3alw Citations

Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM.

Nat Struct Mol Biol 18 135-41 (2011)
Related entries: 3alx, 3alz

Cited: 153 times
EuropePMC logo PMID: 21217702

Abstract

Measles virus, a major cause of childhood morbidity and mortality worldwide, predominantly infects immune cells using signaling lymphocyte activation molecule (SLAM) as a cellular receptor. Here we present crystal structures of measles virus hemagglutinin (MV-H), the receptor-binding glycoprotein, in complex with SLAM. The MV-H head domain binds to a β-sheet of the membrane-distal ectodomain of SLAM using the side of its β-propeller fold. This is distinct from attachment proteins of other paramyxoviruses that bind receptors using the top of their β-propeller. The structure provides templates for antiviral drug design, an explanation for the effectiveness of the measles virus vaccine, and a model of the homophilic SLAM-SLAM interaction involved in immune modulations. Notably, the crystal structures obtained show two forms of the MV-H-SLAM tetrameric assembly (dimer of dimers), which may have implications for the mechanism of fusion triggering.

Reviews - 3alw mentioned but not cited (1)

Articles - 3alw mentioned but not cited (10)

  1. Idiosyncratic Mòjiāng virus attachment glycoprotein directs a host-cell entry pathway distinct from genetically related henipaviruses. Rissanen I, Ahmed AA, Azarm K, Beaty S, Hong P, Nambulli S, Duprex WP, Lee B, Bowden TA. Nat Commun 8 16060 (2017)
  2. Canine Distemper Virus Spread and Transmission to Naive Ferrets: Selective Pressure on Signaling Lymphocyte Activation Molecule-Dependent Entry. Sawatsky B, Cattaneo R, von Messling V. J Virol 92 e00669-18 (2018)
  3. A Structurally Unresolved Head Segment of Defined Length Favors Proper Measles Virus Hemagglutinin Tetramerization and Efficient Membrane Fusion Triggering. Navaratnarajah CK, Rosemarie Q, Cattaneo R. J Virol 90 68-75 (2016)
  4. Specificity of Morbillivirus Hemagglutinins to Recognize SLAM of Different Species. Fukuhara H, Ito Y, Sako M, Kajikawa M, Yoshida K, Seki F, Mwaba MH, Hashiguchi T, Higashibata MA, Ose T, Kuroki K, Takeda M, Maenaka K. Viruses 11 E761 (2019)
  5. Computational Analysis Reveals a Critical Point Mutation in the N-Terminal Region of the Signaling Lymphocytic Activation Molecule Responsible for the Cross-Species Infection with Canine Distemper Virus. Yamamoto Y, Nakano S, Seki F, Shigeta Y, Ito S, Tokiwa H, Takeda M. Molecules 26 1262 (2021)
  6. Measles Virus Hemagglutinin Protein Establishes a Specific Interaction With the Extreme N-Terminal Region of Human Signaling Lymphocytic Activation Molecule to Enhance Infection. Seki F, Yamamoto Y, Fukuhara H, Ohishi K, Maruyama T, Maenaka K, Tokiwa H, Takeda M. Front Microbiol 11 1830 (2020)
  7. Metagenomics-enabled reverse-genetics assembly and characterization of myotis bat morbillivirus. Ikegame S, Carmichael JC, Wells H, Furler O'Brien RL, Acklin JA, Chiu HP, Oguntuyo KY, Cox RM, Patel AR, Kowdle S, Stevens CS, Eckley M, Zhan S, Lim JK, Veit EC, Evans MJ, Hashiguchi T, Durigon E, Schountz T, Epstein JH, Plemper RK, Daszak P, Anthony SJ, Lee B. Nat Microbiol 8 1108-1122 (2023)
  8. Structure and function of a novel lineage-specific neutralizing epitope on H protein of canine distemper virus. Bi Z, Wang W, Xia X. Front Microbiol 13 1088243 (2022)
  9. research-article Zoonotic potential of a novel bat morbillivirus. Lee B, Ikegame S, Carmichael J, Wells H, Furler R, Acklin J, Chiu HP, Oguntuyo K, Cox R, Patel A, Kowdle S, Stevens C, Eckley M, Zhan S, Lim J, Hashiguchi T, Durigon EL, Schountz T, Epstein J, Plemper R, Daszak P, Anthony S. Res Sq rs.3.rs-926789 (2021)
  10. Unveiling the affinity-stability relationship in anti-measles virus antibodies: a computational approach for hotspots prediction. Paul R, Kasahara K, Sasaki J, Pérez JF, Matsunaga R, Hashiguchi T, Kuroda D, Tsumoto K. Front Mol Biosci 10 1302737 (2023)


Reviews citing this publication (34)

  1. Paramyxovirus fusion and entry: multiple paths to a common end. Chang A, Dutch RE. Viruses 4 613-636 (2012)
  2. Measles virus, immune control, and persistence. Griffin DE, Lin WH, Pan CH. FEMS Microbiol Rev 36 649-662 (2012)
  3. Structural and mechanistic studies of measles virus illuminate paramyxovirus entry. Plemper RK, Brindley MA, Iorio RM. PLoS Pathog 7 e1002058 (2011)
