3cbh Citations

Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei.

Science 249 380-6 (1990)
Cited: 267 times
EuropePMC logo PMID: 2377893

Abstract

The enzymatic degradation of cellulose is an important process, both ecologically and commercially. The three-dimensional structure of a cellulase, the enzymatic core of CBHII from the fungus Trichoderma reesei reveals an alpha-beta protein with a fold similar to but different from the widely occurring barrel topology first observed in triose phosphate isomerase. The active site of CBHII is located at the carboxyl-terminal end of a parallel beta barrel, in an enclosed tunnel through which the cellulose threads. Two aspartic acid residues, located in the center of the tunnel are the probable catalytic residues.

Reviews - 3cbh mentioned but not cited (1)

  1. Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila. Karnaouri A, Topakas E, Antonopoulou I, Christakopoulos P. Front Microbiol 5 281 (2014)

Articles - 3cbh mentioned but not cited (1)



Reviews citing this publication (34)

  1. Microbial cellulose utilization: fundamentals and biotechnology. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbiol. Mol. Biol. Rev. 66 506-77, table of contents (2002)
  2. Structures and mechanisms of glycosyl hydrolases. Davies G, Henrissat B. Structure 3 853-859 (1995)
  3. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Gilkes NR, Henrissat B, Kilburn DG, Miller RC, Warren RA. Microbiol. Rev. 55 303-315 (1991)
  4. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Zhang YH, Lynd LR. Biotechnol. Bioeng. 88 797-824 (2004)
  5. The biological degradation of cellulose. Béguin P, Aubert JP. FEMS Microbiol. Rev. 13 25-58 (1994)
  6. One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. Nagano N, Orengo CA, Thornton JM. J. Mol. Biol. 321 741-765 (2002)
  7. Hyaluronidases: their genomics, structures, and mechanisms of action. Stern R, Jedrzejas MJ. Chem. Rev. 106 818-839 (2006)
  8. Deconstruction of lignocellulosic biomass to fuels and chemicals. Chundawat SP, Beckham GT, Himmel ME, Dale BE. Annu Rev Chem Biomol Eng 2 121-145 (2011)
  9. ALGINATE LYASE: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Wong TY, Preston LA, Schiller NL. Annu. Rev. Microbiol. 54 289-340 (2000)
  10. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Dashtban M, Schraft H, Qin W. Int. J. Biol. Sci. 5 578-595 (2009)
  11. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Maki M, Leung KT, Qin W. Int. J. Biol. Sci. 5 500-516 (2009)
  12. Microbial diversity of cellulose hydrolysis. Wilson DB. Curr. Opin. Microbiol. 14 259-263 (2011)
  13. Mutagenesis of glycosidases. Ly HD, Withers SG. Annu. Rev. Biochem. 68 487-522 (1999)
  14. Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W. Appl. Microbiol. Biotechnol. 71 23-33 (2006)
  15. Seeds to crystals. Bergfors T. J. Struct. Biol. 142 66-76 (2003)
  16. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides. Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VG. FEBS J. 280 3028-3049 (2013)
  17. Filming biomolecular processes by high-speed atomic force microscopy. Ando T, Uchihashi T, Scheuring S. Chem. Rev. 114 3120-3188 (2014)
  18. Approaches to labeling and identification of active site residues in glycosidases. Withers SG, Aebersold R. Protein Sci. 4 361-372 (1995)
  19. Thermostable enzymes as biocatalysts in the biofuel industry. Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK. Adv. Appl. Microbiol. 70 1-55 (2010)
  20. Biochemistry and genetics of actinomycete cellulases. Wilson DB. Crit. Rev. Biotechnol. 12 45-63 (1992)
  21. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ljungdahl LG. Ann. N. Y. Acad. Sci. 1125 308-321 (2008)
  22. Chemotaxis receptors: a progress report on structure and function. Mowbray SL, Sandgren MO. J. Struct. Biol. 124 257-275 (1998)
  23. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Hildén L, Johansson G. Biotechnol. Lett. 26 1683-1693 (2004)
  24. Structural and functional comparison of polysaccharide-degrading enzymes. Jedrzejas MJ. Crit. Rev. Biochem. Mol. Biol. 35 221-251 (2000)
  25. The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Saloheimo M, Pakula TM. Microbiology (Reading, Engl.) 158 46-57 (2012)
  26. A molecular description of cellulose biosynthesis. McNamara JT, Morgan JL, Zimmer J. Annu. Rev. Biochem. 84 895-921 (2015)
  27. Processive and nonprocessive cellulases for biofuel production--lessons from bacterial genomes and structural analysis. Wilson DB. Appl. Microbiol. Biotechnol. 93 497-502 (2012)
  28. Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases. Beckham GT, Ståhlberg J, Knott BC, Himmel ME, Crowley MF, Sandgren M, Sørlie M, Payne CM. Curr. Opin. Biotechnol. 27 96-106 (2014)
  29. Parallel beta/alpha-barrels of alpha-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of beta-amylase: evolutionary distance is a reflection of unrelated sequences. Janecek S. FEBS Lett. 353 119-123 (1994)
  30. Genomics review of holocellulose deconstruction by aspergilli. Segato F, Damásio AR, de Lucas RC, Squina FM, Prade RA. Microbiol. Mol. Biol. Rev. 78 588-613 (2014)
  31. Biocatalytic conversion of lignocellulose to platform chemicals. Jäger G, Büchs J. Biotechnol J 7 1122-1136 (2012)
  32. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. Strakowska J, Błaszczyk L, Chełkowski J. J. Basic Microbiol. 54 Suppl 1 S2-13 (2014)
  33. Structural and mechanistic fundamentals for designing of cellulases. Marana SR. Comput Struct Biotechnol J 2 e201209006 (2012)
  34. Fungal cellulases: protein engineering and post-translational modifications. Zhang R, Cao C, Bi J, Li Y. Appl Microbiol Biotechnol 106 1-24 (2022)

Articles citing this publication (231)

  1. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Henrissat B, Bairoch A. Biochem. J. 293 ( Pt 3) 781-788 (1993)
  2. Cellulose degrading enzymes and their potential industrial applications. Bhat MK, Bhat S. Biotechnol. Adv. 15 583-620 (1997)
  3. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei. Divne C, Ståhlberg J, Teeri TT, Jones TA. J. Mol. Biol. 275 309-325 (1998)
  4. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M. Science 333 1279-1282 (2011)
  5. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Sakon J, Irwin D, Wilson DB, Karplus PA. Nat. Struct. Biol. 4 810-818 (1997)
  6. Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: two conformational states in the active site. Törrönen A, Harkki A, Rouvinen J. EMBO J. 13 2493-2501 (1994)
