3cev Citations

Crystal structures of Bacillus caldovelox arginase in complex with substrate and inhibitors reveal new insights into activation, inhibition and catalysis in the arginase superfamily.

Structure 7 435-48 (1999)
Related entries: 1cev, 2cev, 4cev, 5cev

Cited: 74 times
EuropePMC logo PMID: 10196128

Abstract

Background

Arginase is a manganese-dependent enzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. In ureotelic animals arginase is the final enzyme of the urea cycle, but in many species it has a wider role controlling the use of arginine for other metabolic purposes, including the production of creatine, polyamines, proline and nitric oxide. Arginase activity is regulated by various small molecules, including the product L-ornithine. The aim of these structural studies was to test aspects of the catalytic mechanism and to investigate the structural basis of arginase inhibition.

Results

We report here the crystal structures of arginase from Bacillus caldovelox at pH 5.6 and pH 8.5, and of binary complexes of the enzyme with L-arginine, L-ornithine and L-lysine at pH 8.5. The arginase monomer comprises a single compact alpha/beta domain that further associates into a hexameric quaternary structure. The binary complexes reveal a common mode of ligand binding, which places the substrate adjacent to the dimanganese centre. We also observe a conformational change that impacts on the active site and is coupled with the occupancy of an external site by guanidine or arginine.

Conclusion

The structures reported here clarify aspects of the active site and indicate key features of the catalytic mechanism, including substrate coordination to one of the manganese ions and an orientational role for a neighboring histidine residue. Stereospecificity for L-amino acids is found to depend on their precise recognition at the active-site rim. Identification of a second arginine-binding site, remote from the active site, and associated conformational changes lead us to propose a regulatory role for this site in substrate hydrolysis.

Articles - 3cev mentioned but not cited (4)

  1. Replacing Mn(2+) with Co(2+) in human arginase i enhances cytotoxicity toward l-arginine auxotrophic cancer cell lines. Stone EM, Glazer ES, Chantranupong L, Cherukuri P, Breece RM, Tierney DL, Curley SA, Iverson BL, Georgiou G. ACS Chem Biol 5 333-342 (2010)
  2. Crystal structures of TM0549 and NE1324--two orthologs of E. coli AHAS isozyme III small regulatory subunit. Petkowski JJ, Chruszcz M, Zimmerman MD, Zheng H, Skarina T, Onopriyenko O, Cymborowski MT, Koclega KD, Savchenko A, Edwards A, Minor W. Protein Sci 16 1360-1367 (2007)
  3. The second-shell metal ligands of human arginase affect coordination of the nucleophile and substrate. Stone EM, Chantranupong L, Georgiou G. Biochemistry 49 10582-10588 (2010)
  4. A synthetic peptide as an allosteric inhibitor of human arginase I and II. Gao K, Lunev S, van den Berg MPM, Al-Dahmani ZM, Evans S, Mertens DALJ, Meurs H, Gosens R, Groves MR. Mol Biol Rep 48 1959-1966 (2021)


Reviews citing this publication (5)

  1. Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. Kehres DG, Maguire ME. FEMS Microbiol Rev 27 263-290 (2003)
  2. Physiological implications of arginine metabolism in plants. Winter G, Todd CD, Trovato M, Forlani G, Funck D. Front Plant Sci 6 534 (2015)
  3. The enzymes of β-lactam biosynthesis. Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ. Nat Prod Rep 30 21-107 (2013)
  4. Evolution of the arginase fold and functional diversity. Dowling DP, Di Costanzo L, Gennadios HA, Christianson DW. Cell Mol Life Sci 65 2039-2055 (2008)
  5. Polyamine Deacetylase Structure and Catalysis: Prokaryotic Acetylpolyamine Amidohydrolase and Eukaryotic HDAC10. Shinsky SA, Christianson DW. Biochemistry 57 3105-3114 (2018)

Articles citing this publication (65)