  4. Tropism and molecular pathogenesis of canine distemper virus. Rendon-Marin S, da Fontoura Budaszewski R, Canal CW, Ruiz-Saenz J. Virol J 16 30 (2019)
  5. Measles Virus Fusion Protein: Structure, Function and Inhibition. Plattet P, Alves L, Herren M, Aguilar HC. Viruses 8 112 (2016)
  6. Measles Vaccine. Griffin DE. Viral Immunol 31 86-95 (2018)
  7. The Host Cell Receptors for Measles Virus and Their Interaction with the Viral Hemagglutinin (H) Protein. Lin LT, Richardson CD. Viruses 8 E250 (2016)
  8. Envelope protein dynamics in paramyxovirus entry. Plattet P, Plemper RK. mBio 4 e00413-13 (2013)
  9. Paramyxovirus entry. Bossart KN, Fusco DL, Broder CC. Adv Exp Med Biol 790 95-127 (2013)
  10. Receptor-mediated cell entry of paramyxoviruses: Mechanisms, and consequences for tropism and pathogenesis. Navaratnarajah CK, Generous AR, Yousaf I, Cattaneo R. J Biol Chem 295 2771-2786 (2020)
  11. Henipavirus receptor usage and tropism. Pernet O, Wang YE, Lee B. Curr Top Microbiol Immunol 359 59-78 (2012)
  12. Responses to Microbial Challenges by SLAMF Receptors. van Driel BJ, Liao G, Engel P, Terhorst C. Front Immunol 7 4 (2016)
  13. Future research to underpin successful peste des petits ruminants virus (PPRV) eradication. Baron MD, Diop B, Njeumi F, Willett BJ, Bailey D. J Gen Virol 98 2635-2644 (2017)
  14. Using the ferret model to study morbillivirus entry, spread, transmission and cross-species infection. Ludlow M, Rennick LJ, Nambulli S, de Swart RL, Duprex WP. Curr Opin Virol 4 15-23 (2014)
  15. Structural basis of efficient contagion: measles variations on a theme by parainfluenza viruses. Mateo M, Navaratnarajah CK, Cattaneo R. Curr Opin Virol 5 16-23 (2014)
  16. Morbillivirus Experimental Animal Models: Measles Virus Pathogenesis Insights from Canine Distemper Virus. da Fontoura Budaszewski R, von Messling V. Viruses 8 E274 (2016)
  17. Cells under siege: viral glycoprotein interactions at the cell surface. Bowden TA, Jones EY, Stuart DI. J Struct Biol 175 120-126 (2011)
  18. Differential Features of Fusion Activation within the Paramyxoviridae. Azarm KD, Lee B. Viruses 12 E161 (2020)
  19. Virus-Receptor Interactions: Structural Insights For Oncolytic Virus Development. Jayawardena N, Burga LN, Poirier JT, Bostina M. Oncolytic Virother 8 39-56 (2019)
  20. Virus-receptor interactions and receptor-mediated virus entry into host cells. Casasnovas JM. Subcell Biochem 68 441-466 (2013)
  21. Host Cellular Receptors for the Peste des Petits Ruminant Virus. Prajapati M, Alfred N, Dou Y, Yin X, Prajapati R, Li Y, Zhang Z. Viruses 11 E729 (2019)
  22. Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability. Tahara M, Bürckert JP, Kanou K, Maenaka K, Muller CP, Takeda M. Viruses 8 E216 (2016)
  23. Membrane dynamics and interactions in measles virus dendritic cell infections. Avota E, Koethe S, Schneider-Schaulies S. Cell Microbiol 15 161-169 (2013)
  24. Unity in diversity: shared mechanism of entry among paramyxoviruses. Palgen JL, Jurgens EM, Moscona A, Porotto M, Palermo LM. Prog Mol Biol Transl Sci 129 1-32 (2015)
  25. Targeted entry of enveloped viruses: measles and herpes simplex virus I. Navaratnarajah CK, Miest TS, Carfi A, Cattaneo R. Curr Opin Virol 2 43-49 (2012)
  26. Expanding Diversity of Susceptible Hosts in Peste Des Petits Ruminants Virus Infection and Its Potential Mechanism Beyond. Dou Y, Liang Z, Prajapati M, Zhang R, Li Y, Zhang Z. Front Vet Sci 7 66 (2020)
  27. SLAMF6 in health and disease: Implications for therapeutic targeting. Yigit B, Wang N, Herzog RW, Terhorst C. Clin Immunol 204 3-13 (2019)
  28. Marine Morbilliviruses: Diversity and Interaction with Signaling Lymphocyte Activation Molecules. Ohishi K, Maruyama T, Seki F, Takeda M. Viruses 11 E606 (2019)
  29. Sendai Virus-Vectored Vaccines That Express Envelope Glycoproteins of Respiratory Viruses. Russell CJ, Hurwitz JL. Viruses 13 1023 (2021)
  30. SLAM Family Receptor Signaling in Viral Infections: HIV and Beyond. O'Connell P, Amalfitano A, Aldhamen YA. Vaccines (Basel) 7 E184 (2019)
  31. Emerging zoonotic viruses: new lessons on receptor and entry mechanisms. Gerlier D. Curr Opin Virol 1 27-34 (2011)
  32. Unique Tropism and Entry Mechanism of Mumps Virus. Kubota M, Hashiguchi T. Viruses 13 1746 (2021)
  33. [Entry mechanism of morbillivirus family]. Fukuhara H, Chen S, Takeda S, Maenaka K. Yakugaku Zasshi 133 549-559 (2013)
  34. [Morbilliviruses]. Seki F, Takeda M. Uirusu 62 175-182 (2012)

Articles citing this publication (108)

