3cln Citations

Structure of calmodulin refined at 2.2 A resolution.

J Mol Biol 204 191-204 (1988)
Cited: 597 times
EuropePMC logo PMID: 3145979

Abstract

The crystal structure of mammalian calmodulin has been refined at 2.2 A (1 A = 0.1 nm) resolution using a restrained least-squares method. The final crystallographic R-factor, based on 6685 reflections in the range 2.2 A less than or equal to d less than or equal to 5.0 A with intensities exceeding 2.5 sigma, is 0.175. Bond lengths and bond angles in the molecule have root-mean-square deviations from ideal values of 0.016 A and 1.7 degrees, respectively. The refined model includes residues 5 to 147, four Ca2+ and 69 water molecules per molecule of calmodulin. The electron density for residues 1 to 4 and 148 is poorly defined, and they are not included in the model. The molecule is shaped somewhat like a dumbbell, with an overall length of 65 A; the two lobes are connected by a seven-turn alpha-helix. Prominent secondary structural features include seven alpha-helices, four Ca2+-binding loops, and two short, double-stranded antiparallel beta-sheets between pairs of adjacent Ca2+-binding loops. The four Ca2+-binding domains in calmodulin have a typical EF hand conformation (helix-loop-helix) and are similar to those described in other Ca2+-binding proteins. The X-ray structure determination of calmodulin shows a large hydrophobic cleft in each half of the molecule. These hydrophobic regions probably represent the sites of interaction with many of the pharmacological agents known to bind to calmodulin.

Reviews - 3cln mentioned but not cited (9)

  1. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Burgoyne RD. Nat. Rev. Neurosci. 8 182-193 (2007)
  2. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Igumenova TI, Frederick KK, Wand AJ. Chem Rev 106 1672-1699 (2006)
  3. A primer on ankyrin repeat function in TRP channels and beyond. Gaudet R. Mol Biosyst 4 372-379 (2008)
  4. Viral calciomics: interplays between Ca2+ and virus. Zhou Y, Frey TK, Yang JJ. Cell Calcium 46 1-17 (2009)
  5. Myosin light chains: Teaching old dogs new tricks. Heissler SM, Sellers JR. Bioarchitecture 4 169-188 (2014)
  6. NMR studies of dynamic biomolecular conformational ensembles. Torchia DA. Prog Nucl Magn Reson Spectrosc 84-85 14-32 (2015)
  7. 19F NMR as a tool in chemical biology. Gimenez D, Phelan A, Murphy CD, Cobb SL. Beilstein J Org Chem 17 293-318 (2021)
  8. Defining potential roles of Pb(2+) in neurotoxicity from a calciomics approach. Gorkhali R, Huang K, Kirberger M, Yang JJ. Metallomics 8 563-578 (2016)
  9. AlphaFold 2 and NMR Spectroscopy: Partners to Understand Protein Structure, Dynamics and Function. Laurents DV. Front Mol Biosci 9 906437 (2022)

Articles - 3cln mentioned but not cited (70)