  7. Crystal structure of hyaluronidase, a major allergen of bee venom. Marković-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Müller U, Schirmer T. Structure 8 1025-1035 (2000)
  8. Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9-A resolution. van Aalten DM, Synstad B, Brurberg MB, Hough E, Riise BW, Eijsink VG, Wierenga RK. Proc. Natl. Acad. Sci. U.S.A. 97 5842-5847 (2000)
  9. Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Terwisscha van Scheltinga AC, Kalk KH, Beintema JJ, Dijkstra BW. Structure 2 1181-1189 (1994)
  10. Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. Horn SJ, Sørbotten A, Synstad B, Sikorski P, Sørlie M, Vårum KM, Eijsink VG. FEBS J. 273 491-503 (2006)
  11. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Medve J, Karlsson J, Lee D, Tjerneld F. Biotechnol. Bioeng. 59 621-634 (1998)
  12. Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Horn SJ, Sikorski P, Cederkvist JB, Vaaje-Kolstad G, Sørlie M, Synstad B, Vriend G, Vårum KM, Eijsink VG. Proc. Natl. Acad. Sci. U.S.A. 103 18089-18094 (2006)
  13. Molecular and active-site structure of a Bacillus 1,3-1,4-beta-glucanase. Keitel T, Simon O, Borriss R, Heinemann U. Proc. Natl. Acad. Sci. U.S.A. 90 5287-5291 (1993)
  14. Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Herpoël-Gimbert I, Margeot A, Dolla A, Jan G, Mollé D, Lignon S, Mathis H, Sigoillot JC, Monot F, Asther M. Biotechnol Biofuels 1 18 (2008)
  15. Processivity of cellobiohydrolases is limited by the substrate. Kurasin M, Väljamäe P. J. Biol. Chem. 286 169-177 (2011)
  16. The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A resolution, and a comparison with related enzymes. Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, Stâhlberg J, Reinikainen T, Srisodsuk M, Teeri TT, Jones TA. J. Mol. Biol. 272 383-397 (1997)
  17. Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Boisset C, Fraschini C, Schülein M, Henrissat B, Chanzy H. Appl. Environ. Microbiol. 66 1444-1452 (2000)
  18. The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum. Alzari PM, Souchon H, Dominguez R. Structure 4 265-275 (1996)
  19. The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of Clan-B glycoside hydrolases. Michel G, Chantalat L, Duee E, Barbeyron T, Henrissat B, Kloareg B, Dideberg O. Structure 9 513-525 (2001)
  20. Three-dimensional structures of two plant beta-glucan endohydrolases with distinct substrate specificities. Varghese JN, Garrett TP, Colman PM, Chen L, Høj PB, Fincher GB. Proc. Natl. Acad. Sci. U.S.A. 91 2785-2789 (1994)
  21. A common protein fold and similar active site in two distinct families of beta-glycanases. Dominguez R, Souchon H, Spinelli S, Dauter Z, Wilson KS, Chauvaux S, Béguin P, Alzari PM. Nat. Struct. Biol. 2 569-576 (1995)
  22. A specific, high-affinity binding site for the hepta-beta-glucoside elicitor exists in soybean membranes. Cheong JJ, Hahn MG. Plant Cell 3 137-147 (1991)
  23. Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. von Ossowski I, Ståhlberg J, Koivula A, Piens K, Becker D, Boer H, Harle R, Harris M, Divne C, Mahdi S, Zhao Y, Driguez H, Claeyssens M, Sinnott ML, Teeri TT. J. Mol. Biol. 333 817-829 (2003)
  24. Enzymatic properties of cellulases from Humicola insolens. Schülein M. J. Biotechnol. 57 71-81 (1997)
  25. A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Saloheimo A, Henrissat B, Hoffrén AM, Teleman O, Penttilä M. Mol. Microbiol. 13 219-228 (1994)
  26. Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei. Zou J, Kleywegt GJ, Ståhlberg J, Driguez H, Nerinckx W, Claeyssens M, Koivula A, Teeri TT, Jones TA. Structure 7 1035-1045 (1999)
  27. cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Saloheimo M, Nakari-Setälä T, Tenkanen M, Penttilä M. Eur. J. Biochem. 249 584-591 (1997)
  28. Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Nidetzky B, Steiner W, Hayn M, Claeyssens M. Biochem. J. 298 Pt 3 705-710 (1994)
  29. Principles determining the structure of beta-sheet barrels in proteins. II. The observed structures. Murzin AG, Lesk AM, Chothia C. J. Mol. Biol. 236 1382-1400 (1994)
  30. Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Ducros V, Czjzek M, Belaich A, Gaudin C, Fierobe HP, Belaich JP, Davies GJ, Haser R. Structure 3 939-949 (1995)
  31. Studies of Thermobifida fusca plant cell wall degrading enzymes. Wilson DB. Chem Rec 4 72-82 (2004)
  32. Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Harris GW, Jenkins JA, Connerton I, Cummings N, Lo Leggio L, Scott M, Hazlewood GP, Laurie JI, Gilbert HJ, Pickersgill RW. Structure 2 1107-1116 (1994)
  33. Crystal structure of the phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with myo-inositol. Heinz DW, Ryan M, Bullock TL, Griffith OH. EMBO J. 14 3855-3863 (1995)
  34. Three microbial strategies for plant cell wall degradation. Wilson DB. Ann. N. Y. Acad. Sci. 1125 289-297 (2008)
  35. Discovering protein secondary structures: classification and description of isolated alpha-turns. Pavone V, Gaeta G, Lombardi A, Nastri F, Maglio O, Isernia C, Saviano M. Biopolymers 38 705-721 (1996)
  36. Crystal structure and site-directed mutagenesis of Bacillus macerans endo-1,3-1,4-beta-glucanase. Hahn M, Olsen O, Politz O, Borriss R, Heinemann U. J. Biol. Chem. 270 3081-3088 (1995)
  37. Structural and mechanistic comparison of prokaryotic and eukaryotic phosphoinositide-specific phospholipases C. Heinz DW, Essen LO, Williams RL. J. Mol. Biol. 275 635-650 (1998)
  38. An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes beta-1,4 bonds in mixed-linkage (1-->3),(1-->4)-beta-D-glucans and cellulose. Bauer MW, Driskill LE, Callen W, Snead MA, Mathur EJ, Kelly RM. J. Bacteriol. 181 284-290 (1999)
  39. Cloning and characterization of a chitinase (chit42) cDNA from the mycoparasitic fungus Trichoderma harzianum. García I, Lora JM, de la Cruz J, Benítez T, Llobell A, Pintor-Toro JA. Curr. Genet. 27 83-89 (1994)
  40. Degradation of chitosans with chitinase B from Serratia marcescens. Production of chito-oligosaccharides and insight into enzyme processivity. Sørbotten A, Horn SJ, Eijsink VG, Vårum KM. FEBS J. 272 538-549 (2005)
  41. Structure and function of endoglucanase V. Davies GJ, Dodson GG, Hubbard RE, Tolley SP, Dauter Z, Wilson KS, Hjort C, Mikkelsen JM, Rasmussen G, Schülein M. Nature 365 362-364 (1993)
  42. Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency. Zakariassen H, Aam BB, Horn SJ, Vårum KM, Sørlie M, Eijsink VG. J. Biol. Chem. 284 10610-10617 (2009)
  43. Characteristics of an exochitinase from Streptomyces olivaceoviridis, its corresponding gene, putative protein domains and relationship to other chitinases. Blaak H, Schnellmann J, Walter S, Henrissat B, Schrempf H. Eur. J. Biochem. 214 659-669 (1993)