  1. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. Noyce RS, Bondre DG, Ha MN, Lin LT, Sisson G, Tsao MS, Richardson CD. PLoS Pathog 7 e1002240 (2011)
  2. Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk. Yuan P, Swanson KA, Leser GP, Paterson RG, Lamb RA, Jardetzky TS. Proc Natl Acad Sci U S A 108 14920-14925 (2011)
  3. Structure of herpes simplex virus glycoprotein D bound to the human receptor nectin-1. Di Giovine P, Settembre EC, Bhargava AK, Luftig MA, Lou H, Cohen GH, Eisenberg RJ, Krummenacher C, Carfi A. PLoS Pathog 7 e1002277 (2011)
  4. Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope. Wu Y, Zhu Y, Gao F, Jiao Y, Oladejo BO, Chai Y, Bi Y, Lu S, Dong M, Zhang C, Huang G, Wong G, Li N, Zhang Y, Li Y, Feng WH, Shi Y, Liang M, Zhang R, Qi J, Gao GF. Proc Natl Acad Sci U S A 114 E7564-E7573 (2017)
  5. Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant. Saito A, Tamura T, Zahradnik J, Deguchi S, Tabata K, Anraku Y, Kimura I, Ito J, Yamasoba D, Nasser H, Toyoda M, Nagata K, Uriu K, Kosugi Y, Fujita S, Shofa M, Monira Begum M, Shimizu R, Oda Y, Suzuki R, Ito H, Nao N, Wang L, Tsuda M, Yoshimatsu K, Kuramochi J, Kita S, Sasaki-Tabata K, Fukuhara H, Maenaka K, Yamamoto Y, Nagamoto T, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Ueno T, Schreiber G, Takaori-Kondo A, Genotype to Phenotype Japan (G2P-Japan) Consortium, Shirakawa K, Sawa H, Irie T, Hashiguchi T, Takayama K, Matsuno K, Tanaka S, Ikeda T, Fukuhara T, Sato K. Cell Host Microbe 30 1540-1555.e15 (2022)
  6. Fusion activation by a headless parainfluenza virus 5 hemagglutinin-neuraminidase stalk suggests a modular mechanism for triggering. Bose S, Zokarkar A, Welch BD, Leser GP, Jardetzky TS, Lamb RA. Proc Natl Acad Sci U S A 109 E2625-34 (2012)
  7. Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4. Zhang X, Lu G, Qi J, Li Y, He Y, Xu X, Shi J, Zhang CW, Yan J, Gao GF. Nat Struct Mol Biol 20 67-72 (2013)
  8. Structural rearrangements of the central region of the morbillivirus attachment protein stalk domain trigger F protein refolding for membrane fusion. Ader N, Brindley MA, Avila M, Origgi FC, Langedijk JP, Örvell C, Vandevelde M, Zurbriggen A, Plemper RK, Plattet P. J Biol Chem 287 16324-16334 (2012)
  9. A stabilized headless measles virus attachment protein stalk efficiently triggers membrane fusion. Brindley MA, Suter R, Schestak I, Kiss G, Wright ER, Plemper RK. J Virol 87 11693-11703 (2013)
  10. Triggering the measles virus membrane fusion machinery. Brindley MA, Takeda M, Plattet P, Plemper RK. Proc Natl Acad Sci U S A 109 E3018-27 (2012)
  11. Trisaccharide containing α2,3-linked sialic acid is a receptor for mumps virus. Kubota M, Takeuchi K, Watanabe S, Ohno S, Matsuoka R, Kohda D, Nakakita SI, Hiramatsu H, Suzuki Y, Nakayama T, Terada T, Shimizu K, Shimizu N, Shiroishi M, Yanagi Y, Hashiguchi T. Proc Natl Acad Sci U S A 113 11579-11584 (2016)
  12. Experimental adaptation of wild-type canine distemper virus (CDV) to the human entry receptor CD150. Bieringer M, Han JW, Kendl S, Khosravi M, Plattet P, Schneider-Schaulies J. PLoS One 8 e57488 (2013)
  13. Mechanism for active membrane fusion triggering by morbillivirus attachment protein. Ader N, Brindley M, Avila M, Örvell C, Horvat B, Hiltensperger G, Schneider-Schaulies J, Vandevelde M, Zurbriggen A, Plemper RK, Plattet P. J Virol 87 314-326 (2013)
  14. The second receptor binding site of the globular head of the Newcastle disease virus hemagglutinin-neuraminidase activates the stalk of multiple paramyxovirus receptor binding proteins to trigger fusion. Porotto M, Salah Z, DeVito I, Talekar A, Palmer SG, Xu R, Wilson IA, Moscona A. J Virol 86 5730-5741 (2012)
  15. Measles virus glycoprotein-pseudotyped lentiviral vector-mediated gene transfer into quiescent lymphocytes requires binding to both SLAM and CD46 entry receptors. Frecha C, Lévy C, Costa C, Nègre D, Amirache F, Buckland R, Russell SJ, Cosset FL, Verhoeyen E. J Virol 85 5975-5985 (2011)
  16. Mutant fusion proteins with enhanced fusion activity promote measles virus spread in human neuronal cells and brains of suckling hamsters. Watanabe S, Shirogane Y, Suzuki SO, Ikegame S, Koga R, Yanagi Y. J Virol 87 2648-2659 (2013)
  17. Canine distemper virus associated with a lethal outbreak in monkeys can readily adapt to use human receptors. Sakai K, Yoshikawa T, Seki F, Fukushi S, Tahara M, Nagata N, Ami Y, Mizutani T, Kurane I, Yamaguchi R, Hasegawa H, Saijo M, Komase K, Morikawa S, Takeda M. J Virol 87 7170-7175 (2013)