  1. Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Schymkowitz JW, Rousseau F, Martins IC, Ferkinghoff-Borg J, Stricher F, Serrano L. Proc. Natl. Acad. Sci. U.S.A. 102 10147-10152 (2005)
  2. Relation between native ensembles and experimental structures of proteins. Best RB, Lindorff-Larsen K, DePristo MA, Vendruscolo M. Proc Natl Acad Sci U S A 103 10901-10906 (2006)
  3. Structural basis for calcium sensing by GCaMP2. Wang Q, Shui B, Kotlikoff MI, Sondermann H. Structure 16 1817-1827 (2008)
  4. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Shifman JM, Choi MH, Mihalas S, Mayo SL, Kennedy MB. Proc. Natl. Acad. Sci. U.S.A. 103 13968-13973 (2006)
  5. Three-dimensional electron crystallography of protein microcrystals. Shi D, Nannenga BL, Iadanza MG, Gonen T. Elife 2 e01345 (2013)
  6. An allosteric model of calmodulin explains differential activation of PP2B and CaMKII. Stefan MI, Edelstein SJ, Le Novère N. Proc. Natl. Acad. Sci. U.S.A. 105 10768-10773 (2008)
  7. Long-range intra-protein communication can be transmitted by correlated side-chain fluctuations alone. Dubay KH, Bothma JP, Geissler PL. PLoS Comput. Biol. 7 e1002168 (2011)
  8. Cooperative binding. Stefan MI, Le Novère N. PLoS Comput. Biol. 9 e1003106 (2013)
  9. A molecular dynamics study of Ca(2+)-calmodulin: evidence of interdomain coupling and structural collapse on the nanosecond timescale. Shepherd CM, Vogel HJ. Biophys. J. 87 780-791 (2004)
  10. Protein dynamics from NMR: the slowly relaxing local structure analysis compared with model-free analysis. Meirovitch E, Shapiro YE, Polimeno A, Freed JH. J Phys Chem A 110 8366-8396 (2006)
  11. Binding of calmodulin to the HIV-1 matrix protein triggers myristate exposure. Ghanam RH, Fernandez TF, Fledderman EL, Saad JS. J. Biol. Chem. 285 41911-41920 (2010)
  12. Crystal structure of calmodulin binding domain of orai1 in complex with Ca2+ calmodulin displays a unique binding mode. Liu Y, Zheng X, Mueller GA, Sobhany M, DeRose EF, Zhang Y, London RE, Birnbaumer L. J. Biol. Chem. 287 43030-43041 (2012)
  13. Calmodulin, conformational states, and calcium signaling. A single-molecule perspective. Johnson CK. Biochemistry 45 14233-14246 (2006)
  14. Molecular interaction and functional regulation of connexin50 gap junctions by calmodulin. Chen Y, Zhou Y, Lin X, Wong HC, Xu Q, Jiang J, Wang S, Lurtz MM, Louis CF, Veenstra RD, Yang JJ. Biochem. J. 435 711-722 (2011)
  15. Structural differences between Pb2+- and Ca2+-binding sites in proteins: implications with respect to toxicity. Kirberger M, Yang JJ. J. Inorg. Biochem. 102 1901-1909 (2008)
  16. FlexOracle: predicting flexible hinges by identification of stable domains. Flores SC, Gerstein MB. BMC Bioinformatics 8 215 (2007)
  17. A 13C labeling strategy reveals a range of aromatic side chain motion in calmodulin. Kasinath V, Valentine KG, Wand AJ. J. Am. Chem. Soc. 135 9560-9563 (2013)
  18. Characterization of the structure and intermolecular interactions between the connexin 32 carboxyl-terminal domain and the protein partners synapse-associated protein 97 and calmodulin. Stauch K, Kieken F, Sorgen P. J. Biol. Chem. 287 27771-27788 (2012)
  19. Building protein diagrams on the web with the residue-based diagram editor RbDe. Skrabanek L, Campagne F, Weinstein H. Nucleic Acids Res. 31 3856-3858 (2003)
  20. Facile formation of dynamic hydrogel microspheres for triggered growth factor delivery. King WJ, Toepke MW, Murphy WL. Acta Biomater 7 975-985 (2011)
  21. Calcium-induced folding of a fragment of calmodulin composed of EF-hands 2 and 3. Lakowski TM, Lee GM, Okon M, Reid RE, McIntosh LP. Protein Sci. 16 1119-1132 (2007)
  22. A statistical approach to the interpretation of molecular dynamics simulations of calmodulin equilibrium dynamics. Likic VA, Gooley PR, Speed TP, Strehler EE. Protein Sci. 14 2955-2963 (2005)