  44. Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens. Varrot A, Frandsen TP, von Ossowski I, Boyer V, Cottaz S, Driguez H, Schülein M, Davies GJ. Structure 11 855-864 (2003)
  45. The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 A resolution. Parsiegla G, Juy M, Reverbel-Leroy C, Tardif C, Belaïch JP, Driguez H, Haser R. EMBO J. 17 5551-5562 (1998)
  46. Three-dimensional structure of the bifunctional enzyme phosphoribosylanthranilate isomerase: indoleglycerolphosphate synthase from Escherichia coli refined at 2.0 A resolution. Wilmanns M, Priestle JP, Niermann T, Jansonius JN. J. Mol. Biol. 223 477-507 (1992)
  47. Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A. Koivula A, Kinnari T, Harjunpää V, Ruohonen L, Teleman A, Drakenberg T, Rouvinen J, Jones TA, Teeri TT. FEBS Lett. 429 341-346 (1998)
  48. Sequencing and expression of the Butyrivibrio fibrisolvens xylB gene encoding a novel bifunctional protein with beta-D-xylosidase and alpha-L-arabinofuranosidase activities. Utt EA, Eddy CK, Keshav KF, Ingram LO. Appl. Environ. Microbiol. 57 1227-1234 (1991)
  49. Towards new enzymes for biofuels: lessons from chitinase research. Eijsink VG, Vaaje-Kolstad G, Vårum KM, Horn SJ. Trends Biotechnol. 26 228-235 (2008)
  50. Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Karlsson J, Saloheimo M, Siika-Aho M, Tenkanen M, Penttilä M, Tjerneld F. Eur. J. Biochem. 268 6498-6507 (2001)
  51. Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. Karlsson J, Siika-aho M, Tenkanen M, Tjerneld F. J. Biotechnol. 99 63-78 (2002)
  52. The crystal structure and catalytic mechanism of cellobiohydrolase CelS, the major enzymatic component of the Clostridium thermocellum Cellulosome. Guimarães BG, Souchon H, Lytle BL, David Wu JH, Alzari PM. J. Mol. Biol. 320 587-596 (2002)
  53. Stereochemistry, specificity and kinetics of the hydrolysis of reduced cellodextrins by nine cellulases. Schou C, Rasmussen G, Kaltoft MB, Henrissat B, Schülein M. Eur. J. Biochem. 217 947-953 (1993)
  54. Site-directed mutation of noncatalytic residues of Thermobifida fusca exocellulase Cel6B. Zhang S, Irwin DC, Wilson DB. Eur. J. Biochem. 267 3101-3115 (2000)
  55. Structural and functional relationships in two families of beta-1,4-glycanases. Gilkes NR, Claeyssens M, Aebersold R, Henrissat B, Meinke A, Morrison HD, Kilburn DG, Warren RA, Miller RC. Eur. J. Biochem. 202 367-377 (1991)
  56. Structure, organization, and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium. Covert SF, Vanden Wymelenberg A, Cullen D. Appl. Environ. Microbiol. 58 2168-2175 (1992)
  57. Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Mosier NS, Ladisch CM, Ladisch MR. Biotechnol. Bioeng. 79 610-618 (2002)
  58. The 1,4-beta-D-glucan cellobiohydrolases from Phanerochaete chrysosporium. I. A system of synergistically acting enzymes homologous to Trichoderma reesei. Uzcategui E, Ruiz A, Montesino R, Johansson G, Pettersson G. J. Biotechnol. 19 271-285 (1991)
  59. Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis. Palonen H, Tenkanen M, Linder M. Appl. Environ. Microbiol. 65 5229-5233 (1999)
  60. Enzyme production by recombinant Trichoderma reesei strains. Uusitalo JM, Nevalainen KM, Harkki AM, Knowles JK, Penttilä ME. J. Biotechnol. 17 35-49 (1991)
  61. Multiple functions of aromatic-carbohydrate interactions in a processive cellulase examined with molecular simulation. Payne CM, Bomble YJ, Taylor CB, McCabe C, Himmel ME, Crowley MF, Beckham GT. J. Biol. Chem. 286 41028-41035 (2011)
  62. O-glycosylation in Aspergillus glucoamylase. Conformation and role in binding. Williamson G, Belshaw NJ, Williamson MP. Biochem. J. 282 ( Pt 2) 423-428 (1992)
  63. The Cellulases Endoglucanase I and Cellobiohydrolase II of Trichoderma reesei Act Synergistically To Solubilize Native Cotton Cellulose but Not To Decrease Its Molecular Size. Kleman-Leyer KM, Siika-Aho M, Teeri TT, Kirk TK. Appl. Environ. Microbiol. 62 2883-2887 (1996)
  64. A new function for a common fold: the crystal structure of quinolinic acid phosphoribosyltransferase. Eads JC, Ozturk D, Wexler TB, Grubmeyer C, Sacchettini JC. Structure 5 47-58 (1997)
  65. Family 7 cellobiohydrolases from Phanerochaete chrysosporium: crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 A resolution and homology models of the isozymes. Muñoz IG, Ubhayasekera W, Henriksson H, Szabó I, Pettersson G, Johansson G, Mowbray SL, Ståhlberg J. J. Mol. Biol. 314 1097-1111 (2001)
  66. Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Boisset C, Pétrequin C, Chanzy H, Henrissat B, Schülein M. Biotechnol. Bioeng. 72 339-345 (2001)
  67. Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II, Cel6A, from Humicola insolens, at 1.92 A resolution. Varrot A, Hastrup S, Schülein M, Davies GJ. Biochem. J. 337 ( Pt 2) 297-304 (1999)
  68. Nucleotide sequence of the endoglucanase C gene (cenC) of Cellulomonas fimi, its high-level expression in Escherichia coli, and characterization of its products. Coutinho JB, Moser B, Kilburn DG, Warren RA, Miller RC. Mol. Microbiol. 5 1221-1233 (1991)
  69. Identification of glycan structure and glycosylation sites in cellobiohydrolase II and endoglucanases I and II from Trichoderma reesei. Hui JP, White TC, Thibault P. Glycobiology 12 837-849 (2002)
  70. Specificity mapping of cellulolytic enzymes: classification into families of structurally related proteins confirmed by biochemical analysis. Claeyssens M, Henrissat B. Protein Sci. 1 1293-1297 (1992)
  71. Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals. Imai T, Boisset C, Samejima M, Igarashi K, Sugiyama J. FEBS Lett. 432 113-116 (1998)
  72. Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Vuong TV, Wilson DB. Appl. Environ. Microbiol. 75 6655-6661 (2009)
  73. Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Zhang YH, Lynd LR. Anal. Biochem. 322 225-232 (2003)
  74. Characterization of a Neocallimastix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II. Denman S, Xue GP, Patel B. Appl. Environ. Microbiol. 62 1889-1896 (1996)
  75. Hallmarks of processivity in glycoside hydrolases from crystallographic and computational studies of the Serratia marcescens chitinases. Payne CM, Baban J, Horn SJ, Backe PH, Arvai AS, Dalhus B, Bjørås M, Eijsink VG, Sørlie M, Beckham GT, Vaaje-Kolstad G. J. Biol. Chem. 287 36322-36330 (2012)
  76. Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei. Mattinen ML, Kontteli M, Kerovuo J, Linder M, Annila A, Lindeberg G, Reinikainen T, Drakenberg T. Protein Sci. 6 294-303 (1997)