  18. Membrane fusion triggering: three modules with different structure and function in the upper half of the measles virus attachment protein stalk. Navaratnarajah CK, Negi S, Braun W, Cattaneo R. J Biol Chem 287 38543-38551 (2012)
  19. Structures of the prefusion form of measles virus fusion protein in complex with inhibitors. Hashiguchi T, Fukuda Y, Matsuoka R, Kuroda D, Kubota M, Shirogane Y, Watanabe S, Tsumoto K, Kohda D, Plemper RK, Yanagi Y. Proc Natl Acad Sci U S A 115 2496-2501 (2018)
  20. Promotion of virus assembly and organization by the measles virus matrix protein. Ke Z, Strauss JD, Hampton CM, Brindley MA, Dillard RS, Leon F, Lamb KM, Plemper RK, Wright ER. Nat Commun 9 1736 (2018)
  21. Prevention of measles virus infection by intranasal delivery of fusion inhibitor peptides. Mathieu C, Huey D, Jurgens E, Welsch JC, DeVito I, Talekar A, Horvat B, Niewiesk S, Moscona A, Porotto M. J Virol 89 1143-1155 (2015)
  22. Base of the measles virus fusion trimer head receives the signal that triggers membrane fusion. Apte-Sengupta S, Negi S, Leonard VH, Oezguen N, Navaratnarajah CK, Braun W, Cattaneo R. J Biol Chem 287 33026-33035 (2012)
  23. Measles virus hemagglutinin: structural insights into cell entry and measles vaccine. Hashiguchi T, Maenaka K, Yanagi Y. Front Microbiol 2 247 (2011)
  24. Paramyxovirus Glycoproteins and the Membrane Fusion Process. Aguilar HC, Henderson BA, Zamora JL, Johnston GP. Curr Clin Microbiol Rep 3 142-154 (2016)
  25. Measles fusion machinery is dysregulated in neuropathogenic variants. Jurgens EM, Mathieu C, Palermo LM, Hardie D, Horvat B, Moscona A, Porotto M. mBio 6 e02528-14 (2015)
  26. Functional and structural characterization of neutralizing epitopes of measles virus hemagglutinin protein. Tahara M, Ito Y, Brindley MA, Ma X, He J, Xu S, Fukuhara H, Sakai K, Komase K, Rota PA, Plemper RK, Maenaka K, Takeda M. J Virol 87 666-675 (2013)
  27. The measles virus hemagglutinin β-propeller head β4-β5 hydrophobic groove governs functional interactions with nectin-4 and CD46 but not those with the signaling lymphocytic activation molecule. Mateo M, Navaratnarajah CK, Syed S, Cattaneo R. J Virol 87 9208-9216 (2013)
  28. Molecular determinants defining the triggering range of prefusion F complexes of canine distemper virus. Avila M, Alves L, Khosravi M, Ader-Ebert N, Origgi F, Schneider-Schaulies J, Zurbriggen A, Plemper RK, Plattet P. J Virol 88 2951-2966 (2014)
  29. Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation. Wong JJW, Young TA, Zhang J, Liu S, Leser GP, Komives EA, Lamb RA, Zhou ZH, Salafsky J, Jardetzky TS. Nat Commun 8 781 (2017)
  30. Cell-to-Cell Measles Virus Spread between Human Neurons Is Dependent on Hemagglutinin and Hyperfusogenic Fusion Protein. Sato Y, Watanabe S, Fukuda Y, Hashiguchi T, Yanagi Y, Ohno S. J Virol 92 e02166-17 (2018)
  31. The Measles Virus Receptor SLAMF1 Can Mediate Particle Endocytosis. Gonçalves-Carneiro D, McKeating JA, Bailey D. J Virol 91 e02255-16 (2017)
  32. Measles virus transmission from dendritic cells to T cells: formation of synapse-like interfaces concentrating viral and cellular components. Koethe S, Avota E, Schneider-Schaulies S. J Virol 86 9773-9781 (2012)
  33. Recent host range expansion of canine distemper virus and variation in its receptor, the signaling lymphocyte activation molecule, in carnivores. Ohishi K, Suzuki R, Maeda T, Tsuda M, Abe E, Yoshida T, Endo Y, Okamura M, Nagamine T, Yamamoto H, Ueda M, Maruyama T. J Wildl Dis 50 596-606 (2014)
  34. Canine distemper virus infects canine keratinocytes and immune cells by using overlapping and distinct regions located on one side of the attachment protein. Langedijk JP, Janda J, Origgi FC, Örvell C, Vandevelde M, Zurbriggen A, Plattet P. J Virol 85 11242-11254 (2011)
  35. Measles virus glycoprotein complexes preassemble intracellularly and relax during transport to the cell surface in preparation for fusion. Brindley MA, Chaudhury S, Plemper RK. J Virol 89 1230-1241 (2015)
  36. The receptor-binding site of the measles virus hemagglutinin protein itself constitutes a conserved neutralizing epitope. Tahara M, Ohno S, Sakai K, Ito Y, Fukuhara H, Komase K, Brindley MA, Rota PA, Plemper RK, Maenaka K, Takeda M. J Virol 87 3583-3586 (2013)
