3chi Citations

In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis.

Proc Natl Acad Sci U S A 105 6858-63 (2008)
Related entries: 3chh, 3cht, 3chu

Cited: 79 times
EuropePMC logo PMID: 18458342

Abstract

p-Aminobenzoate N-oxygenase (AurF) from Streptomyces thioluteus catalyzes the formation of unusual polyketide synthase starter unit p-nitrobenzoic acid (pNBA) from p-aminobenzoic acid (pABA) in the biosynthesis of antibiotic aureothin. AurF is a metalloenzyme, but its native enzymatic activity has not been demonstrated in vitro, and its catalytic mechanism is unclear. In addition, the nature of the cofactor remains a controversy. Here, we report the in vitro reconstitution of the AurF enzyme activity, the crystal structure of AurF in the oxidized state, and the cocrystal structure of AurF with its product pNBA. Our combined biochemical and structural analysis unequivocally indicates that AurF is a non-heme di-iron monooxygenase that catalyzes sequential oxidation of aminoarenes to nitroarenes via hydroxylamine and nitroso intermediates.

Articles - 3chi mentioned but not cited (5)

  1. In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis. Choi YS, Zhang H, Brunzelle JS, Nair SK, Zhao H. Proc Natl Acad Sci U S A 105 6858-6863 (2008)
  2. Discovery of leukotriene A4 hydrolase inhibitors using metabolomics biased fragment crystallography. Davies DR, Mamat B, Magnusson OT, Christensen J, Haraldsson MH, Mishra R, Pease B, Hansen E, Singh J, Zembower D, Kim H, Kiselyov AS, Burgin AB, Gurney ME, Stewart LJ. J Med Chem 52 4694-4715 (2009)
  3. Hepatitis E virus genotype 3 diversity: phylogenetic analysis and presence of subtype 3b in wild boar in Europe. Vina-Rodriguez A, Schlosser J, Becher D, Kaden V, Groschup MH, Eiden M. Viruses 7 2704-2726 (2015)
  4. Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway. Knoot CJ, Kovaleva EG, Lipscomb JD. J Biol Inorg Chem 21 589-603 (2016)
  5. Hepatitis E virus genotypes and subgenotypes causing acute hepatitis, Bulgaria, 2013-2015. Bruni R, Villano U, Equestre M, Chionne P, Madonna E, Trandeva-Bankova D, Peleva-Pishmisheva M, Tenev T, Cella E, Ciccozzi M, Pisani G, Golkocheva-Markova E, Ciccaglione AR. PLoS One 13 e0198045 (2018)


Reviews citing this publication (13)

  1. Nitroaromatic compounds, from synthesis to biodegradation. Ju KS, Parales RE. Microbiol Mol Biol Rev 74 250-272 (2010)
  2. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Jasniewski AJ, Que L. Chem Rev 118 2554-2592 (2018)
  3. Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study. Cotruvo JA, Stubbe J. Metallomics 4 1020-1036 (2012)
  4. Naturally-occurring nitro compounds. Parry R, Nishino S, Spain J. Nat Prod Rep 28 152-167 (2011)
  5. Cyanobacterial alkane biosynthesis further expands the catalytic repertoire of the ferritin-like 'di-iron-carboxylate' proteins. Krebs C, Bollinger JM, Booker SJ. Curr Opin Chem Biol 15 291-303 (2011)
  6. Recent advances in the biosynthesis of unusual polyketide synthase substrates. Ray L, Moore BS. Nat Prod Rep 33 150-161 (2016)
  7. Biosynthesis of aromatic polyketides in microorganisms using type II polyketide synthases. Wang J, Zhang R, Chen X, Sun X, Yan Y, Shen X, Yuan Q. Microb Cell Fact 19 110 (2020)
  8. Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides. Hemmerling F, Hahn F. Beilstein J Org Chem 12 1512-1550 (2016)
  9. Diiron monooxygenases in natural product biosynthesis. Komor AJ, Jasniewski AJ, Que L, Lipscomb JD. Nat Prod Rep 35 646-659 (2018)
  10. Structure/function correlations over binuclear non-heme iron active sites. Solomon EI, Park K. J Biol Inorg Chem 21 575-588 (2016)
  11. Transition metal-promoted biomimetic steps in total syntheses. Li XW, Nay B. Nat Prod Rep 31 533-549 (2014)
  12. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Chem Rev 122 12046-12109 (2022)
  13. Divergent mechanisms of iron-containing enzymes for hydrocarbon biosynthesis. Wise CE, Grant JL, Amaya JA, Ratigan SC, Hsieh CH, Manley OM, Makris TM. J Biol Inorg Chem 22 221-235 (2017)