  77. Biochemical characterization of MI-ENG1, a family 5 endoglucanase secreted by the root-knot nematode Meloidogyne incognita. Béra-Maillet C, Arthaud L, Abad P, Rosso MN. Eur. J. Biochem. 267 3255-3263 (2000)
  78. Crystal structure of the beta-glycosidase from the hyperthermophile Thermosphaera aggregans: insights into its activity and thermostability. Chi YI, Martinez-Cruz LA, Jancarik J, Swanson RV, Robertson DE, Kim SH. FEBS Lett. 445 375-383 (1999)
  79. Physical and kinetic properties of the family 3 beta-glucosidase from Aspergillus niger which is important for cellulose breakdown. Seidle HF, Marten I, Shoseyov O, Huber RE. Protein J. 23 11-23 (2004)
  80. Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on cellulose. Nimlos MR, Beckham GT, Matthews JF, Bu L, Himmel ME, Crowley MF. J. Biol. Chem. 287 20603-20612 (2012)
  81. Cellobiohydrolase A (CbhA) from the cellulolytic bacterium Cellulomonas fimi is a beta-1,4-exocellobiohydrolase analogous to Trichoderma reesei CBH II. Meinke A, Gilkes NR, Kwan E, Kilburn DG, Warren RA, Miller RC. Mol. Microbiol. 12 413-422 (1994)
  82. Mode of action of endoglucanase III from Trichoderma reesei. Macarrón R, Acebal C, Castillón MP, Domínguez JM, de la Mata I, Pettersson G, Tomme P, Claeyssens M. Biochem. J. 289 ( Pt 3) 867-873 (1993)
  83. Molecular cloning, expression and nucleotide sequence of the endo-beta-1,3-1,4-D-glucanase gene from Bacillus licheniformis. Predictive structural analyses of the encoded polypeptide. Lloberas J, Perez-Pons JA, Querol E. Eur. J. Biochem. 197 337-343 (1991)
  84. Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulase-hemicellulase complex. Li XL, Chen H, Ljungdahl LG. Appl. Environ. Microbiol. 63 4721-4728 (1997)
  85. Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities. Tomme P, Kwan E, Gilkes NR, Kilburn DG, Warren RA. J. Bacteriol. 178 4216-4223 (1996)
  86. Hypocrea jecorina CEL6A protein engineering. Lantz SE, Goedegebuur F, Hommes R, Kaper T, Kelemen BR, Mitchinson C, Wallace L, Ståhlberg J, Larenas EA. Biotechnol Biofuels 3 20 (2010)
  87. Crystal structure of the Escherichia coli YcdX protein reveals a trinuclear zinc active site. Teplyakov A, Obmolova G, Khil PP, Howard AJ, Camerini-Otero RD, Gilliland GL. Proteins 51 315-318 (2003)
  88. Purification and properties of a novel type of exo-1,4-beta-glucanase (avicelase II) from the cellulolytic thermophile Clostridium stercorarium. Bronnenmeier K, Rücknagel KP, Staudenbauer WL. Eur. J. Biochem. 200 379-385 (1991)
  89. Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation. Adav SS, Chao LT, Sze SK. Mol. Cell Proteomics 11 M111.012419 (2012)
  90. Roles of the aromatic side chains in the binding of substrates, inhibitors, and cyclomalto-oligosaccharides to the glucoamylase from Aspergillus niger probed by perturbation difference spectroscopy, chemical modification, and mutagenesis. Svensson B, Sierks MR. Carbohydr. Res. 227 29-44 (1992)
  91. celA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum. Te'o VS, Saul DJ, Bergquist PL. Appl. Microbiol. Biotechnol. 43 291-296 (1995)
  92. Product inhibition of five Hypocrea jecorina cellulases. Murphy L, Bohlin C, Baumann MJ, Olsen SN, Sørensen TH, Anderson L, Borch K, Westh P. Enzyme Microb. Technol. 52 163-169 (2013)
  93. Specificity of the binding domain of glucoamylase 1. Belshaw NJ, Williamson G. Eur. J. Biochem. 211 717-724 (1993)
  94. Transglucosidic reactions of the Aspergillus niger family 3 beta-glucosidase: qualitative and quantitative analyses and evidence that the transglucosidic rate is independent of pH. Seidle HF, Huber RE. Arch. Biochem. Biophys. 436 254-264 (2005)
  95. Cellobiohydrolase B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas fimi. Shen H, Gilkes NR, Kilburn DG, Miller RC, Warren RA. Biochem. J. 311 ( Pt 1) 67-74 (1995)
  96. Molecular modeling suggests induced fit of Family I carbohydrate-binding modules with a broken-chain cellulose surface. Nimlos MR, Matthews JF, Crowley MF, Walker RC, Chukkapalli G, Brady JW, Adney WS, Cleary JM, Zhong L, Himmel ME. Protein Eng. Des. Sel. 20 179-187 (2007)
  97. Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6 A resolution. Davies GJ, Brzozowski AM, Dauter M, Varrot A, Schülein M. Biochem. J. 348 Pt 1 201-207 (2000)
  98. Identification of an essential glutamate residue in the active site of endoglucanase III from Trichoderma reesei. Macarron R, van Beeumen J, Henrissat B, de la Mata I, Claeyssens M. FEBS Lett. 316 137-140 (1993)
  99. The use of conserved cellulase family-specific sequences to clone cellulase homologue cDNAs from Fusarium oxysporum. Sheppard PO, Grant FJ, Oort PJ, Sprecher CA, Foster DC, Hagen FS, Upshall A, McKnight GL, O'Hara PJ. Gene 150 163-167 (1994)
  100. Dextranase from Penicillium minioluteum: reaction course, crystal structure, and product complex. Larsson AM, Andersson R, Ståhlberg J, Kenne L, Jones TA. Structure 11 1111-1121 (2003)
  101. Effects of noncatalytic residue mutations on substrate specificity and ligand binding of Thermobifida fusca endocellulase cel6A. Zhang S, Barr BK, Wilson DB. Eur. J. Biochem. 267 244-252 (2000)
  102. Crystal structure of endo-beta-N-acetylglucosaminidase H at 1.9 A resolution: active-site geometry and substrate recognition. Rao V, Guan C, Van Roey P. Structure 3 449-457 (1995)
  103. Molecular cloning, transcriptional, and expression analysis of the first cellulase gene (cbh2), encoding cellobiohydrolase II, from the moderately thermophilic fungus Talaromyces emersonii and structure prediction of the gene product. Murray PG, Collins CM, Grassick A, Tuohy MG. Biochem. Biophys. Res. Commun. 301 280-286 (2003)
  104. Primary structure of a chitinase-encoding gene (chi1) from the filamentous fungus Aphanocladium album: similarity to bacterial chitinases. Blaiseau PL, Lafay JF. Gene 120 243-248 (1992)
  105. Synthesis of long-chain chitooligosaccharides by a hypertransglycosylating processive endochitinase of Serratia proteamaculans 568. Purushotham P, Podile AR. J. Bacteriol. 194 4260-4271 (2012)
  106. The structural bases of the processive degradation of iota-carrageenan, a main cell wall polysaccharide of red algae. Michel G, Helbert W, Kahn R, Dideberg O, Kloareg B. J. Mol. Biol. 334 421-433 (2003)
  107. Cello-oligosaccharide hydrolysis by cellobiohydrolase II from Trichoderma reesei. Association and rate constants derived from an analysis of progress curves. Harjunpää V, Teleman A, Koivula A, Ruohonen L, Teeri TT, Teleman O, Drakenberg T. Eur. J. Biochem. 240 584-591 (1996)