  37. Molecular evolution of haemagglutinin (H) gene in measles virus. Kimura H, Saitoh M, Kobayashi M, Ishii H, Saraya T, Kurai D, Tsukagoshi H, Shirabe K, Nishina A, Kozawa K, Kuroda M, Takeuchi F, Sekizuka T, Minakami H, Ryo A, Takeda M. Sci Rep 5 11648 (2015)
  38. The measles virus hemagglutinin stalk: structures and functions of the central fusion activation and membrane-proximal segments. Navaratnarajah CK, Kumar S, Generous A, Apte-Sengupta S, Mateo M, Cattaneo R. J Virol 88 6158-6167 (2014)
  39. Analysis of a Subacute Sclerosing Panencephalitis Genotype B3 Virus from the 2009-2010 South African Measles Epidemic Shows That Hyperfusogenic F Proteins Contribute to Measles Virus Infection in the Brain. Angius F, Smuts H, Rybkina K, Stelitano D, Eley B, Wilmshurst J, Ferren M, Lalande A, Mathieu C, Moscona A, Horvat B, Hashiguchi T, Porotto M, Hardie D. J Virol 93 e01700-18 (2019)
  40. A durable protective immune response to wild-type measles virus infection of macaques is due to viral replication and spread in lymphoid tissues. Lin WW, Moran E, Adams RJ, Sievers RE, Hauer D, Godin S, Griffin DE. Sci Transl Med 12 eaax7799 (2020)
  41. The receptor attachment function of measles virus hemagglutinin can be replaced with an autonomous protein that binds Her2/neu while maintaining its fusion-helper function. Rasbach A, Abel T, Münch RC, Boller K, Schneider-Schaulies J, Buchholz CJ. J Virol 87 6246-6256 (2013)
  42. Measles virus fusion machinery activated by sialic acid binding globular domain. Talekar A, Moscona A, Porotto M. J Virol 87 13619-13627 (2013)
  43. Structure-Guided Identification of a Nonhuman Morbillivirus with Zoonotic Potential. Abdullah N, Kelly JT, Graham SC, Birch J, Gonçalves-Carneiro D, Mitchell T, Thompson RN, Lythgoe KA, Logan N, Hosie MJ, Bavro VN, Willett BJ, Heaton MP, Bailey D. J Virol 92 e01248-18 (2018)
  44. Canine Distemper Virus Fusion Activation: Critical Role of Residue E123 of CD150/SLAM. Khosravi M, Bringolf F, Röthlisberger S, Bieringer M, Schneider-Schaulies J, Zurbriggen A, Origgi F, Plattet P. J Virol 90 1622-1637 (2016)
  45. Evolutionary evidence for multi-host transmission of cetacean morbillivirus. Jo WK, Kruppa J, Habierski A, van de Bildt M, Mazzariol S, Di Guardo G, Siebert U, Kuiken T, Jung K, Osterhaus A, Ludlow M. Emerg Microbes Infect 7 201 (2018)
  46. Mutations in the Fusion Protein of Measles Virus That Confer Resistance to the Membrane Fusion Inhibitors Carbobenzoxy-d-Phe-l-Phe-Gly and 4-Nitro-2-Phenylacetyl Amino-Benzamide. Ha MN, Delpeut S, Noyce RS, Sisson G, Black KM, Lin LT, Bilimoria D, Plemper RK, Privé GG, Richardson CD. J Virol 91 e01026-17 (2017)
  47. Different roles of the three loops forming the adhesive interface of nectin-4 in measles virus binding and cell entry, nectin-4 homodimerization, and heterodimerization with nectin-1. Mateo M, Navaratnarajah CK, Willenbring RC, Maroun JW, Iankov I, Lopez M, Sinn PL, Cattaneo R. J Virol 88 14161-14171 (2014)
  48. Epitope dampening monotypic measles virus hemagglutinin glycoprotein results in resistance to cocktail of monoclonal antibodies. Lech PJ, Tobin GJ, Bushnell R, Gutschenritter E, Pham LD, Nace R, Verhoeyen E, Cosset FL, Muller CP, Russell SJ, Nara PL. PLoS One 8 e52306 (2013)
  49. The Canine Morbillivirus Strain Associated with An Epizootic in Caspian Seals Provides New Insights into the Evolutionary History of this Virus. Jo WK, Peters M, Kydyrmanov A, van de Bildt MWG, Kuiken T, Osterhaus A, Ludlow M. Viruses 11 E894 (2019)
  50. Nectin-4 Interactions Govern Measles Virus Virulence in a New Model of Pathogenesis, the Squirrel Monkey (Saimiri sciureus). Delpeut S, Sawatsky B, Wong XX, Frenzke M, Cattaneo R, von Messling V. J Virol 91 e02490-16 (2017)
  51. Measles virus genetic evolution throughout an imported epidemic outbreak in a highly vaccinated population. Muñoz-Alía MÁ, Fernández-Muñoz R, Casasnovas JM, Porras-Mansilla R, Serrano-Pardo Á, Pagán I, Ordobás M, Ramírez R, Celma ML. Virus Res 196 122-127 (2015)
  52. Molecular Evolution and Characterization of Hemagglutinin (H) in Peste des Petits Ruminants Virus. Liang Z, Yuan R, Chen L, Zhu X, Dou Y. PLoS One 11 e0152587 (2016)
  53. Canine distemper virus envelope protein interactions modulated by hydrophobic residues in the fusion protein globular head. Avila M, Khosravi M, Alves L, Ader-Ebert N, Bringolf F, Zurbriggen A, Plemper RK, Plattet P. J Virol 89 1445-1451 (2015)
