3aoi Citations

Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein.

Abstract

The multi-subunit DNA-dependent RNA polymerase (RNAP) is the principal enzyme of transcription for gene expression. Transcription is regulated by various transcription factors. Gre factor homologue 1 (Gfh1), found in the Thermus genus, is a close homologue of the well-conserved bacterial transcription factor GreA, and inhibits transcription initiation and elongation by binding directly to RNAP. The structural basis of transcription inhibition by Gfh1 has remained elusive, although the crystal structures of RNAP and Gfh1 have been determined separately. Here we report the crystal structure of Thermus thermophilus RNAP complexed with Gfh1. The amino-terminal coiled-coil domain of Gfh1 fully occludes the channel formed between the two central modules of RNAP; this channel would normally be used for nucleotide triphosphate (NTP) entry into the catalytic site. Furthermore, the tip of the coiled-coil domain occupies the NTP β-γ phosphate-binding site. The NTP-entry channel is expanded, because the central modules are 'ratcheted' relative to each other by ∼7°, as compared with the previously reported elongation complexes. This 'ratcheted state' is an alternative structural state, defined by a newly acquired contact between the central modules. Therefore, the shape of Gfh1 is appropriate to maintain RNAP in the ratcheted state. Simultaneously, the ratcheting expands the nucleic-acid-binding channel, and kinks the bridge helix, which connects the central modules. Taken together, the present results reveal that Gfh1 inhibits transcription by preventing NTP binding and freezing RNAP in the alternative structural state. The ratcheted state might also be associated with other aspects of transcription, such as RNAP translocation and transcription termination.

Reviews - 3aoi mentioned but not cited (1)

  1. Structural biology of bacterial RNA polymerase. Murakami KS. Biomolecules 5 848-864 (2015)

Articles - 3aoi mentioned but not cited (4)

  1. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Ross W, Vrentas CE, Sanchez-Vazquez P, Gaal T, Gourse RL. Mol Cell 50 420-429 (2013)
  2. Regulation of transcriptional pausing through the secondary channel of RNA polymerase. Esyunina D, Agapov A, Kulbachinskiy A. Proc Natl Acad Sci U S A 113 8699-8704 (2016)
  3. Domain-Based Protein Docking with Extremely Large Conformational Changes. Christoffer C, Kihara D. J Mol Biol 434 167820 (2022)
  4. Development of antidiabetic drugs from benzamide derivatives as glucokinase activator: A computational approach. Ali A. Saudi J Biol Sci 29 3313-3325 (2022)


Reviews citing this publication (28)