Articles citing this publication (61)

  1. Combining Mass Spectrometric Metabolic Profiling with Genomic Analysis: A Powerful Approach for Discovering Natural Products from Cyanobacteria. Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov A, Monroe EA, Duggan BM, Di Marzo V, Sherman DH, Dorrestein PC, Gerwick L, Gerwick WH. J Nat Prod 78 1671-1682 (2015)
  2. Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins. Reig AJ, Pires MM, Snyder RA, Wu Y, Jo H, Kulp DW, Butch SE, Calhoun JR, Szyperski T, Solomon EI, DeGrado WF. Nat Chem 4 900-906 (2012)
  3. Detection of formate, rather than carbon monoxide, as the stoichiometric coproduct in conversion of fatty aldehydes to alkanes by a cyanobacterial aldehyde decarbonylase. Warui DM, Li N, Nørgaard H, Krebs C, Bollinger JM, Booker SJ. J Am Chem Soc 133 3316-3319 (2011)
  4. A long-lived, substrate-hydroxylating peroxodiiron(III/III) intermediate in the amine oxygenase, AurF, from Streptomyces thioluteus. Korboukh VK, Li N, Barr EW, Bollinger JM, Krebs C. J Am Chem Soc 131 13608-13609 (2009)
  5. Mechanism and Catalytic Diversity of Rieske Non-Heme Iron-Dependent Oxygenases. Barry SM, Challis GL. ACS Catal 3 (2013)
  6. Four-electron oxidation of p-hydroxylaminobenzoate to p-nitrobenzoate by a peroxodiferric complex in AurF from Streptomyces thioluteus. Li N, Korboukh VK, Krebs C, Bollinger JM. Proc Natl Acad Sci U S A 107 15722-15727 (2010)
  7. An unusual peroxo intermediate of the arylamine oxygenase of the chloramphenicol biosynthetic pathway. Makris TM, Vu VV, Meier KK, Komor AJ, Rivard BS, Münck E, Que L, Lipscomb JD. J Am Chem Soc 137 1608-1617 (2015)
  8. Substrate-triggered addition of dioxygen to the diferrous cofactor of aldehyde-deformylating oxygenase to form a diferric-peroxide intermediate. Pandelia ME, Li N, Nørgaard H, Warui DM, Rajakovich LJ, Chang WC, Booker SJ, Krebs C, Bollinger JM. J Am Chem Soc 135 15801-15812 (2013)
  9. β-Lactone formation during product release from a nonribosomal peptide synthetase. Schaffer JE, Reck MR, Prasad NK, Wencewicz TA. Nat Chem Biol 13 737-744 (2017)
  10. Conversion of fatty aldehydes into alk (a/e)nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system. Zhang J, Lu X, Li JJ. Biotechnol Biofuels 6 86 (2013)
  11. Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure. Chino M, Maglio O, Nastri F, Pavone V, DeGrado WF, Lombardi A. Eur J Inorg Chem 2015 3371-3390 (2015)
  12. A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis. Nakamura H, Schultz EE, Balskus EP. Nat Chem Biol 13 916-921 (2017)
  13. Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation. Rather LJ, Knapp B, Haehnel W, Fuchs G. J Biol Chem 285 20615-20624 (2010)
  14. The manganese/iron-carboxylate proteins: what is what, where are they, and what can the sequences tell us? Högbom M. J Biol Inorg Chem 15 339-349 (2010)
  15. An L-threonine transaldolase is required for L-threo-β-hydroxy-α-amino acid assembly during obafluorin biosynthesis. Scott TA, Heine D, Qin Z, Wilkinson B. Nat Commun 8 15935 (2017)