  54. Computational Analysis of the Interaction Energies between Amino Acid Residues of the Measles Virus Hemagglutinin and Its Receptors. Xu F, Tanaka S, Watanabe H, Shimane Y, Iwasawa M, Ohishi K, Maruyama T. Viruses 10 E236 (2018)
  55. Molecular evolution of hemagglutinin (H) gene in measles virus genotypes D3, D5, D9, and H1. Saitoh M, Takeda M, Gotoh K, Takeuchi F, Sekizuka T, Kuroda M, Mizuta K, Ryo A, Tanaka R, Ishii H, Takada H, Kozawa K, Yoshida A, Noda M, Okabe N, Kimura H. PLoS One 7 e50660 (2012)
  56. Antigenic Drift Defines a New D4 Subgenotype of Measles Virus. Muñoz-Alía MÁ, Muller CP, Russell SJ. J Virol 91 e00209-17 (2017)
  57. Virological characteristics of the SARS-CoV-2 Omicron XBB.1.5 variant. Tamura T, Irie T, Deguchi S, Yajima H, Tsuda M, Nasser H, Mizuma K, Plianchaisuk A, Suzuki S, Uriu K, Begum MM, Shimizu R, Jonathan M, Suzuki R, Kondo T, Ito H, Kamiyama A, Yoshimatsu K, Shofa M, Hashimoto R, Anraku Y, Kimura KT, Kita S, Sasaki J, Sasaki-Tabata K, Maenaka K, Nao N, Wang L, Oda Y, Genotype to Phenotype Japan (G2P-Japan) Consortium, Ikeda T, Saito A, Matsuno K, Ito J, Tanaka S, Sato K, Hashiguchi T, Takayama K, Fukuhara T. Nat Commun 15 1176 (2024)
  58. Molecular epidemiology of peste des petits ruminants virus emergence in critically endangered Mongolian saiga antelope and other wild ungulates. Benfield CTO, Hill S, Shatar M, Shiilegdamba E, Damdinjav B, Fine A, Willett B, Kock R, Bataille A. Virus Evol 7 veab062 (2021)
  59. Antibody neutralization of retargeted measles viruses. Lech PJ, Pappoe R, Nakamura T, Tobin GJ, Nara PL, Russell SJ. Virology 454-455 237-246 (2014)
  60. Regulatory Role of the Morbillivirus Attachment Protein Head-to-Stalk Linker Module in Membrane Fusion Triggering. Herren M, Shrestha N, Wyss M, Zurbriggen A, Plattet P. J Virol 92 e00679-18 (2018)
  61. A structure-based rationale for sialic acid independent host-cell entry of Sosuga virus. Stelfox AJ, Bowden TA. Proc Natl Acad Sci U S A 116 21514-21520 (2019)
  62. Ablation of nectin4 binding compromises CD46 usage by a hybrid vesicular stomatitis virus/measles virus. Liu YP, Russell SP, Ayala-Breton C, Russell SJ, Peng KW. J Virol 88 2195-2204 (2014)
  63. Human parainfluenza virus fusion complex glycoproteins imaged in action on authentic viral surfaces. Marcink TC, Wang T, des Georges A, Porotto M, Moscona A. PLoS Pathog 16 e1008883 (2020)
  64. Short-Stalk Isoforms of CADM1 and CADM2 Trigger Neuropathogenic Measles Virus-Mediated Membrane Fusion by Interacting with the Viral Hemagglutinin. Takemoto R, Suzuki T, Hashiguchi T, Yanagi Y, Shirogane Y. J Virol 96 e0194921 (2022)
  65. Weak cis and trans Interactions of the Hemagglutinin with Receptors Trigger Fusion Proteins of Neuropathogenic Measles Virus Isolates. Shirogane Y, Hashiguchi T, Yanagi Y. J Virol 94 e01727-19 (2020)
  66. Interaction of Signaling Lymphocytic Activation Molecule Family 1 (SLAMF1) receptor with Trypanosoma cruzi is strain-dependent and affects NADPH oxidase expression and activity. Poveda C, Herreros-Cabello A, Callejas-Hernández F, Osuna-Pérez J, Maza MC, Chillón-Marinas C, Calderón J, Stamatakis K, Fresno M, Gironès N. PLoS Negl Trop Dis 14 e0008608 (2020)
  67. Measles virus fusion shifts into gear. Saphire EO, Oldstone MB. Nat Struct Mol Biol 18 115-116 (2011)
  68. Mutations in the putative dimer-dimer interfaces of the measles virus hemagglutinin head domain affect membrane fusion triggering. Nakashima M, Shirogane Y, Hashiguchi T, Yanagi Y. J Biol Chem 288 8085-8091 (2013)
  69. Stimulation of Nipah Fusion: Small Intradomain Changes Trigger Extensive Interdomain Rearrangements. Dutta P, Siddiqui A, Botlani M, Varma S. Biophys J 111 1621-1630 (2016)
  70. Structure and supramolecular organization of the canine distemper virus attachment glycoprotein. Kalbermatter D, Jeckelmann JM, Wyss M, Shrestha N, Pliatsika D, Riedl R, Lemmin T, Plattet P, Fotiadis D. Proc Natl Acad Sci U S A 120 e2208866120 (2023)
  71. FeMV is a cathepsin-dependent unique morbillivirus infecting the kidneys of domestic cats. Nambulli S, Rennick LJ, Acciardo AS, Tilston-Lunel NL, Ho G, Crossland NA, Hardcastle K, Nieto B, Bainbridge G, Williams T, Sharp CR, Duprex WP. Proc Natl Acad Sci U S A 119 e2209405119 (2022)
  72. Maturation of human herpesvirus 6A glycoprotein O requires coexpression of glycoprotein H and glycoprotein L. Tang H, Mahmoud NF, Mori Y. J Virol 89 5159-5163 (2015)
  73. SLAMF7 regulates the inflammatory response in macrophages during polymicrobial sepsis. Wu Y, Wang Q, Li M, Lao J, Tang H, Ming S, Wu M, Gong S, Li L, Liu L, Huang X. J Clin Invest 133 e150224 (2023)
