiwara I, Narita A, Maéda Y, Ota M. Acta Crystallogr F Struct Biol Commun 77 13-21 (2021)
  36. Dual regulation of the actin cytoskeleton by CARMIL-GAP. Jung G, Pan M, Alexander CJ, Jin T, Hammer JA. J Cell Sci 135 jcs258704 (2022)
  37. Mechanism of actin capping protein recruitment and turnover during clathrin-mediated endocytosis. Lamb AK, Fernandez AN, Eadaim A, Johnson K, Di Pietro SM. J Cell Biol 223 e202306154 (2024)