  16. Identification and characterization of a bacterial cytochrome P450 monooxygenase catalyzing the 3-nitration of tyrosine in rufomycin biosynthesis. Tomita H, Katsuyama Y, Minami H, Ohnishi Y. J Biol Chem 292 15859-15869 (2017)
  17. Discovery of (Dihydro)pyrazine N-Oxides via Genome Mining in Pseudomonas. Kretsch AM, Morgan GL, Tyrrell J, Mevers E, Vallet-Gély I, Li B. Org Lett 20 4791-4795 (2018)
  18. Parallel and competitive pathways for substrate desaturation, hydroxylation, and radical rearrangement by the non-heme diiron hydroxylase AlkB. Cooper HL, Mishra G, Huang X, Pender-Cudlip M, Austin RN, Shanklin J, Groves JT. J Am Chem Soc 134 20365-20375 (2012)
  19. Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF. Park K, Li N, Kwak Y, Srnec M, Bell CB, Liu LV, Wong SD, Yoda Y, Kitao S, Seto M, Hu M, Zhao J, Krebs C, Bollinger JM, Solomon EI. J Am Chem Soc 139 7062-7070 (2017)
  20. Unprecedented (μ-1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme N-Oxygenase CmlI. Jasniewski AJ, Komor AJ, Lipscomb JD, Que L. J Am Chem Soc 139 10472-10485 (2017)
  21. Cloning and heterologous expression of the spectinabilin biosynthetic gene cluster from Streptomyces spectabilis. Choi YS, Johannes TW, Simurdiak M, Shao Z, Lu H, Zhao H. Mol Biosyst 6 336-338 (2010)
  22. Structure and mechanism of the diiron benzoyl-coenzyme A epoxidase BoxB. Rather LJ, Weinert T, Demmer U, Bill E, Ismail W, Fuchs G, Ermler U. J Biol Chem 286 29241-29248 (2011)
  23. Synthesis and biological characterization of arylomycin B antibiotics. Roberts TC, Smith PA, Romesberg FE. J Nat Prod 74 956-961 (2011)
  24. Characterization of the flavoenzyme XiaK as an N-hydroxylase and implications in indolosesquiterpene diversification. Zhang Q, Li H, Yu L, Sun Y, Zhu Y, Zhu H, Zhang L, Li SM, Shen Y, Tian C, Li A, Liu HW, Zhang C. Chem Sci 8 5067-5077 (2017)
  25. Characterization of the N-oxygenase AurF from Streptomyces thioletus. Chanco E, Choi YS, Sun N, Vu M, Zhao H. Bioorg Med Chem 22 5569-5577 (2014)
  26. Active-site structure of a β-hydroxylase in antibiotic biosynthesis. Vu VV, Makris TM, Lipscomb JD, Que L. J Am Chem Soc 133 6938-6941 (2011)
  27. Alternative Biosynthetic Starter Units Enhance the Structural Diversity of Cyanobacterial Lipopeptides. Mareš J, Hájek J, Urajová P, Kust A, Jokela J, Saurav K, Galica T, Čapková K, Mattila A, Haapaniemi E, Permi P, Mysterud I, Skulberg OM, Karlsen J, Fewer DP, Sivonen K, Tønnesen HH, Hrouzek P. Appl Environ Microbiol 85 e02675-18 (2019)
  28. Mechanism for Six-Electron Aryl-N-Oxygenation by the Non-Heme Diiron Enzyme CmlI. Komor AJ, Rivard BS, Fan R, Guo Y, Que L, Lipscomb JD. J Am Chem Soc 138 7411-7421 (2016)
  29. Molecular-Level Insight into the Differential Oxidase and Oxygenase Reactivities of de Novo Due Ferri Proteins. Snyder RA, Butch SE, Reig AJ, DeGrado WF, Solomon EI. J Am Chem Soc 137 9302-9314 (2015)
  30. Characterization and Crystal Structure of a Nonheme Diiron Monooxygenase Involved in Platensimycin and Platencin Biosynthesis. Dong LB, Liu YC, Cepeda AJ, Kalkreuter E, Deng MR, Rudolf JD, Chang C, Joachimiak A, Phillips GN, Shen B. J Am Chem Soc 141 12406-12412 (2019)