  108. Cloning and nucleotide sequence of celA1, and endo-beta-1,4-glucanase-encoding gene from Streptomyces halstedii JM8. Fernández-Abalos JM, Sánchez P, Coll PM, Villanueva JR, Pérez P, Santamaría RI. J. Bacteriol. 174 6368-6376 (1992)
  109. The cel3 gene of Agaricus bisporus codes for a modular cellulase and is transcriptionally regulated by the carbon source. Chow CM, Yagüe E, Raguz S, Wood DA, Thurston CF. Appl. Environ. Microbiol. 60 2779-2785 (1994)
  110. Substrate specificity of endoglucanase A from Cellulomonas fimi: fundamental differences between endoglucanases and exoglucanases from family 6. Damude HG, Ferro V, Withers SG, Warren RA. Biochem. J. 315 ( Pt 2) 467-472 (1996)
  111. The structural basis for exopolygalacturonase activity in a family 28 glycoside hydrolase. Abbott DW, Boraston AB. J. Mol. Biol. 368 1215-1222 (2007)
  112. A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Chen HL, Chen YC, Lu MJ, Chang JJ, Wang HC, Ke HM, Wang TY, Ruan SK, Wang TY, Hung KY, Cho HY, Lin WT, Shih MC, Li WH. Biotechnol Biofuels 5 24 (2012)
  113. A novel function for the cellulose binding module of cellobiohydrolase I. Wang L, Zhang Y, Gao P. Sci. China, C, Life Sci. 51 620-629 (2008)
  114. Action pattern, specificity, lytic activities, and physiological role of five digestive beta-glucanases isolated from Periplaneta americana. Genta FA, Terra WR, Ferreira C. Insect Biochem. Mol. Biol. 33 1085-1097 (2003)
  115. Isolation, characterization, and analysis of the expression of the cbhII gene of Phanerochaete chrysosporium. Tempelaars CA, Birch PR, Sims PF, Broda P. Appl. Environ. Microbiol. 60 4387-4393 (1994)
  116. Processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvacea. Zheng F, Ding S. Appl. Environ. Microbiol. 79 989-996 (2013)
  117. The catalytic domain of endoglucanase A from Clostridium cellulolyticum: effects of arginine 79 and histidine 122 mutations on catalysis. Belaich A, Fierobe HP, Baty D, Busetta B, Bagnara-Tardif C, Gaudin C, Belaich JP. J. Bacteriol. 174 4677-4682 (1992)
  118. The three-dimensional structure of PNGase F, a glycosylasparaginase from Flavobacterium meningosepticum. Norris GE, Stillman TJ, Anderson BF, Baker EN. Structure 2 1049-1059 (1994)
  119. Gene cloning and characterization of a novel cellulose-binding beta-glucosidase from Phanerochaete chrysosporium. Li B, Renganathan V. Appl. Environ. Microbiol. 64 2748-2754 (1998)
  120. Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Poidevin L, Feliu J, Doan A, Berrin JG, Bey M, Coutinho PM, Henrissat B, Record E, Heiss-Blanquet S. Appl. Environ. Microbiol. 79 4220-4229 (2013)
  121. Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity. Kari J, Olsen J, Borch K, Cruys-Bagger N, Jensen K, Westh P. J. Biol. Chem. 289 32459-32468 (2014)
  122. Cloning, characterization and heterologous expression of the first Penicillium echinulatum cellulase gene. Rubini MR, Dillon AJ, Kyaw CM, Faria FP, Poças-Fonseca MJ, Silva-Pereira I. J. Appl. Microbiol. 108 1187-1198 (2010)
  123. Evaluation of the sequence template method for protein structure prediction. Discrimination of the (beta/alpha)8-barrel fold. Pickett SD, Saqi MA, Sternberg MJ. J. Mol. Biol. 228 170-187 (1992)
  124. Origin of initial burst in activity for Trichoderma reesei endo-glucanases hydrolyzing insoluble cellulose. Murphy L, Cruys-Bagger N, Damgaard HD, Baumann MJ, Olsen SN, Borch K, Lassen SF, Sweeney M, Tatsumi H, Westh P. J. Biol. Chem. 287 1252-1260 (2012)
  125. Tandem repeat of a seven-bladed beta-propeller domain in oligoxyloglucan reducing-end-specific cellobiohydrolase. Yaoi K, Kondo H, Noro N, Suzuki M, Tsuda S, Mitsuishi Y. Structure 12 1209-1217 (2004)
  126. The 1,4-beta-D-glucan glucanohydrolases from Phanerochaete chrysosporium. Re-assessment of their significance in cellulose degradation mechanisms. Uzcategui E, Johansson G, Ek B, Pettersson G. J. Biotechnol. 21 143-159 (1991)
  127. Thermostable cellobiohydrolase from the thermophilic eubacterium Thermotoga sp. strain FjSS3-B.1. Purification and properties. Ruttersmith LD, Daniel RM. Biochem. J. 277 ( Pt 3) 887-890 (1991)
  128. Binding and reversibility of Thermobifida fusca Cel5A, Cel6B, and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose. Jung H, Wilson DB, Walker LP. Biotechnol. Bioeng. 84 151-159 (2003)
  129. Cloning and sequencing of cellulase cDNA from Aspergillus kawachii and its expression in Saccharomyces cerevisiae. Sakamoto S, Tamura G, Ito K, Ishikawa T, Iwano K, Nishiya N. Curr. Genet. 27 435-439 (1995)
  130. Evolutionary analysis of glycosyl hydrolase family 28 (GH28) suggests lineage-specific expansions in necrotrophic fungal pathogens. Sprockett DD, Piontkivska H, Blackwood CB. Gene 479 29-36 (2011)
  131. Surface residue mutations which change the substrate specificity of Thermomonospora fusca endoglucanase E2. Zhang S, Wilson DB. J. Biotechnol. 57 101-113 (1997)
  132. A structural study of Hypocrea jecorina Cel5A. Lee TM, Farrow MF, Arnold FH, Mayo SL. Protein Sci. 20 1935-1940 (2011)
  133. Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans. Pluvinage B, Hehemann JH, Boraston AB. J. Biol. Chem. 288 28078-28088 (2013)
  134. Binding characteristics of Trichoderma reesei cellulases on untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated lignocellulosic biomass. Gao D, Chundawat SP, Uppugundla N, Balan V, Dale BE. Biotechnol. Bioeng. 108 1788-1800 (2011)
  135. Characterization of a cellobiohydrolase (MoCel6A) produced by Magnaporthe oryzae. Takahashi M, Takahashi H, Nakano Y, Konishi T, Terauchi R, Takeda T. Appl. Environ. Microbiol. 76 6583-6590 (2010)
  136. Crystal structures of A. acidocaldarius endoglucanase Cel9A in complex with cello-oligosaccharides: strong -1 and -2 subsites mimic cellobiohydrolase activity. Eckert K, Vigouroux A, Lo Leggio L, Moréra S. J. Mol. Biol. 394 61-70 (2009)
  137. Isolation of four major subunits from Clostridium thermocellum cellulosome and their synergism in the hydrolysis of crystalline cellulose. Bhat S, Goodenough PW, Bhat MK, Owen E. Int. J. Biol. Macromol. 16 335-342 (1994)
  138. Heterogeneity of homologously expressed Hypocrea jecorina (Trichoderma reesei) Cel7B catalytic module. Eriksson T, Stals I, Collén A, Tjerneld F, Claeyssens M, Stålbrand H, Brumer H. Eur. J. Biochem. 271 1266-1276 (2004)
  139. The absence of an identifiable single catalytic base residue in Thermobifida fusca exocellulase Cel6B. Vuong TV, Wilson DB. FEBS J. 276 3837-3845 (2009)
  140. Understanding protein structure-function relationships in Family 47 alpha-1,2-mannosidases through computational docking of ligands. Mulakala C, Reilly PJ. Proteins 49 125-134 (2002)