  74. A defined anthocyanin mixture sourced from bilberry and black currant inhibits Measles virus and various herpesviruses. Sivarajan R, Oberwinkler H, Roll V, König EM, Steinke M, Bodem J. BMC Complement Med Ther 22 181 (2022)
  75. Disruption of the Dimer-Dimer Interaction of the Mumps Virus Attachment Protein Head Domain, Aided by an Anion Located at the Interface, Compromises Membrane Fusion Triggering. Kubota M, Okabe I, Nakakita SI, Ueo A, Shirogane Y, Yanagi Y, Hashiguchi T. J Virol 94 e01732-19 (2020)
  76. Fine mapping and conservation analysis of linear B-cell epitopes of peste des petits ruminants virus hemagglutinin protein. Yu R, Zhu R, Gao W, Zhang M, Dong S, Chen B, Yu L, Xie C, Jiang F, Li Z. Vet Microbiol 208 110-117 (2017)
  77. Genome-wide association study of an unusual dolphin mortality event reveals candidate genes for susceptibility and resistance to cetacean morbillivirus. Batley KC, Sandoval-Castillo J, Kemper CM, Attard CRM, Zanardo N, Tomo I, Beheregaray LB, Möller LM. Evol Appl 12 718-732 (2019)
  78. Measles Virus Hemagglutinin epitopes immunogenic in natural infection and vaccination are targeted by broad or genotype-specific neutralizing monoclonal antibodies. Muñoz-Alía MA, Casasnovas JM, Celma ML, Carabaña J, Liton PB, Fernandez-Muñoz R. Virus Res 236 30-43 (2017)
  79. Wild-type measles virus interferes with short-term engraftment of human CD34+ hematopoietic progenitor cells. Boussaad I, Varagnolo L, Hornich V, Rieger L, Krockenberger M, Stuehmer T, Kranzfelder D, Mueller AM, Schneider-Schaulies S. J Virol 85 7710-7718 (2011)
  80. A residue located at the junction of the head and stalk regions of measles virus fusion protein regulates membrane fusion by controlling conformational stability. Satoh Y, Yonemori S, Hirose M, Shogaki H, Wakimoto H, Kitagawa Y, Gotoh B, Shirai T, Takahashi KI, Itoh M. J Gen Virol 98 143-154 (2017)
  81. Candidate gene molecular markers as tools for analyzing genetic susceptibility to morbillivirus infection in stranded Cetaceans. Stejskalova K, Bayerova Z, Futas J, Hrazdilova K, Klumplerova M, Oppelt J, Splichalova P, Di Guardo G, Mazzariol S, Di Francesco CE, Di Francesco G, Terracciano G, Paiu RM, Ursache TD, Modry D, Horin P. HLA 90 343-353 (2017)
  82. Canine Morbillivirus from Colombian Lineage Exhibits In Silico and In Vitro Potential to Infect Human Cells. Rendon-Marin S, Quintero-Gil C, Guerra D, Muskus C, Ruiz-Saenz J. Pathogens 10 1199 (2021)
  83. Characterization and Comparison of SLAM/CD150 in Free-Ranging Coyotes, Raccoons, and Skunks in Illinois for Elucidation of Canine Distemper Virus Disease. Burrell CE, Anchor C, Ahmed N, Landolfi J, Jarosinski KW, Terio KA. Pathogens 9 E510 (2020)
  84. Discerning intersecting fusion-activation pathways in the Nipah virus using machine learning. Varma S, Botlani M, Leighty RE. Proteins 82 3241-3254 (2014)
  85. Identification of amino acid residues involved in the interaction between peste-des-petits-ruminants virus haemagglutinin protein and cellular receptors. Meng X, Zhu X, Alfred N, Zhang Z. J Gen Virol 101 242-251 (2020)
  86. Intramolecular complementation of measles virus fusion protein stability confers cell-cell fusion activity at 37 °C. Satoh Y, Hirose M, Shogaki H, Wakimoto H, Kitagawa Y, Gotoh B, Takahashi K, Itoh M. FEBS Lett 589 152-158 (2015)
  87. Neuropathologic and molecular aspects of a canine distemper epizootic in red foxes in Germany. Geiselhardt F, Peters M, Kleinschmidt S, Chludzinski E, Stoff M, Ludlow M, Beineke A. Sci Rep 12 14691 (2022)
  88. Letter The Physiological TMPRSS2 Inhibitor HAI-2 Alleviates SARS-CoV-2 Infection. Tomita Y, Matsuyama S, Fukuhara H, Maenaka K, Kataoka H, Hashiguchi T, Takeda M. J Virol 95 e00434-21 (2021)
  89. Letter Biophysical research in Hokkaido University, Japan. Aizawa T, Demura M, Gohara K, Haga H, Ishimori K, Kinjo M, Komatsuzaki T, Maenaka K, Yao M. Biophys Rev 12 233-236 (2020)
  90. Functional analysis of amino acids at stalk/head interface of human parainfluenza virus type 3 hemagglutinin-neuraminidase protein in the membrane fusion process. Jiang J, Wen H, Chi M, Liu Y, Liu J, Cao Z, Zhao L, Song Y, Liu N, Chi L, Wang Z. Virus Genes 54 333-342 (2018)