  31. Characterization of a non-ribosomal peptide synthetase-associated diiron arylamine N-oxygenase from Pseudomonas syringae pv. phaseolicola. Platter E, Lawson M, Marsh C, Sazinsky MH. Arch Biochem Biophys 508 39-45 (2011)
  32. Molecular mechanism of azoxy bond formation for azoxymycins biosynthesis. Guo YY, Li ZH, Xia TY, Du YL, Mao XM, Li YQ. Nat Commun 10 4420 (2019)
  33. X-ray absorption spectroscopic characterization of the diferric-peroxo intermediate of human deoxyhypusine hydroxylase in the presence of its substrate eIF5a. Jasniewski AJ, Engstrom LM, Vu VV, Park MH, Que L. J Biol Inorg Chem 21 605-618 (2016)
  34. Nuclear Resonance Vibrational Spectroscopic Definition of the Fe(IV)2 Intermediate Q in Methane Monooxygenase and Its Reactivity. Jacobs AB, Banerjee R, Deweese DE, Braun A, Babicz JT, Gee LB, Sutherlin KD, Böttger LH, Yoda Y, Saito M, Kitao S, Kobayashi Y, Seto M, Tamasaku K, Lipscomb JD, Park K, Solomon EI. J Am Chem Soc 143 16007-16029 (2021)
  35. Systematic Perturbations of Binuclear Non-heme Iron Sites: Structure and Dioxygen Reactivity of de Novo Due Ferri Proteins. Snyder RA, Betzu J, Butch SE, Reig AJ, DeGrado WF, Solomon EI. Biochemistry 54 4637-4651 (2015)
  36. Transcriptional Responses of the Bacterium Burkholderia terrae BS001 to the Fungal Host Lyophyllum sp. Strain Karsten under Soil-Mimicking Conditions. Haq IU, Dini-Andreote F, van Elsas JD. Microb Ecol 73 236-252 (2017)
  37. A Carboxylate Shift Regulates Dioxygen Activation by the Diiron Nonheme β-Hydroxylase CmlA upon Binding of a Substrate-Loaded Nonribosomal Peptide Synthetase. Jasniewski AJ, Knoot CJ, Lipscomb JD, Que L. Biochemistry 55 5818-5831 (2016)
  38. CmlI is an N-oxygenase in the biosynthesis of chloramphenicol. Lu H, Chanco E, Zhao H. Tetrahedron 68 (2012)
  39. Mechanistic studies of reactions of peroxodiiron(III) intermediates in T201 variants of toluene/o-xylene monooxygenase hydroxylase. Song WJ, Lippard SJ. Biochemistry 50 5391-5399 (2011)
  40. On the controversy of metal ion composition on amine oxygenase (AurF): a computational investigation. Jayapal P, Rajaraman G. Phys Chem Chem Phys 14 9050-9053 (2012)
  41. A nonheme peroxo-diiron(III) complex exhibiting both nucleophilic and electrophilic oxidation of organic substrates. Török P, Unjaroen D, Viktória Csendes F, Giorgi M, Browne WR, Kaizer J. Dalton Trans 50 7181-7185 (2021)
  42. Structure and assembly of the diiron cofactor in the heme-oxygenase-like domain of the N-nitrosourea-producing enzyme SznF. McBride MJ, Pope SR, Hu K, Okafor CD, Balskus EP, Bollinger JM, Boal AK. Proc Natl Acad Sci U S A 118 e2015931118 (2021)
  43. In Vitro Reconstitution Reveals a Central Role for the N-Oxygenase PvfB in (Dihydro)pyrazine-N-oxide and Valdiazen Biosynthesis. Morgan GL, Li B. Angew Chem Int Ed Engl 59 21387-21391 (2020)
  44. Mechanism and selectivity of the dinuclear iron benzoyl-coenzyme A epoxidase BoxB. Liao RZ, Siegbahn PEM. Chem Sci 6 2754-2764 (2015)