  1. A fully automatic evolutionary classification of protein folds: Dali Domain Dictionary version 3. Dietmann S, Park J, Notredame C, Heger A, Lappe M, Holm L. Nucleic Acids Res 29 55-57 (2001)
  2. Helicobacter pylori rocF is required for arginase activity and acid protection in vitro but is not essential for colonization of mice or for urease activity. McGee DJ, Radcliff FJ, Mendz GL, Ferrero RL, Mobley HL. J Bacteriol 181 7314-7322 (1999)
  3. Structure of the manganese-bound manganese transport regulator of Bacillus subtilis. Glasfeld A, Guedon E, Helmann JD, Brennan RG. Nat Struct Biol 10 652-657 (2003)
  4. Guanidinium export is the primal function of SMR family transporters. Kermani AA, Macdonald CB, Gundepudi R, Stockbridge RB. Proc Natl Acad Sci U S A 115 3060-3065 (2018)
  5. Human ornithine transcarbamylase: crystallographic insights into substrate recognition and conformational changes. Shi D, Morizono H, Yu X, Tong L, Allewell NM, Tuchman M. Biochem J 354 501-509 (2001)
  6. Inhibition of human arginase I by substrate and product analogues. Di Costanzo L, Ilies M, Thorn KJ, Christianson DW. Arch Biochem Biophys 496 101-108 (2010)
  7. Subunit-subunit interactions in trimeric arginase. Generation of active monomers by mutation of a single amino acid. Lavulo LT, Sossong TM, Brigham-Burke MR, Doyle ML, Cox JD, Christianson DW, Ash DE. J Biol Chem 276 14242-14248 (2001)
  8. Expression, purification, assay, and crystal structure of perdeuterated human arginase I. Di Costanzo L, Moulin M, Haertlein M, Meilleur F, Christianson DW. Arch Biochem Biophys 465 82-89 (2007)
  9. Crystal structure of arginase from Plasmodium falciparum and implications for L-arginine depletion in malarial infection . Dowling DP, Ilies M, Olszewski KL, Portugal S, Mota MM, Llinás M, Christianson DW. Biochemistry 49 5600-5608 (2010)
  10. Oligomeric structure of proclavaminic acid amidino hydrolase: evolution of a hydrolytic enzyme in clavulanic acid biosynthesis. Elkins JM, Clifton IJ, Hernández H, Doan LX, Robinson CV, Schofield CJ, Hewitson KS. Biochem J 366 423-434 (2002)
  11. An extracellular Cu2+ binding site in the voltage sensor of BK and Shaker potassium channels. Ma Z, Wong KY, Horrigan FT. J Gen Physiol 131 483-502 (2008)
  12. Characterization of Bacillus anthracis arginase: effects of pH, temperature, and cell viability on metal preference. Viator RJ, Rest RF, Hildebrandt E, McGee DJ. BMC Biochem 9 15 (2008)
  13. Molecular modeling of Helicobacter pylori arginase and the inhibitor coordination interactions. Azizian H, Bahrami H, Pasalar P, Amanlou M. J Mol Graph Model 28 626-635 (2010)
  14. Structural metal dependency of the arginase from the human malaria parasite Plasmodium falciparum. Müller IB, Walter RD, Wrenger C. Biol Chem 386 117-126 (2005)
  15. Probing the specificity determinants of amino acid recognition by arginase. Shishova EY, Di Costanzo L, Emig FA, Ash DE, Christianson DW. Biochemistry 48 121-131 (2009)
  16. Mutational analysis of substrate recognition by human arginase type I--agmatinase activity of the N130D variant. Alarcón R, Orellana MS, Neira B, Uribe E, García JR, Carvajal N. FEBS J 273 5625-5631 (2006)
  17. Manganese-dependent inhibition of human liver arginase by borate. Carvajal N, Salas M, López V, Uribe E, Herrera P, Cerpa J, Fuentes M. J Inorg Biochem 77 163-167 (1999)