  141. Cellulase processivity. Wilson DB, Kostylev M. Methods Mol. Biol. 908 93-99 (2012)
  142. Computational investigation of the pH dependence of loop flexibility and catalytic function in glycoside hydrolases. Bu L, Crowley MF, Himmel ME, Beckham GT. J. Biol. Chem. 288 12175-12186 (2013)
  143. Mechanism of interaction between cellulase action and applied shear force, an hypothesis. Lenting HB, Warmoeskerken MM. J. Biotechnol. 89 217-226 (2001)
  144. Computational and experimental studies of the catalytic mechanism of Thermobifida fusca cellulase Cel6A (E2). André G, Kanchanawong P, Palma R, Cho H, Deng X, Irwin D, Himmel ME, Wilson DB, Brady JW. Protein Eng. 16 125-134 (2003)
  145. Key amino acid residues for the endo-processive activity of GH74 xyloglucanase. Matsuzawa T, Saito Y, Yaoi K. FEBS Lett. 588 1731-1738 (2014)
  146. Periplasmic Cytophaga hutchinsonii Endoglucanases Are Required for Use of Crystalline Cellulose as the Sole Source of Carbon and Energy. Zhu Y, Han L, Hefferon KL, Silvaggi NR, Wilson DB, McBride MJ. Appl. Environ. Microbiol. 82 4835-4845 (2016)
  147. The active site of oligogalacturonate lyase provides unique insights into cytoplasmic oligogalacturonate beta-elimination. Abbott DW, Gilbert HJ, Boraston AB. J. Biol. Chem. 285 39029-39038 (2010)
  148. The structure of a bacterial cellobiohydrolase: the catalytic core of the Thermobifida fusca family GH6 cellobiohydrolase Cel6B. Sandgren M, Wu M, Karkehabadi S, Mitchinson C, Kelemen BR, Larenas EA, Ståhlberg J, Hansson H. J. Mol. Biol. 425 622-635 (2013)
  149. A proposed structure for 'family 18' chitinases. A possible function for narbonin. Coulson AF. FEBS Lett. 354 41-44 (1994)
  150. Amino acid sequence and thermostability of xylanase A from Schizophyllum commune. Oku T, Roy C, Watson DC, Wakarchuk W, Campbell R, Yaguchi M, Jurasek L, Paice MG. FEBS Lett. 334 296-300 (1993)
  151. Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungus Chaetomium thermophilum. Wang XJ, Peng YJ, Zhang LQ, Li AN, Li DC. Appl. Microbiol. Biotechnol. 95 1469-1478 (2012)
  152. Loop motions important to product expulsion in the Thermobifida fusca glycoside hydrolase family 6 cellobiohydrolase from structural and computational studies. Wu M, Bu L, Vuong TV, Wilson DB, Crowley MF, Sandgren M, Ståhlberg J, Beckham GT, Hansson H. J. Biol. Chem. 288 33107-33117 (2013)
  153. Oligosaccharide specificity of a family 7 endoglucanase: insertion of potential sugar-binding subsites. Davies GJ, Ducros V, Lewis RJ, Borchert TV, Schülein M. J. Biotechnol. 57 91-100 (1997)
  154. A coarse-grained model for synergistic action of multiple enzymes on cellulose. Asztalos A, Daniels M, Sethi A, Shen T, Langan P, Redondo A, Gnanakaran S. Biotechnol Biofuels 5 55 (2012)
  155. Automated docking to explore subsite binding by glycoside hydrolase family 6 cellobiohydrolases and endoglucanases. Mertz B, Hill AD, Mulakala C, Reilly PJ. Biopolymers 87 249-260 (2007)
  156. Crystal structure of a glycoside hydrolase family 6 enzyme, CcCel6C, a cellulase constitutively produced by Coprinopsis cinerea. Liu Y, Yoshida M, Kurakata Y, Miyazaki T, Igarashi K, Samejima M, Fukuda K, Nishikawa A, Tonozuka T. FEBS J. 277 1532-1542 (2010)
  157. High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell. Hughes SR, Riedmuller SB, Mertens JA, Li XL, Bischoff KM, Qureshi N, Cotta MA, Farrelly PJ. Proteome Sci 4 10 (2006)
  158. Progress-curve analysis shows that glucose inhibits the cellotriose hydrolysis catalysed by cellobiohydrolase II from Trichoderma reesei. Teleman A, Koivula A, Reinikainen T, Valkeajärvi A, Teeri TT, Drakenberg T, Teleman O. Eur. J. Biochem. 231 250-258 (1995)
  159. The gene encoding the beta-1,4-endoglucanase (CelA) from Myxococcus xanthus: evidence for independent acquisition by horizontal transfer of binding and catalytic domains from actinomycetes. Quillet L, Barray S, Labedan B, Petit F, Guespin-Michel J. Gene 158 23-29 (1995)
  160. A comparative study between an endoglucanase IV and its fused protein complex Cel5-CBM6. Bae HJ, Turcotte G, Chamberland H, Karita S, Vézina LP. FEMS Microbiol. Lett. 227 175-181 (2003)
  161. Cellulose hydrolysis and binding with Trichoderma reesei Cel5A and Cel7A and their core domains in ionic liquid solutions. Wahlström R, Rahikainen J, Kruus K, Suurnäkki A. Biotechnol. Bioeng. 111 726-733 (2014)
  162. Crystallization and preliminary X-ray diffraction analysis of the catalytic domain of Cex, an exo-beta-1,4-glucanase and beta-1,4-xylanase from the bacterium Cellulomonas fimi. Bedarkar S, Gilkes NR, Kilburn DG, Kwan E, Rose DR, Miller RC, Warren RA, Withers SG. J. Mol. Biol. 228 693-695 (1992)
  163. Hidden domains and active site residues in beta-glycanase-encoding gene sequences? Henrissat B. Gene 125 199-204 (1993)
  164. Hydrolyses of alpha- and beta-cellobiosyl fluorides by cellobiohydrolases of Trichoderma reesei. Konstantinidis AK, Marsden I, Sinnott ML. Biochem. J. 291 ( Pt 3) 883-888 (1993)
  165. Invariant glycines and prolines flanking in loops the strand beta 2 of various (alpha/beta)8-barrel enzymes: a hidden homology? Janecek S. Protein Sci. 5 1136-1143 (1996)
  166. Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor. Tatsumi H, Katano H, Ikeda T. Anal. Biochem. 357 257-261 (2006)
  167. N-bromoacetyl-glycopyranosylamines as affinity labels for a beta-glucosidase and a cellulase. Black TS, Kiss L, Tull D, Withers SG. Carbohydr. Res. 250 195-202 (1993)
  168. Phylogenetic analysis of family 6 glycoside hydrolases. Mertz B, Kuczenski RS, Larsen RT, Hill AD, Reilly PJ. Biopolymers 79 197-206 (2005)
  169. Cloning and sequencing of an exoglucanase gene from Streptomyces sp. M 23, and its expression in Streptomyces lividans TK-24. Park CS, Kawaguchi T, Sumitani J, Takada G, Izumori K, Arai M. J. Biosci. Bioeng. 99 434-436 (2005)
  170. Endoglucanase CasA from alkalophilic Streptomyces strain KSM-9 is a typical member of family B of beta-1,4-glucanases. Damude HG, Gilkes NR, Kilburn DG, Miller RC, Warren RA. Gene 123 105-107 (1993)
  171. Heterologous expression of cellobiohydrolase II (Cel6A) in maize endosperm. Devaiah SP, Requesens DV, Chang YK, Hood KR, Flory A, Howard JA, Hood EE. Transgenic Res. 22 477-488 (2013)
  172. Initial recognition of a cellodextrin chain in the cellulose-binding tunnel may affect cellobiohydrolase directional specificity. Ghattyvenkatakrishna PK, Alekozai EM, Beckham GT, Schulz R, Crowley MF, Uberbacher EC, Cheng X. Biophys. J. 104 904-912 (2013)