  1. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. Nat Rev Microbiol 13 298-309 (2015)
  2. Designer proteins: applications of genetic code expansion in cell biology. Davis L, Chin JW. Nat Rev Mol Cell Biol 13 168-182 (2012)
  3. Mechanisms of Bacterial Transcription Termination: All Good Things Must End. Ray-Soni A, Bellecourt MJ, Landick R. Annu Rev Biochem 85 319-347 (2016)
  4. Transcriptional Responses to ppGpp and DksA. Gourse RL, Chen AY, Gopalkrishnan S, Sanchez-Vazquez P, Myers A, Ross W. Annu Rev Microbiol 72 163-184 (2018)
  5. Initial events in bacterial transcription initiation. Ruff EF, Record MT, Artsimovitch I. Biomolecules 5 1035-1062 (2015)
  6. Gates of enzymes. Gora A, Brezovsky J, Damborsky J. Chem Rev 113 5871-5923 (2013)
  7. The magic dance of the alarmones (p)ppGpp. Steinchen W, Bange G. Mol Microbiol 101 531-544 (2016)
  8. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. Werner F. J Mol Biol 417 13-27 (2012)
  9. At the Interface of Chemical and Biological Synthesis: An Expanded Genetic Code. Xiao H, Schultz PG. Cold Spring Harb Perspect Biol 8 a023945 (2016)
  10. Structural basis of transcription elongation. Martinez-Rucobo FW, Cramer P. Biochim Biophys Acta 1829 9-19 (2013)
  11. Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering. Alifano P, Palumbo C, Pasanisi D, Talà A. J Biotechnol 202 60-77 (2015)
  12. Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies. Robinson A, van Oijen AM. Nat Rev Microbiol 11 303-315 (2013)
  13. NusG-Spt5 proteins-Universal tools for transcription modification and communication. Tomar SK, Artsimovitch I. Chem Rev 113 8604-8619 (2013)
  14. Basic mechanism of transcription by RNA polymerase II. Svetlov V, Nudler E. Biochim Biophys Acta 1829 20-28 (2013)
  15. Basic mechanisms of RNA polymerase II activity and alteration of gene expression in Saccharomyces cerevisiae. Kaplan CD. Biochim Biophys Acta 1829 39-54 (2013)
  16. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. Belogurov GA, Artsimovitch I. J Mol Biol 431 3975-4006 (2019)
  17. New Insights into the Functions of Transcription Factors that Bind the RNA Polymerase Secondary Channel. Zenkin N, Yuzenkova Y. Biomolecules 5 1195-1209 (2015)
  18. The Bridge Helix of RNA polymerase acts as a central nanomechanical switchboard for coordinating catalysis and substrate movement. Weinzierl RO. Archaea 2011 608385 (2011)
  19. RNA polymerase I activation and hibernation: unique mechanisms for unique genes. Fernández-Tornero C. Transcription 9 248-254 (2018)
  20. Mechanisms of Stress Resistance and Gene Regulation in the Radioresistant Bacterium Deinococcus radiodurans. Agapov AA, Kulbachinskiy AV. Biochemistry (Mosc) 80 1201-1216 (2015)
  21. Biological applications of expanded genetic codes. Li X, Liu CC. Chembiochem 15 2335-2341 (2014)
  22. Interplay of DNA repair with transcription: from structures to mechanisms. Deaconescu AM, Artsimovitch I, Grigorieff N. Trends Biochem Sci 37 543-552 (2012)
  23. Clamping the clamp of RNA polymerase. Svetlov V, Nudler E. EMBO J 30 1190-1191 (2011)
  24. Genetic code expansion as a tool to study regulatory processes of transcription. Schmidt MJ, Summerer D. Front Chem 2 7 (2014)
  25. Directly from the source: endogenous preparations of molecular machines. Mesa P, Deniaud A, Montoya G, Schaffitzel C. Curr Opin Struct Biol 23 319-325 (2013)
  26. RNA polymerase pausing, stalling and bypass during transcription of damaged DNA: from molecular basis to functional consequences. Agapov A, Olina A, Kulbachinskiy A. Nucleic Acids Res 50 3018-3041 (2022)
  27. Validation of Omega Subunit of RNA Polymerase as a Functional Entity. Patel UR, Gautam S, Chatterji D. Biomolecules 10 E1588 (2020)
  28. How to Shut Down Transcription in Archaea during Virus Infection. Pilotto S, Werner F. Microorganisms 10 1824 (2022)

Articles citing this publication (77)