  91. Interaction of the Hemagglutinin Stalk Region with Cell Adhesion Molecule (CADM) 1 and CADM2 Mediates the Spread between Neurons and Neuropathogenicity of Measles Virus with a Hyperfusogenic Fusion Protein. Takemoto R, Hirai Y, Watanabe S, Harada H, Suzuki T, Hashiguchi T, Yanagi Y, Shirogane Y. J Virol 97 e0034023 (2023)
  92. M protein of subacute sclerosing panencephalitis virus, synergistically with the F protein, plays a crucial role in viral neuropathogenicity. Satoh Y, Higuchi K, Nishikawa D, Wakimoto H, Konami M, Sakamoto K, Kitagawa Y, Gotoh B, Jiang DP, Hotta H, Itoh M. J Gen Virol 102 (2021)
  93. Mink SLAM V-Region V74I Substitutions Contribute to the Formation of Syncytia Induced by Canine Distemper Virus. Wang Y, Chen J, Hu B, Gong C, Shi N, Liu M, Yan X, Bai X, Zhao J. Front Vet Sci 7 570283 (2020)
  94. Application of error-prone PCR to functionally probe the morbillivirus Haemagglutinin protein. Gallo G, Conceicao C, Tsirigoti C, Willett B, Graham SC, Bailey D. J Gen Virol 102 (2021)
  95. Genetic characterization of hemagglutinin protein of measles viruses in Hokkaido district, Japan, 2006-2015. Miyoshi M, Komagome R, Yamaguchi H, Ishida S, Nagano H, Okano M. Microbiol Immunol 62 411-417 (2018)
  96. Interrogating ligand-receptor interactions using highly sensitive cellular biosensors. Funk MA, Leitner J, Gerner MC, Hammerler JM, Salzer B, Lehner M, Battin C, Gumpelmair S, Stiasny K, Grabmeier-Pfistershammer K, Steinberger P. Nat Commun 14 7804 (2023)
  97. Molecular Modeling Identification of Key Secondary Metabolites from Xylopia aethiopica as Promising Therapeutics Targeting Essential Measles Viral Proteins. Oloche JJ, Oluremi BB, Aruwa CE, Sabiu S. Evid Based Complement Alternat Med 2023 1575358 (2023)
  98. NgR1 binding to reovirus reveals an unusual bivalent interaction and a new viral attachment protein. Sutherland DM, Strebl M, Koehler M, Welsh OL, Yu X, Hu L, Dos Santos Natividade R, Knowlton JJ, Taylor GM, Moreno RA, Wörz P, Lonergan ZR, Aravamudhan P, Guzman-Cardozo C, Kour S, Pandey UB, Alsteens D, Wang Z, Prasad BVV, Stehle T, Dermody TS. Proc Natl Acad Sci U S A 120 e2219404120 (2023)
  99. Predicting receptor functionality of signaling lymphocyte activation molecule for measles virus hemagglutinin by docking simulation. Suzuki Y. Microbiol Immunol 61 185-189 (2017)
  100. Biophysical characterization of the cetacean morbillivirus haemagglutinin glycoprotein. Zinzula L, Scholz J, Nagy I, Di Guardo G, Orsini M. Virus Res 336 199231 (2023)
  101. Crystal structure and solution state of the C-terminal head region of the narmovirus receptor binding protein. Stelfox AJ, Oguntuyo KY, Rissanen I, Harlos K, Rambo R, Lee B, Bowden TA. mBio 14 e0139123 (2023)
  102. Detailed analysis of low temperature inactivation of respiratory syncytial virus. Kitai Y, Watanabe O, Ohmiya S, Kisu T, Ota R, Kawakami K, Katoh H, Fukuzawa K, Takeda M, Nishimura H. Sci Rep 14 11823 (2024)
  103. Genetic Characterization of the H Gene of MeV Strains (H1, B3, and D4) Recently Circulated in Iran for Improving the Molecular Measles Surveillance in the National Measles Lab. Zareh-Khoshchehreh R, Salimi V, Nasab GSF, Naseri M, Fard FAN, Azad TM. Iran J Public Health 52 1730-1738 (2023)
  104. Genetic Characterizations and Molecular Evolution of the Measles Virus Genotype B3's Hemagglutinin (H) Gene in the Elimination Era. Zhou N, Li M, Huang Y, Zhou L, Wang B. Viruses 13 1970 (2021)
  105. Glycan-shielded homodimer structure and dynamical features of the canine distemper virus hemagglutinin relevant for viral entry and efficient vaccination. Fukuhara H, Yumoto K, Sako M, Kajikawa M, Ose T, Kawamura M, Yoda M, Chen S, Ito Y, Takeda S, Mwaba M, Wang J, Hashiguchi T, Kamishikiryo J, Maita N, Kitatsuji C, Takeda M, Kuroki K, Maenaka K. Elife 12 RP88929 (2024)
  106. Neutralizing Antibody Response to Genotypically Diverse Measles Viruses in Clinically Suspected Measles Cases. Vaidya SR, Kumbhar NS, Andhare GK, Pawar N, Walimbe AM, Kinikar M, Kasibhatla SM, Kulkarni-Kale U. Viruses 15 2243 (2023)
  107. Structural and functional characterization of peste des petits ruminants virus coded hemagglutinin protein using various in-silico approaches. Gaur SK, Chaudhary Y, Jain J, Singh R, Kaul R. Front Microbiol 15 1427606 (2024)
  108. Suppression of viral RNA polymerase activity is necessary for persistent infection during the transformation of measles virus into SSPE virus. Sakamoto K, Konami M, Kameda S, Satoh Y, Wakimoto H, Kitagawa Y, Gotoh B, Jiang DP, Hotta H, Itoh M. PLoS Pathog 19 e1011528 (2023)