  173. Structural advantage of sugar beet α-glucosidase to stabilize the Michaelis complex with long-chain substrate. Tagami T, Yamashita K, Okuyama M, Mori H, Yao M, Kimura A. J. Biol. Chem. 290 1796-1803 (2015)
  174. Catalytic mechanism of cellulose degradation by a cellobiohydrolase, CelS. Saharay M, Guo H, Smith JC. PLoS ONE 5 e12947 (2010)
  175. Cloning and characterization of two cellulase genes from Lentinula edodes. Lee CC, Wong DW, Robertson GH. FEMS Microbiol. Lett. 205 355-360 (2001)
  176. Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomium thermophilum and its expression in Pichia pastoris. Li YL, Li H, Li AN, Li DC. J. Appl. Microbiol. 106 1867-1875 (2009)
  177. Comparative characterization of all cellulosomal cellulases from Clostridium thermocellum reveals high diversity in endoglucanase product formation essential for complex activity. Leis B, Held C, Bergkemper F, Dennemarck K, Steinbauer R, Reiter A, Mechelke M, Moerch M, Graubner S, Liebl W, Schwarz WH, Zverlov VV. Biotechnol Biofuels 10 240 (2017)
  178. Comparison of the structural changes in two cellobiohydrolases, CcCel6A and CcCel6C, from Coprinopsis cinerea--a tweezer-like motion in the structure of CcCel6C. Tamura M, Miyazaki T, Tanaka Y, Yoshida M, Nishikawa A, Tonozuka T. FEBS J. 279 1871-1882 (2012)
  179. Distinct roles of N- and O-glycans in cellulase activity and stability. Amore A, Knott BC, Supekar NT, Shajahan A, Azadi P, Zhao P, Wells L, Linger JG, Hobdey SE, Vander Wall TA, Shollenberger T, Yarbrough JM, Tan Z, Crowley MF, Himmel ME, Decker SR, Beckham GT, Taylor LE. Proc. Natl. Acad. Sci. U.S.A. 114 13667-13672 (2017)
  180. Dynamic light scattering study of the two-domain structure of Humicola insolens endoglucanase V. Boisset C, Borsali R, Schülein M, Henrissat B. FEBS Lett. 376 49-52 (1995)
  181. Mechanistic investigation in ultrasound induced enhancement of enzymatic hydrolysis of invasive biomass species. Borah AJ, Agarwal M, Poudyal M, Goyal A, Moholkar VS. Bioresour. Technol. 213 342-349 (2016)
  182. Rational design, synthesis, evaluation and enzyme-substrate structures of improved fluorogenic substrates for family 6 glycoside hydrolases. Wu M, Nerinckx W, Piens K, Ishida T, Hansson H, Sandgren M, Ståhlberg J. FEBS J. 280 184-198 (2013)
  183. Single-molecule Imaging Analysis of Binding, Processive Movement, and Dissociation of Cellobiohydrolase Trichoderma reesei Cel6A and Its Domains on Crystalline Cellulose. Nakamura A, Tasaki T, Ishiwata D, Yamamoto M, Okuni Y, Visootsat A, Maximilien M, Noji H, Uchiyama T, Samejima M, Igarashi K, Iino R. J. Biol. Chem. 291 22404-22413 (2016)
  184. Structure of the catalytic core module of the Chaetomium thermophilum family GH6 cellobiohydrolase Cel6A. Thompson AJ, Heu T, Shaghasi T, Benyamino R, Jones A, Friis EP, Wilson KS, Davies GJ. Acta Crystallogr. D Biol. Crystallogr. 68 875-882 (2012)
  185. Two structurally discrete GH7-cellobiohydrolases compete for the same cellulosic substrate fiber. Segato F, Damasio AR, Gonçalves TA, Murakami MT, Squina FM, Polizeli M, Mort AJ, Prade RA. Biotechnol Biofuels 5 21 (2012)
  186. Characterization of glycoside hydrolase family 6 enzymes from Coprinopsis cinerea. Liu Y, Igarashi K, Kaneko S, Tonozuka T, Samejima M, Fukuda K, Yoshida M. Biosci. Biotechnol. Biochem. 73 1432-1434 (2009)
  187. Characterization of two crystal forms of Clostridium thermocellum endoglucanase CelC. Dominguez R, Souchon H, Alzari PM. Proteins 19 158-160 (1994)
  188. The effects of tunicamycin on secretion, adhesion and activities of the cellulase complex of Clostridium cellulolyticum, ATCC 35319. Gehin A, Petitdemange H. Res. Microbiol. 146 251-262 (1995)
  189. Crystallization of the exo(1,3)-beta-glucanase from Candida albicans. Cutfield S, Brooke G, Sullivan P, Cutfield J. J. Mol. Biol. 225 217-218 (1992)
  190. Evolution of parallel beta/alpha-barrel enzyme family lightened by structural data on starch-processing enzymes. Janecek S, Baláz S. J. Protein Chem. 12 509-514 (1993)
  191. Genetic and functional characterization of an extracellular modular GH6 endo-β-1,4-glucanase from an earthworm symbiont, Cellulosimicrobium funkei HY-13. Kim DY, Lee MJ, Cho HY, Lee JS, Lee MH, Chung CW, Shin DH, Rhee YH, Son KH, Park HY. Antonie Van Leeuwenhoek 109 1-12 (2016)
  192. Hydrolyses of alpha- and beta-cellobiosyl fluorides by Cel6A (cellobiohydrolase II) of Trichoderma reesei and Humicola insolens. Becker D, Johnson KS, Koivula A, Schülein M, Sinnott ML. Biochem. J. 345 Pt 2 315-319 (2000)
  193. Intrinsic fluorescence in endoglucanase and cellobiohydrolase from Trichoderma pseudokiningii S-38: effects of pH, quenching agents, and ligand binding. Yan BX, Sun YQ, Gao P. J Protein Chem 16 681-688 (1997)
  194. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis. Tian L, Liu S, Wang S, Wang L. Sci Rep 6 23605 (2016)
  195. A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates. Bengtsson O, Arntzen MØ, Mathiesen G, Skaugen M, Eijsink VGH. J Proteomics 131 104-112 (2016)
  196. Alternative splice variants in TIM barrel proteins from human genome correlate with the structural and evolutionary modularity of this versatile protein fold. Ochoa-Leyva A, Montero-Morán G, Saab-Rincón G, Brieba LG, Soberón X. PLoS ONE 8 e70582 (2013)
  197. Molecular cloning and characterization of a β-glucanase from Piromyces rhizinflatus. Chu CY, Tseng CW, Yueh PY, Duan CH, Liu JR. J. Biosci. Bioeng. 111 541-546 (2011)
  198. Role of cysteine residues in thermal inactivation of fungal Cel6A cellobiohydrolases. Wu I, Heel T, Arnold FH. Biochim. Biophys. Acta 1834 1539-1544 (2013)
  199. A multifunctional thermophilic glycoside hydrolase from Caldicellulosiruptor owensensis with potential applications in production of biofuels and biochemicals. Peng X, Su H, Mi S, Han Y. Biotechnol Biofuels 9 98 (2016)
  200. Crystallization and preliminary X-ray analysis of a fungal endoglucanase I. Davies G, Tolley S, Wilson K, Schülein M, Wöldike HF, Dodson G. J. Mol. Biol. 228 970-972 (1992)
  201. Heterologous expression, crystallization and preliminary X-ray characterization of CcCel6C, a glycoside hydrolase family 6 enzyme from the basidiomycete Coprinopsis cinerea. Kurakata Y, Tonozuka T, Liu Y, Kaneko S, Nishikawa A, Fukuda K, Yoshida M. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65 140-143 (2009)
  202. Insights into the reaction mechanism of glycosyl hydrolase family 49. Site-directed mutagenesis and substrate preference of isopullulanase. Akeboshi H, Tonozuka T, Furukawa T, Ichikawa K, Aoki H, Shimonishi A, Nishikawa A, Sakano Y. Eur. J. Biochem. 271 4420-4427 (2004)