  1. Bacterial transcription terminators: the RNA 3'-end chronicles. Peters JM, Vangeloff AD, Landick R. J Mol Biol 412 793-813 (2011)
  2. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. Martinez-Rucobo FW, Sainsbury S, Cheung AC, Cramer P. EMBO J 30 1302-1310 (2011)
  3. RNA polymerase backtracking in gene regulation and genome instability. Nudler E. Cell 149 1438-1445 (2012)
  4. Opening and closing of the bacterial RNA polymerase clamp. Chakraborty A, Wang D, Ebright YW, Korlann Y, Kortkhonjia E, Kim T, Chowdhury S, Wigneshweraraj S, Irschik H, Jansen R, Nixon BT, Knight J, Weiss S, Ebright RH. Science 337 591-595 (2012)
  5. RNA polymerase I structure and transcription regulation. Engel C, Sainsbury S, Cheung AC, Kostrewa D, Cramer P. Nature 502 650-655 (2013)
  6. The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex. Zuo Y, Wang Y, Steitz TA. Mol Cell 50 430-436 (2013)
  7. Structural basis of transcriptional pausing in bacteria. Weixlbaumer A, Leon K, Landick R, Darst SA. Cell 152 431-441 (2013)
  8. Structural Basis for Transcript Elongation Control by NusG Family Universal Regulators. Kang JY, Mooney RA, Nedialkov Y, Saba J, Mishanina TV, Artsimovitch I, Landick R, Darst SA. Cell 173 1650-1662.e14 (2018)
  9. RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing. Kang JY, Mishanina TV, Bellecourt MJ, Mooney RA, Darst SA, Landick R. Mol Cell 69 802-815.e5 (2018)
  10. The β subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Sevostyanova A, Belogurov GA, Mooney RA, Landick R, Artsimovitch I. Mol Cell 43 253-262 (2011)
  11. Structural basis of RNA polymerase III transcription initiation. Abascal-Palacios G, Ramsay EP, Beuron F, Morris E, Vannini A. Nature 553 301-306 (2018)
  12. Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase II. Da LT, Wang D, Huang X. J Am Chem Soc 134 2399-2406 (2012)
  13. A movie of RNA polymerase II transcription. Cheung AC, Cramer P. Cell 149 1431-1437 (2012)
  14. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. Kaplan CD, Jin H, Zhang IL, Belyanin A. PLoS Genet 8 e1002627 (2012)
  15. Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp. Bernecky C, Plitzko JM, Cramer P. Nat Struct Mol Biol 24 809-815 (2017)
  16. Purification of bacterial RNA polymerase: tools and protocols. Svetlov V, Artsimovitch I. Methods Mol Biol 1276 13-29 (2015)
  17. Structural basis of initial RNA polymerase II transcription. Cheung AC, Sainsbury S, Cramer P. EMBO J 30 4755-4763 (2011)
  18. The ratcheted and ratchetable structural states of RNA polymerase underlie multiple transcriptional functions. Sekine S, Murayama Y, Svetlov V, Nudler E, Yokoyama S. Mol Cell 57 408-421 (2015)
  19. Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation. Lennon CW, Ross W, Martin-Tumasz S, Toulokhonov I, Vrentas CE, Rutherford ST, Lee JH, Butcher SE, Gourse RL. Genes Dev 26 2634-2646 (2012)
  20. Arenavirus Z protein controls viral RNA synthesis by locking a polymerase-promoter complex. Kranzusch PJ, Whelan SP. Proc Natl Acad Sci U S A 108 19743-19748 (2011)
  21. Structure of RNA polymerase I transcribing ribosomal DNA genes. Neyer S, Kunz M, Geiss C, Hantsche M, Hodirnau VV, Seybert A, Engel C, Scheffer MP, Cramer P, Frangakis AS. Nature 540 607-610 (2016)
  22. Allosteric Effector ppGpp Potentiates the Inhibition of Transcript Initiation by DksA. Molodtsov V, Sineva E, Zhang L, Huang X, Cashel M, Ades SE, Murakami KS. Mol Cell 69 828-839.e5 (2018)
  23. Structural Basis of Transcription: RNA Polymerase Backtracking and Its Reactivation. Abdelkareem M, Saint-André C, Takacs M, Papai G, Crucifix C, Guo X, Ortiz J, Weixlbaumer A. Mol Cell 75 298-309.e4 (2019)
  24. Structures of E. coli σS-transcription initiation complexes provide new insights into polymerase mechanism. Liu B, Zuo Y, Steitz TA. Proc Natl Acad Sci U S A 113 4051-4056 (2016)
  25. TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle. Schulz S, Gietl A, Smollett K, Tinnefeld P, Werner F, Grohmann D. Proc Natl Acad Sci U S A 113 E1816-25 (2016)
  26. Transcription initiation factor DksA has diverse effects on RNA chain elongation. Furman R, Sevostyanova A, Artsimovitch I. Nucleic Acids Res 40 3392-3402 (2012)
  27. Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH. Kolb KE, Hein PP, Landick R. J Biol Chem 289 1151-1163 (2014)
  28. Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase. Nayak D, Voss M, Windgassen T, Mooney RA, Landick R. Mol Cell 50 882-893 (2013)