  23. Calmodulin regulates Ca2+-sensing receptor-mediated Ca2+ signaling and its cell surface expression. Huang Y, Zhou Y, Wong HC, Castiblanco A, Chen Y, Brown EM, Yang JJ. J. Biol. Chem. 285 35919-35931 (2010)
  24. Conformation and free energy analyses of the complex of calcium-bound calmodulin and the Fas death domain. Suever JD, Chen Y, McDonald JM, Song Y. Biophys. J. 95 5913-5921 (2008)
  25. Is buffer a good proxy for a crowded cell-like environment? A comparative NMR study of calmodulin side-chain dynamics in buffer and E. coli lysate. Latham MP, Kay LE. PLoS ONE 7 e48226 (2012)
  26. A general and robust ray-casting-based algorithm for triangulating surfaces at the nanoscale. Decherchi S, Rocchia W. PLoS ONE 8 e59744 (2013)
  27. Allosteric actuation of inverse phase transition of a stimulus-responsive fusion polypeptide by ligand binding. Kim B, Chilkoti A. J. Am. Chem. Soc. 130 17867-17873 (2008)
  28. The Structural Basis of the Farnesylated and Methylated KRas4B Interaction with Calmodulin. Jang H, Banerjee A, Marcus K, Makowski L, Mattos C, Gaponenko V, Nussinov R. Structure 27 1647-1659.e4 (2019)
  29. Analysis and prediction of calcium-binding pockets from apo-protein structures exhibiting calcium-induced localized conformational changes. Wang X, Zhao K, Kirberger M, Wong H, Chen G, Yang JJ. Protein Sci. 19 1180-1190 (2010)
  30. NMR, biophysical, and biochemical studies reveal the minimal Calmodulin binding domain of the HIV-1 matrix protein. Samal AB, Ghanam RH, Fernandez TF, Monroe EB, Saad JS. J. Biol. Chem. 286 33533-33543 (2011)
  31. Oxidation increases the strength of the methionine-aromatic interaction. Lewis AK, Dunleavy KM, Senkow TL, Her C, Horn BT, Jersett MA, Mahling R, McCarthy MR, Perell GT, Valley CC, Karim CB, Gao J, Pomerantz WC, Thomas DD, Cembran A, Hinderliter A, Sachs JN. Nat. Chem. Biol. 12 860-866 (2016)
  32. Designing molecular dynamics simulations to shift populations of the conformational states of calmodulin. Aykut AO, Atilgan AR, Atilgan C. PLoS Comput. Biol. 9 e1003366 (2013)
  33. KRAS Prenylation Is Required for Bivalent Binding with Calmodulin in a Nucleotide-Independent Manner. Agamasu C, Ghirlando R, Taylor T, Messing S, Tran TH, Bindu L, Tonelli M, Nissley DV, McCormick F, Stephen AG. Biophys J 116 1049-1063 (2019)
  34. Conformational dependence of 13C shielding and coupling constants for methionine methyl groups. Butterfoss GL, DeRose EF, Gabel SA, Perera L, Krahn JM, Mueller GA, Zheng X, London RE. J. Biomol. NMR 48 31-47 (2010)
  35. Neurogranin, Encoded by the Schizophrenia Risk Gene NRGN, Bidirectionally Modulates Synaptic Plasticity via Calmodulin-Dependent Regulation of the Neuronal Phosphoproteome. Hwang H, Szucs MJ, Ding LJ, Allen A, Ren X, Haensgen H, Gao F, Rhim H, Andrade A, Pan JQ, Carr SA, Ahmad R, Xu W. Biol Psychiatry 89 256-269 (2021)
  36. Structural insights into Ca2+-calmodulin regulation of Plectin 1a-integrin β4 interaction in hemidesmosomes. Song JG, Kostan J, Drepper F, Knapp B, de Almeida Ribeiro E, Konarev PV, Grishkovskaya I, Wiche G, Gregor M, Svergun DI, Warscheid B, Djinović-Carugo K. Structure 23 558-570 (2015)
  37. A novel trans conformation of ligand-free calmodulin. Kumar V, Chichili VP, Tang X, Sivaraman J. PLoS ONE 8 e54834 (2013)
  38. Dynamics of Ca2+-saturated calmodulin D129N mutant studied by multiple molecular dynamics simulations. Likić VA, Strehler EE, Gooley PR. Protein Sci. 12 2215-2229 (2003)
  39. Tyrosine nitration on calmodulin enhances calcium-dependent association and activation of nitric-oxide synthase. Porter JJ, Jang HS, Haque MM, Stuehr DJ, Mehl RA. J Biol Chem 295 2203-2211 (2020)