  18. Crystal structure of an arginase-like protein from Trypanosoma brucei that evolved without a binuclear manganese cluster. Hai Y, Kerkhoven EJ, Barrett MP, Christianson DW. Biochemistry 54 458-471 (2015)
  19. Glu-256 is a main structural determinant for oligomerisation of human arginase I. Sabio G, Mora A, Rangel MA, Quesada A, Marcos CF, Alonso JC, Soler G, Centeno F. FEBS Lett 501 161-165 (2001)
  20. Insights into the interaction of human arginase II with substrate and manganese ions by site-directed mutagenesis and kinetic studies. Alteration of substrate specificity by replacement of Asn149 with Asp. López V, Alarcón R, Orellana MS, Enríquez P, Uribe E, Martínez J, Carvajal N. FEBS J 272 4540-4548 (2005)
  21. Schistosoma mansoni arginase shares functional similarities with human orthologs but depends upon disulphide bridges for enzymatic activity. Fitzpatrick JM, Fuentes JM, Chalmers IW, Wynn TA, Modolell M, Hoffmann KF, Hesse M. Int J Parasitol 39 267-279 (2009)
  22. Coagulase-negative Staphylococci favor conversion of arginine into ornithine despite a widespread genetic potential for nitric oxide synthase activity. Sánchez Mainar M, Weckx S, Leroy F. Appl Environ Microbiol 80 7741-7751 (2014)
  23. Amino acid substitutions at protein-protein interfaces that modulate the oligomeric state. Nishi H, Ota M. Proteins 78 1563-1574 (2010)
  24. Crystal structures of Pseudomonas aeruginosa guanidinobutyrase and guanidinopropionase, members of the ureohydrolase superfamily. Lee SJ, Kim DJ, Kim HS, Lee BI, Yoon HJ, Yoon JY, Kim KH, Jang JY, Im HN, An DR, Song JS, Kim HJ, Suh SW. J Struct Biol 175 329-338 (2011)
  25. Inhibition of rat liver and kidney arginase by cadmium ion. Tormanen CD. J Enzyme Inhib Med Chem 21 119-123 (2006)
  26. Insights into the reaction mechanism of Escherichia coli agmatinase by site-directed mutagenesis and molecular modelling. Salas M, Rodríguez R, López N, Uribe E, López V, Carvajal N. Eur J Biochem 269 5522-5526 (2002)
  27. Kinetic studies and site-directed mutagenesis of Escherichia coli agmatinase. A role for Glu274 in binding and correct positioning of the substrate guanidinium group. Carvajal N, Orellana MS, Salas M, Enríquez P, Alarcón R, Uribe E, López V. Arch Biochem Biophys 430 185-190 (2004)
  28. Structural, enzymatic and biochemical studies on Helicobacter pylori arginase. Zhang X, Zhang J, Zhang R, Guo Y, Wu C, Mao X, Guo G, Zhang Y, Li D, Zou Q. Int J Biochem Cell Biol 45 995-1002 (2013)
  29. Chemical modification and site-directed mutagenesis of human liver arginase: evidence that the imidazole group of histidine-141 is not involved in substrate binding. Carvajal N, Olate J, Salas M, Uribe E, López V, Herrera P, Cerpa J. Arch Biochem Biophys 371 202-206 (1999)
  30. Evidence that histidine-163 is critical for catalytic activity, but not for substrate binding to Escherichia coli agmatinase. Carvajal N, Olate J, Salas M, López V, Cerpa J, Herrera P, Uribe E. Biochem Biophys Res Commun 264 196-200 (1999)
  31. Expression, purification and characterization of arginase from Helicobacter pylori in its apo form. Zhang J, Zhang X, Wu C, Lu D, Guo G, Mao X, Zhang Y, Wang DC, Li D, Zou Q. PLoS One 6 e26205 (2011)
  32. Stereochemistry of guanidine-metal interactions: implications for L-arginine-metal interactions in protein structure and function. Di Costanzo L, Flores LV, Christianson DW. Proteins 65 637-642 (2006)
