3cbh Citations

Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei.

Science 249 380-6 (1990)
Cited: 267 times
EuropePMC logo PMID: 2377893

Abstract

The enzymatic degradation of cellulose is an important process, both ecologically and commercially. The three-dimensional structure of a cellulase, the enzymatic core of CBHII from the fungus Trichoderma reesei reveals an alpha-beta protein with a fold similar to but different from the widely occurring barrel topology first observed in triose phosphate isomerase. The active site of CBHII is located at the carboxyl-terminal end of a parallel beta barrel, in an enclosed tunnel through which the cellulose threads. Two aspartic acid residues, located in the center of the tunnel are the probable catalytic residues.

Reviews - 3cbh mentioned but not cited (1)

  1. Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila. Karnaouri A, Topakas E, Antonopoulou I, Christakopoulos P. Front Microbiol 5 281 (2014)

Articles - 3cbh mentioned but not cited (1)



Reviews citing this publication (34)

  1. Microbial cellulose utilization: fundamentals and biotechnology. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbiol. Mol. Biol. Rev. 66 506-77, table of contents (2002)
  2. Structures and mechanisms of glycosyl hydrolases. Davies G, Henrissat B. Structure 3 853-859 (1995)
  3. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Gilkes NR, Henrissat B, Kilburn DG, Miller RC, Warren RA. Microbiol. Rev. 55 303-315 (1991)
  4. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Zhang YH, Lynd LR. Biotechnol. Bioeng. 88 797-824 (2004)
  5. The biological degradation of cellulose. Béguin P, Aubert JP. FEMS Microbiol. Rev. 13 25-58 (1994)
  6. One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. Nagano N, Orengo CA, Thornton JM. J. Mol. Biol. 321 741-765 (2002)
  7. Hyaluronidases: their genomics, structures, and mechanisms of action. Stern R, Jedrzejas MJ. Chem. Rev. 106 818-839 (2006)
  8. Deconstruction of lignocellulosic biomass to fuels and chemicals. Chundawat SP, Beckham GT, Himmel ME, Dale BE. Annu Rev Chem Biomol Eng 2 121-145 (2011)
  9. ALGINATE LYASE: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Wong TY, Preston LA, Schiller NL. Annu. Rev. Microbiol. 54 289-340 (2000)
  10. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Dashtban M, Schraft H, Qin W. Int. J. Biol. Sci. 5 578-595 (2009)
  11. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Maki M, Leung KT, Qin W. Int. J. Biol. Sci. 5 500-516 (2009)
  12. Microbial diversity of cellulose hydrolysis. Wilson DB. Curr. Opin. Microbiol. 14 259-263 (2011)
  13. Mutagenesis of glycosidases. Ly HD, Withers SG. Annu. Rev. Biochem. 68 487-522 (1999)
  14. Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W. Appl. Microbiol. Biotechnol. 71 23-33 (2006)
  15. Seeds to crystals. Bergfors T. J. Struct. Biol. 142 66-76 (2003)
  16. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides. Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VG. FEBS J. 280 3028-3049 (2013)
  17. Filming biomolecular processes by high-speed atomic force microscopy. Ando T, Uchihashi T, Scheuring S. Chem. Rev. 114 3120-3188 (2014)
  18. Approaches to labeling and identification of active site residues in glycosidases. Withers SG, Aebersold R. Protein Sci. 4 361-372 (1995)
  19. Thermostable enzymes as biocatalysts in the biofuel industry. Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK. Adv. Appl. Microbiol. 70 1-55 (2010)
  20. Biochemistry and genetics of actinomycete cellulases. Wilson DB. Crit. Rev. Biotechnol. 12 45-63 (1992)
  21. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ljungdahl LG. Ann. N. Y. Acad. Sci. 1125 308-321 (2008)
  22. Chemotaxis receptors: a progress report on structure and function. Mowbray SL, Sandgren MO. J. Struct. Biol. 124 257-275 (1998)
  23. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Hildén L, Johansson G. Biotechnol. Lett. 26 1683-1693 (2004)
  24. Structural and functional comparison of polysaccharide-degrading enzymes. Jedrzejas MJ. Crit. Rev. Biochem. Mol. Biol. 35 221-251 (2000)
  25. The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Saloheimo M, Pakula TM. Microbiology (Reading, Engl.) 158 46-57 (2012)
  26. A molecular description of cellulose biosynthesis. McNamara JT, Morgan JL, Zimmer J. Annu. Rev. Biochem. 84 895-921 (2015)
  27. Processive and nonprocessive cellulases for biofuel production--lessons from bacterial genomes and structural analysis. Wilson DB. Appl. Microbiol. Biotechnol. 93 497-502 (2012)
  28. Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases. Beckham GT, Ståhlberg J, Knott BC, Himmel ME, Crowley MF, Sandgren M, Sørlie M, Payne CM. Curr. Opin. Biotechnol. 27 96-106 (2014)
  29. Parallel beta/alpha-barrels of alpha-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of beta-amylase: evolutionary distance is a reflection of unrelated sequences. Janecek S. FEBS Lett. 353 119-123 (1994)
  30. Genomics review of holocellulose deconstruction by aspergilli. Segato F, Damásio AR, de Lucas RC, Squina FM, Prade RA. Microbiol. Mol. Biol. Rev. 78 588-613 (2014)
  31. Biocatalytic conversion of lignocellulose to platform chemicals. Jäger G, Büchs J. Biotechnol J 7 1122-1136 (2012)
  32. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. Strakowska J, Błaszczyk L, Chełkowski J. J. Basic Microbiol. 54 Suppl 1 S2-13 (2014)
  33. Structural and mechanistic fundamentals for designing of cellulases. Marana SR. Comput Struct Biotechnol J 2 e201209006 (2012)
  34. Fungal cellulases: protein engineering and post-translational modifications. Zhang R, Cao C, Bi J, Li Y. Appl Microbiol Biotechnol 106 1-24 (2022)

Articles citing this publication (231)



Related citations provided by authors (1)