  45. Novel Approaches for the Accumulation of Oxygenated Intermediates to Multi-Millimolar Concentrations. Krebs C, Dassama LM, Matthews ML, Jiang W, Price JC, Korboukh V, Li N, Bollinger JM. Coord Chem Rev 257 (2013)
  46. Protochlorophyllide synthesis by recombinant cyclases from eukaryotic oxygenic phototrophs and the dependence on Ycf54. Chen GE, Hunter CN. Biochem J 477 2313-2325 (2020)
  47. A ribonucleotide reductase-like electron transfer system in the nitroaryl-forming N-oxygenase AurF. Fries A, Bretschneider T, Winkler R, Hertweck C. Chembiochem 12 1832-1835 (2011)
  48. BesC Initiates C-C Cleavage through a Substrate-Triggered and Reactive Diferric-Peroxo Intermediate. Manley OM, Tang H, Xue S, Guo Y, Chang WC, Makris TM. J Am Chem Soc 143 21416-21424 (2021)
  49. How the O2-dependent Mg-protoporphyrin monomethyl ester cyclase forms the fifth ring of chlorophylls. Chen GE, Adams NBP, Jackson PJ, Dickman MJ, Hunter CN. Nat Plants 7 365-375 (2021)
  50. Structural and biochemical basis for the firm chemo- and regioselectivity of the nitro-forming N-oxygenase AurF. Fries A, Winkler R, Hertweck C. Chem Commun (Camb) 46 7760-7762 (2010)
  51. Glycine-derived nitronates bifurcate to O-methylation or denitrification in bacteria. He HY, Ryan KS. Nat Chem 13 599-606 (2021)
  52. Proton-Electron Transfer to the Active Site Is Essential for the Reaction Mechanism of Soluble Δ9-Desaturase. Bím D, Chalupský J, Culka M, Solomon EI, Rulíšek L, Srnec M. J Am Chem Soc 142 10412-10423 (2020)
  53. Structure-inhibitory activity relationships of pyrrolnitrin analogues on its biosynthesis. Keum YS, Zhu YZ, Kim JH. Appl Microbiol Biotechnol 89 781-789 (2011)
  54. De novo metalloprotein design. Chalkley MJ, Mann SI, DeGrado WF. Nat Rev Chem 6 31-50 (2022)
  55. Dirammox Is Widely Distributed and Dependently Evolved in Alcaligenes and Is Important to Nitrogen Cycle. Hou TT, Miao LL, Peng JS, Ma L, Huang Q, Liu Y, Wu MR, Ai GM, Liu SJ, Liu ZP. Front Microbiol 13 864053 (2022)
  56. Identification and characterization of a novel hydroxylamine oxidase, DnfA, that catalyzes the oxidation of hydroxylamine to N2. Wu MR, Miao LL, Liu Y, Qian XX, Hou TT, Ai GM, Yu L, Ma L, Gao XY, Qin YL, Zhu HZ, Du L, Li SY, Tian CL, Li DF, Liu ZP, Liu SJ. J Biol Chem 298 102372 (2022)
  57. Characterization of an efficient N-oxygenase from Saccharothrix sp. and its application in the synthesis of azomycin. Fan C, Zhou F, Huang W, Xue Y, Xu C, Zhang R, Xian M, Feng X. Biotechnol Biofuels Bioprod 16 194 (2023)
  58. Enzymatic Hydroxylation of Aliphatic C-H Bonds by a Mn/Fe Cofactor. Powell MM, Rao G, Britt RD, Rittle J. J Am Chem Soc 145 16526-16537 (2023)
  59. Ferritin-Like Proteins: A Conserved Core for a Myriad of Enzyme Complexes. Banerjee R, Srinivas V, Lebrette H. Subcell Biochem 99 109-153 (2022)
  60. Heterologous Production and Biosynthesis of Threonine-16:0dioic acids with a Hydroxamate Moiety. Stierhof M, Myronovskyi M, Zapp J, Luzhetskyy A. J Nat Prod 86 2258-2269 (2023)
  61. Unlocking mild-condition benzene ring contraction using nonheme diiron N-oxygenase. Guo YY, Tian ZH, Ma C, Han YC, Bai D, Jiang Z. Chem Sci 14 11907-11913 (2023)