  33. Studies on the interaction of Escherichia coli agmatinase with manganese ions: structural and kinetic studies of the H126N and H151N variants. Salas M, López V, Uribe E, Carvajal N. J Inorg Biochem 98 1032-1036 (2004)
  34. Crystal structure of Schistosoma mansoni arginase, a potential drug target for the treatment of schistosomiasis. Hai Y, Edwards JE, Van Zandt MC, Hoffmann KF, Christianson DW. Biochemistry 53 4671-4684 (2014)
  35. Guanidine-ferroheme coordination in the mutant protein nitrophorin 4(L130R). He C, Fuchs MR, Ogata H, Knipp M. Angew Chem Int Ed Engl 51 4470-4473 (2012)
  36. Insights into the interaction of human liver arginase with tightly and weakly bound manganese ions by chemical modification and site-directed mutagenesis studies. Orellana MS, López V, Uribe E, Fuentes M, Salas M, Carvajal N. Arch Biochem Biophys 403 155-159 (2002)
  37. Studies on the functional significance of a C-terminal S-shaped motif in human arginase type I: essentiality for cooperative effects. García D, Uribe E, Lobos M, Orellana MS, Carvajal N. Arch Biochem Biophys 481 16-20 (2009)
  38. A new chromophoric assay for arginase activity. Baggio R, Cox JD, Harper SL, Speicher DW, Christianson DW. Anal Biochem 276 251-253 (1999)
  39. Insight into the role of a unique SSEHA motif in the activity and stability of Helicobacter pylori arginase. Srivastava A, Dwivedi N, Samanta U, Sau AK. IUBMB Life 63 1027-1036 (2011)
  40. Determination of the catalytic pathway of a manganese arginase enzyme through density functional investigation. Leopoldini M, Russo N, Toscano M. Chemistry 15 8026-8036 (2009)
  41. Development and optimization of a novel conductometric bi-enzyme biosensor for L-arginine determination. Saiapina OY, Dzyadevych SV, Jaffrezic-Renault N, Soldatkin OP. Talanta 92 58-64 (2012)
  42. Inactivation of human liver arginase by Woodward's reagent K: evidence for reaction with His141. Carvajal N, Uribe E, López V, Salas M. Protein J 23 179-183 (2004)
  43. Interaction of anions with rat liver arginase: specific inhibitory effects of fluoride. Pethe S, Boucher JL, Mansuy D. J Inorg Biochem 88 397-402 (2002)
  44. Pharmacophore-based virtual screening to aid in the identification of unknown protein function. Mallipeddi PL, Joshi M, Briggs JM. Chem Biol Drug Des 80 828-842 (2012)
  45. The activity of Plasmodium falciparum arginase is mediated by a novel inter-monomer salt-bridge between Glu295-Arg404. Wells GA, Müller IB, Wrenger C, Louw AI. FEBS J 276 3517-3530 (2009)
  46. A combined computational and experimental investigation of the [2Fe-2S] cluster in biotin synthase. Fuchs MG, Meyer F, Ryde U. J Biol Inorg Chem 15 203-212 (2010)
  47. Formiminoglutamase from Trypanosoma cruzi is an arginase-like manganese metalloenzyme. Hai Y, Dugery RJ, Healy D, Christianson DW. Biochemistry 52 9294-9309 (2013)
  48. Characterization of a Dimeric Arginase From Zymomonas mobilis ZM4. Hwangbo SA, Kim JW, Jung SJ, Jin KS, Lee JO, Kim JS, Park SY. Front Microbiol 10 2755 (2019)
  49. Mono-PEGylation of a Thermostable Arginine-Depleting Enzyme for the Treatment of Lung Cancer. Chung SF, Kim CF, Kwok SY, Tam SY, Chen YW, Chong HC, Leung SL, So PK, Wong KY, Leung YC, Lo WH. Int J Mol Sci 21 E4234 (2020)