  29. E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation. Chen J, Gopalkrishnan S, Chiu C, Chen AY, Campbell EA, Gourse RL, Ross W, Darst SA. Elife 8 e49375 (2019)
  30. An insertion in the catalytic trigger loop gates the secondary channel of RNA polymerase. Furman R, Tsodikov OV, Wolf YI, Artsimovitch I. J Mol Biol 425 82-93 (2013)
  31. Role of the coiled-coil tip of Escherichia coli DksA in promoter control. Lee JH, Lennon CW, Ross W, Gourse RL. J Mol Biol 416 503-517 (2012)
  32. Interaction of the mediator head module with RNA polymerase II. Cai G, Chaban YL, Imasaki T, Kovacs JA, Calero G, Penczek PA, Takagi Y, Asturias FJ. Structure 20 899-910 (2012)
  33. Energetic and structural details of the trigger-loop closing transition in RNA polymerase II. Wang B, Predeus AV, Burton ZF, Feig M. Biophys J 105 767-775 (2013)
  34. Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase. Windgassen TA, Mooney RA, Nayak D, Palangat M, Zhang J, Landick R. Nucleic Acids Res 42 12707-12721 (2014)
  35. A two-state model for the dynamics of the pyrophosphate ion release in bacterial RNA polymerase. Da LT, Pardo Avila F, Wang D, Huang X. PLoS Comput Biol 9 e1003020 (2013)
  36. Coliphage HK022 Nun protein inhibits RNA polymerase translocation. Vitiello CL, Kireeva ML, Lubkowska L, Kashlev M, Gottesman M. Proc Natl Acad Sci U S A 111 E2368-75 (2014)
  37. Structure of the Mtb CarD/RNAP β-lobes complex reveals the molecular basis of interaction and presents a distinct DNA-binding domain for Mtb CarD. Gulten G, Sacchettini JC. Structure 21 1859-1869 (2013)
  38. Tagetitoxin inhibits RNA polymerase through trapping of the trigger loop. Artsimovitch I, Svetlov V, Nemetski SM, Epshtein V, Cardozo T, Nudler E. J Biol Chem 286 40395-40400 (2011)
  39. Trigger loop folding determines transcription rate of Escherichia coli's RNA polymerase. Mejia YX, Nudler E, Bustamante C. Proc Natl Acad Sci U S A 112 743-748 (2015)
  40. Control of transcription elongation by GreA determines rate of gene expression in Streptococcus pneumoniae. Yuzenkova Y, Gamba P, Herber M, Attaiech L, Shafeeq S, Kuipers OP, Klumpp S, Zenkin N, Veening JW. Nucleic Acids Res 42 10987-10999 (2014)
  41. Structural basis for transcription complex disruption by the Mfd translocase. Kang JY, Llewellyn E, Chen J, Olinares PDB, Brewer J, Chait BT, Campbell EA, Darst SA. Elife 10 e62117 (2021)
  42. Control of transcriptional fidelity by active center tuning as derived from RNA polymerase endonuclease reaction. Sosunova E, Sosunov V, Epshtein V, Nikiforov V, Mustaev A. J Biol Chem 288 6688-6703 (2013)
  43. Interplay between the trigger loop and the F loop during RNA polymerase catalysis. Miropolskaya N, Esyunina D, Klimasauskas S, Nikiforov V, Artsimovitch I, Kulbachinskiy A. Nucleic Acids Res 42 544-552 (2014)
  44. Red-light-controlled protein-RNA crosslinking with a genetically encoded furan. Schmidt MJ, Summerer D. Angew Chem Int Ed Engl 52 4690-4693 (2013)
  45. Reprogramming the genetic code. Chin JW. EMBO J 30 2312-2324 (2011)
  46. A small post-translocation energy bias aids nucleotide selection in T7 RNA polymerase transcription. Yu J, Oster G. Biophys J 102 532-541 (2012)
  47. Structural basis for promoter specificity switching of RNA polymerase by a phage factor. Tagami S, Sekine S, Minakhin L, Esyunina D, Akasaka R, Shirouzu M, Kulbachinskiy A, Severinov K, Yokoyama S. Genes Dev 28 521-531 (2014)
  48. The cutting edge of archaeal transcription. Fouqueau T, Blombach F, Cackett G, Carty AE, Matelska DM, Ofer S, Pilotto S, Phung DK, Werner F. Emerg Top Life Sci 2 517-533 (2018)
  49. Identification of protein partners in mycobacteria using a single-step affinity purification method. Płociński P, Laubitz D, Cysewski D, Stoduś K, Kowalska K, Dziembowski A. PLoS One 9 e91380 (2014)
  50. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex. Mekler V, Minakhin L, Borukhov S, Mustaev A, Severinov K. J Mol Biol 426 3973-3984 (2014)
  51. New insights into the regulatory mechanisms of ppGpp and DksA on Escherichia coli RNA polymerase-promoter complex. Doniselli N, Rodriguez-Aliaga P, Amidani D, Bardales JA, Bustamante C, Guerra DG, Rivetti C. Nucleic Acids Res 43 5249-5262 (2015)
  52. RNA Polymerase Clamp Movement Aids Dissociation from DNA but Is Not Required for RNA Release at Intrinsic Terminators. Bellecourt MJ, Ray-Soni A, Harwig A, Mooney RA, Landick R. J Mol Biol 431 696-713 (2019)