  203. Transglycosylation by a chitinase from Enterobacter cloacae subsp. cloacae generates longer chitin oligosaccharides. Mallakuntla MK, Vaikuntapu PR, Bhuvanachandra B, Das SN, Podile AR. Sci Rep 7 5113 (2017)
  204. Expression, purification and characterization of an endoglucanase from Serratia proteamaculans CDBB-1961, isolated from the gut of Dendroctonus adjunctus (Coleoptera: Scolytinae). Cano-Ramírez C, Santiago-Hernández A, Rivera-Orduña FN, García-Huante Y, Zúñiga G, Hidalgo-Lara ME. AMB Express 6 63 (2016)
  205. High-resolution structure of a lytic polysaccharide monooxygenase from Hypocrea jecorina reveals a predicted linker as an integral part of the catalytic domain. Hansson H, Karkehabadi S, Mikkelsen N, Douglas NR, Kim S, Lam A, Kaper T, Kelemen B, Meier KK, Jones SM, Solomon EI, Sandgren M. J. Biol. Chem. 292 19099-19109 (2017)
  206. Hydrolysis of Chlorella by Cellulomonas sp. YJ5 cellulases and its biofunctional properties. Yin LJ, Jiang ST, Pon SH, Lin HH. J. Food Sci. 75 H317-23 (2010)
  207. Structural analysis by circular dichroism of some enzymes involved in plant cell wall degradation. Goodenough PW, Clark DC, Durrant AJ, Gilbert HJ, Hazlewood GP, Waksman G. FEBS Lett. 282 355-358 (1991)
  208. Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases. Mayes HB, Knott BC, Crowley MF, Broadbelt LJ, Ståhlberg J, Beckham GT. Chem Sci 7 5955-5968 (2016)
  209. Analysis of a catalytic acidic pair in the active center of cellulase from Aspergillus aculeatus. Ohnishi A, Ooi T, Kinoshita S, Tomatsuri H, Umeda K, Ueda S, Hata Y, Arai M. Biosci. Biotechnol. Biochem. 63 2157-2162 (1999)
  210. Circular dichroism studies in conformation of cellobiohydrolase and endoglucanase from Trichoderma pseudokiningii S-38: effects of pH and ligand binding. Yan B, Sun YQ. J Protein Chem 16 107-111 (1997)
  211. Cloning, purification, and characterization of an organic solvent-tolerant chitinase, MtCh509, from Microbulbifer thermotolerans DAU221. Lee HJ, Lee YS, Choi YL. Biotechnol Biofuels 11 303 (2018)
  212. Comparison of Thermobifida fusca Cellulases Expressed in Escherichia coli and Nicotiana tabacum Indicates Advantages of the Plant System for the Expression of Bacterial Cellulases. Klinger J, Fischer R, Commandeur U. Front Plant Sci 6 1047 (2015)
  213. Direct chiral resolution of 15-deoxyspergualin using a cellobiohydrolase liquid chromatographic column. Mayo DJ, Tomasella FP, Noroski JE. J Pharm Biomed Anal 14 457-463 (1996)
  214. Identification of a Pivotal Residue for Determining the Block Structure-Forming Properties of Alginate C-5 Epimerases. Stanisci A, Tøndervik A, Gaardløs M, Lervik A, Skjåk-Bræk G, Sletta H, Aachmann FL. ACS Omega 5 4352-4361 (2020)
  215. Primary structure deduction and molecular modelling from a cDNA of a cellobiohydrolase-like protein from the white-rot fungus Coriolus versicolor. Novo C, Simões F, Mendonça D, Matos J, Clemente A. Int. J. Biol. Macromol. 28 285-292 (2001)
  216. Rapid chromatography for evaluating adsorption characteristics of cellulase binding domain mimetics. Mosier NS, Wilker JJ, Ladisch MR. Biotechnol. Bioeng. 86 756-764 (2004)
  217. Real-time PCR for quantification in soil of glycoside hydrolase family 6 cellulase genes. Merlin C, Besaury L, Niepceron M, Mchergui C, Riah W, Bureau F, Gattin I, Bodilis J. Lett. Appl. Microbiol. 59 284-291 (2014)
  218. Single-molecule imaging analysis reveals the mechanism of a high-catalytic-activity mutant of chitinase A from Serratia marcescens. Visootsat A, Nakamura A, Vignon P, Watanabe H, Uchihashi T, Iino R. J Biol Chem 295 1915-1925 (2020)
  219. The directionality of processive enzymes acting on recalcitrant polysaccharides is reflected in the kinetic signatures of oligomer degradation. Hamre AG, Schaupp D, Eijsink VG, Sørlie M. FEBS Lett. 589 1807-1812 (2015)
  220. A mutation in an exoglucanase of Xanthomonas oryzae pv. oryzae, which confers an endo mode of activity, affects bacterial virulence, but not the induction of immune responses, in rice. Tayi L, Kumar S, Nathawat R, Haque AS, Maku RV, Patel HK, Sankaranarayanan R, Sonti RV. Mol. Plant Pathol. 19 1364-1376 (2018)
  221. Advantages of a distant cellulase catalytic base. Burgin T, Ståhlberg J, Mayes HB. J. Biol. Chem. 293 4680-4687 (2018)
  222. Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Kondo T, Kose R, Naito H, Kasai W. Carbohydr Polym 112 284-290 (2014)
  223. Co-Production of Cellulose Nanocrystals and Fermentable Sugars Assisted by Endoglucanase Treatment of Wood Pulp. Dai J, Chae M, Beyene D, Danumah C, Tosto F, Bressler DC. Materials (Basel) 11 (2018)
  224. Ega3 from the fungal pathogen Aspergillus fumigatus is an endo-α-1,4-galactosaminidase that disrupts microbial biofilms. Bamford NC, Le Mauff F, Subramanian AS, Yip P, Millán C, Zhang Y, Zacharias C, Forman A, Nitz M, Codée JDC, Usón I, Sheppard DC, Howell PL. J. Biol. Chem. 294 13833-13849 (2019)
  225. Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes. Badino SF, Christensen SJ, Kari J, Windahl MS, Hvidt S, Borch K, Westh P. Biotechnol. Bioeng. 114 1639-1647 (2017)
  226. Hydrolysis of glycosylpyridinium ions by anomeric-configuration-inverting glycosidases. Padmaperuma B, Sinnott ML. Carbohydr. Res. 250 79-86 (1993)
  227. Insight into the process of product expulsion in cellobiohydrolase Cel6A from Trichoderma reesei by computational modeling. Huang H, Han F, Guan S, Qian M, Wan Y, Shan Y, Zhang H, Wang S. J. Biomol. Struct. Dyn. 37 1360-1374 (2019)
  228. Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action. Bule P, Chuzel L, Blagova E, Wu L, Gray MA, Henrissat B, Rapp E, Bertozzi CR, Taron CH, Davies GJ. Nat Commun 10 4816 (2019)
  229. Rate-limiting step and substrate accessibility of cellobiohydrolase Cel6A from Trichoderma reesei. Christensen SJ, Kari J, Badino SF, Borch K, Westh P. FEBS J. 285 4482-4493 (2018)
  230. Recombinant cellobiohydrolase of Myceliophthora thermophila: characterization and applicability in cellulose saccharification. Dadwal A, Sharma S, Satyanarayana T. AMB Express 11 148 (2021)
  231. Recombinant expression and characterization of two glycoside hydrolases from extreme alklinphilic bacterium Cellulomonas bogoriensis 69B4T. Li F, Dong J, Lv X, Wen Y, Chen S. AMB Express 10 44 (2020)


Related citations provided by authors (1)

  1. Crystallization of the Core Protein of Cellobiohydrolase II from Trichoderma Reesei. Bergfors T, Rouvinen J, Lehtovaara P, Caldentey X, Tomme P, Claeyssens M, Pettersson G, Teeri T, Knowles J, Jones TA J. Mol. Biol. 209 167- (1989)