  50. Arginase of Helicobacter Gastric Pathogens Uses a Unique Set of Non-catalytic Residues for Catalysis. George G, Kombrabail M, Raninga N, Sau AK. Biophys J 112 1120-1134 (2017)
  51. Crystal Structure of Escherichia coli Agmatinase: Catalytic Mechanism and Residues Relevant for Substrate Specificity. Maturana P, Orellana MS, Herrera SM, Martínez I, Figueroa M, Martínez-Oyanedel J, Castro-Fernandez V, Uribe E. Int J Mol Sci 22 4769 (2021)
  52. Crystallization and preliminary crystallographic studies of Helicobacter pylori arginase. Zhang J, Zhang X, Mao X, Zou Q, Li D. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 707-709 (2011)
  53. Immobilization of engineered arginase on gold-carbon nanotubes. Lee GK, Kwok SY, Yu CH, Tam K, Chong HC, Leung YC, Tsang SC. Chem Commun (Camb) 48 7693-7695 (2012)
  54. Mutagenic and kinetic support for an allosteric site in arginase from the extreme thermophile Bacillus caldovelox, which allows activation by arginine. García D, Uribe E, Salgado M, Martínez MP, Carvajal N. Biochimie 108 8-12 (2015)
  55. The Neighboring Subunit Is Engaged to Stabilize the Substrate in the Active Site of Plant Arginases. Sekula B. Front Plant Sci 11 987 (2020)
  56. Biochemical and biophysical insights into the metal binding spectrum and bioactivity of arginase of Entamoeba histolytica. Malik A, Singh H, Pareek A, Tomar S. Metallomics 10 623-638 (2018)
  57. Cloning, expression, and characterization of a thermostable l-arginase from Geobacillus thermodenitrificans NG80-2 for l-ornithine production. Huang K, Mu W, Zhang T, Jiang B, Miao M. Biotechnol Appl Biochem 63 391-397 (2016)
  58. Development of a multi-enzymatic cascade reaction for the synthesis of trans-3-hydroxy-L-proline from L-arginine. Hara R, Kitatsuji S, Yamagata K, Kino K. Appl Microbiol Biotechnol 100 243-253 (2016)
  59. Molecular docking assisted biological functions and phytochemical screening of Amaranthus lividus L. extract. Durhan B, Yalçın E, Çavuşoğlu K, Acar A. Sci Rep 12 4308 (2022)
  60. New Insights into the Determinants of Specificity in Human Type I Arginase: Generation of a Mutant That Is Only Active with Agmatine as Substrate. Orellana MS, Jaña GA, Figueroa M, Martínez-Oyanedel J, Medina FE, Tarifeño-Saldivia E, Gatica M, García-Robles MÁ, Carvajal N, Uribe E. Int J Mol Sci 23 6438 (2022)
  61. A bacterial spermidine biosynthetic pathway via carboxyaminopropylagmatine. Xi H, Nie X, Gao F, Liang X, Li H, Zhou H, Cai Y, Yang C. Sci Adv 9 eadj9075 (2023)
  62. Arginase from Priestia megaterium and the Effects of CMCS Conjugation on Its Enzymological Properties. Jiao YL, Shen PQ, Wang SF, Chen J, Zhou XH, Ma GZ. Curr Microbiol 80 292 (2023)
  63. Biotransformation of L-ornithine from L-arginine using whole-cell recombinant arginase. Zhan Y, Liu J, Mao P, Zhang H, Liu Q, Jiao Q. World J Microbiol Biotechnol 29 2167-2172 (2013)
  64. Engineering the Tat-secretion pathway of Bacillus licheniformis for the secretion of cytoplasmic enzyme arginase. Ji Y, Li J, Liang Y, Li L, Wang Y, Pi L, Xing P, Nomura CT, Chen S, Zhu C, Wang Q. Appl Microbiol Biotechnol 108 89 (2024)
  65. Structural and Biochemical Insights into Post-Translational Arginine-to-Ornithine Peptide Modifications by an Atypical Arginase. Mordhorst S, Badmann T, Bösch NM, Morinaka BI, Rauch H, Piel J, Groll M, Vagstad AL. ACS Chem Biol 18 528-536 (2023)