  53. The Core and Holoenzyme Forms of RNA Polymerase from Mycobacterium smegmatis. Kouba T, Pospíšil J, Hnilicová J, Šanderová H, Barvík I, Krásný L. J Bacteriol 201 e00583-18 (2019)
  54. The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor. Fouqueau T, Blombach F, Hartman R, Cheung ACM, Young MJ, Werner F. Nat Commun 8 1914 (2017)
  55. The use of docking-based comparative intermolecular contacts analysis to identify optimal docking conditions within glucokinase and to discover of new GK activators. Taha MO, Habash M, Khanfar MA, Khanfar MA. J Comput Aided Mol Des 28 509-547 (2014)
  56. Multiple active centers of multi-subunit RNA polymerases. Yuzenkova Y, Roghanian M, Zenkin N. Transcription 3 115-118 (2012)
  57. Novel mechanism of gene regulation: the protein Rv1222 of Mycobacterium tuberculosis inhibits transcription by anchoring the RNA polymerase onto DNA. Rudra P, Prajapati RK, Banerjee R, Sengupta S, Mukhopadhyay J. Nucleic Acids Res 43 5855-5867 (2015)
  58. Characterization of a novel RNA polymerase mutant that alters DksA activity. Satory D, Halliday JA, Sivaramakrishnan P, Lua RC, Herman C. J Bacteriol 195 4187-4194 (2013)
  59. Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. Kaur G, Iyer LM, Burroughs AM, Aravind L. Elife 10 e70394 (2021)
  60. Inhibition of Mycobacterium tuberculosis RNA polymerase by binding of a Gre factor homolog to the secondary channel. China A, Mishra S, Tare P, Nagaraja V. J Bacteriol 194 1009-1017 (2012)
  61. A novel conformation of RNA polymerase sheds light on the mechanism of transcription. Tagami S, Sekine SI, Yokoyama S. Transcription 2 162-167 (2011)
  62. Structure based approach for understanding organism specific recognition of protein-RNA complexes. Nagarajan R, Chothani SP, Ramakrishnan C, Sekijima M, Gromiha MM. Biol Direct 10 8 (2015)
  63. Lecture Multiple personalities of the RNA polymerase active centre. Zenkin N. Microbiology (Reading) 160 1316-1320 (2014)
  64. A structure-based kinetic model of transcription. Zuo Y, Steitz TA. Transcription 8 1-8 (2017)
  65. Gfh factors and NusA cooperate to stimulate transcriptional pausing and termination. Agapov A, Olina A, Esyunina D, Kulbachinskiy A. FEBS Lett 591 946-953 (2017)
  66. Gre-family factors modulate DNA damage sensing by Deinococcus radiodurans RNA polymerase. Agapov A, Esyunina D, Kulbachinskiy A. RNA Biol 16 1711-1720 (2019)
  67. Ratcheting of RNA polymerase toward structural principles of RNA polymerase operations. Sekine S, Murayama Y, Svetlov V, Nudler E, Yokoyama S. Transcription 6 56-60 (2015)
  68. An ensemble of interconverting conformations of the elemental paused transcription complex creates regulatory options. Kang JY, Mishanina TV, Bao Y, Chen J, Llewellyn E, Liu J, Darst SA, Landick R. Proc Natl Acad Sci U S A 120 e2215945120 (2023)
  69. Probing the structure of Nun transcription arrest factor bound to RNA polymerase. Mustaev A, Vitiello CL, Gottesman ME. Proc Natl Acad Sci U S A 113 8693-8698 (2016)
  70. Response to Klyuyev and Vassylyev: on the mechanism of tagetitoxin inhibition of transcription. Svetlov V, Artsimovitch I, Nudler E. Transcription 3 51-55 (2012)
  71. Structural basis of RNA polymerase inhibition by viral and host factors. Pilotto S, Fouqueau T, Lukoyanova N, Sheppard C, Lucas-Staat S, Díaz-Santín LM, Matelska D, Prangishvili D, Cheung ACM, Werner F. Nat Commun 12 5523 (2021)
  72. article-commentary Structural biology: Pivotal findings for a transcription machine. Zomerdijk J. Nature 502 629-630 (2013)
  73. TP Atlas: integration and dissemination of advances in Targeted Proteins Research Program (TPRP)-structural biology project phase II in Japan. Iwayanagi T, Miyamoto S, Konno T, Mizutani H, Hirai T, Shigemoto Y, Gojobori T, Sugawara H. J Struct Funct Genomics 13 145-154 (2012)
  74. A Thermus phage protein inhibits host RNA polymerase by preventing template DNA strand loading during open promoter complex formation. Ooi WY, Murayama Y, Mekler V, Minakhin L, Severinov K, Yokoyama S, Sekine SI. Nucleic Acids Res 46 431-441 (2018)
  75. Creative Math of RNA Polymerase III Termination: Sense Plus Antisense Makes More Sense. Artsimovitch I, Belogurov GA. Mol Cell 58 974-976 (2015)
  76. Closed for business: exit-channel coupling to active site conformation in bacterial RNA polymerase. Martin CT, Theis K. Nat Struct Mol Biol 21 741-742 (2014)
  77. Transcriptomic Analysis Reveals Key Roles of (p)ppGpp and DksA in Regulating Metabolism and Chemotaxis in Yersinia enterocolitica. Huang C, Li W, Chen J. Int J Mol Sci 24 7612 (2023)