  40. Characterization of calmodulin-Fas death domain interaction: an integrated experimental and computational study. Fancy RM, Wang L, Napier T, Lin J, Jing G, Lucius AL, McDonald JM, Zhou T, Song Y. Biochemistry 53 2680-2688 (2014)
  41. High Resolution Prediction of Calcium-Binding Sites in 3D Protein Structures Using FEATURE. Zhou W, Tang GW, Altman RB. J Chem Inf Model 55 1663-1672 (2015)
  42. Using Protein-Confined Proximity To Determine Chemical Reactivity. Kobayashi T, Hoppmann C, Yang B, Wang L. J. Am. Chem. Soc. 138 14832-14835 (2016)
  43. A Microfluidic Platform for Real-Time Detection and Quantification of Protein-Ligand Interactions. Herling TW, O'Connell DJ, Bauer MC, Persson J, Weininger U, Knowles TP, Linse S. Biophys. J. 110 1957-1966 (2016)
  44. Solution structure of a novel calcium binding protein, MTH1880, from Methanobacterium thermoautotrophicum. Lee CH, Jung JW, Yee A, Arrowsmith CH, Lee W. Protein Sci 13 1148-1154 (2004)
  45. Using Correlated Monte Carlo Sampling for Efficiently Solving the Linearized Poisson-Boltzmann Equation Over a Broad Range of Salt Concentration. Fenley MO, Mascagni M, McClain J, Silalahi AR, Simonov NA. J Chem Theory Comput 6 300-314 (2010)
  46. Assessing the Role of Calmodulin's Linker Flexibility in Target Binding. Sun B, Kekenes-Huskey PM. Int J Mol Sci 22 4990 (2021)
  47. Calcium-dependent association of calmodulin with the rubella virus nonstructural protease domain. Zhou Y, Tzeng WP, Wong HC, Ye Y, Jiang J, Chen Y, Huang Y, Suppiah S, Frey TK, Yang JJ. J. Biol. Chem. 285 8855-8868 (2010)
  48. Assessing local structural perturbations in proteins. Lema MA, Echave J. BMC Bioinformatics 6 226 (2005)
  49. Exploring the use of molecular dynamics in assessing protein variants for phenotypic alterations. Garg A, Pal D. Hum Mutat 40 1424-1435 (2019)
  50. Network representation of protein interactions-Experimental results. Kurzbach D, Flamm AG, Sára T. Protein Sci. 25 1628-1636 (2016)
  51. Structure of the small Dictyostelium discoideum myosin light chain MlcB provides insights into MyoB IQ motif recognition. Liburd J, Chitayat S, Crawley SW, Munro K, Miller E, Denis CM, Spencer HL, Côté GP, Smith SP. J. Biol. Chem. 289 17030-17042 (2014)
  52. Biomimetic conformation-specific assembly of proteins at artificial binding sites nanopatterned on silicon. de la Rica R, Matsui H. J. Am. Chem. Soc. 131 14180-14181 (2009)
  53. Creating a Selective Nanobody Against 3-Nitrotyrosine Containing Proteins. Van Fossen EM, Grutzius S, Ruby CE, Mourich DV, Cebra C, Bracha S, Karplus PA, Cooley RB, Mehl RA. Front Chem 10 835229 (2022)
  54. Effect of Ca2+ on the promiscuous target-protein binding of calmodulin. Westerlund AM, Delemotte L. PLoS Comput. Biol. 14 e1006072 (2018)
  55. Identification of the Calmodulin-Binding Domains of Fas Death Receptor. Chang BJ, Samal AB, Vlach J, Fernandez TF, Brooke D, Prevelige PE, Saad JS. PLoS ONE 11 e0146493 (2016)
  56. Influence of calcium on lipid mixing mediated by influenza hemagglutinin. Zhukovsky MA, Markovic I, Bailey AL. Arch. Biochem. Biophys. 465 101-108 (2007)
  57. Local functional descriptors for surface comparison based binding prediction. Cipriano GM, Phillips GN, Gleicher M. BMC Bioinformatics 13 314 (2012)
  58. Orthogonal Crosslinking: A Strategy to Generate Novel Protein Topology and Function. Wang Z, Rabb JD, Lin Q. Chemistry 29 e202202828 (2023)
  59. Probing the polarity and water environment at the protein-peptide binding interface using tryptophan analogues. Chen YT, Chao WC, Kuo HT, Shen JY, Chen IH, Yang HC, Wang JS, Lu JF, Cheng RP, Chou PT. Biochem Biophys Rep 7 113-118 (2016)
  60. Separation and Collision Cross Section Measurements of Protein Complexes Afforded by a Modular Drift Tube Coupled to an Orbitrap Mass Spectrometer. Sipe SN, Sanders JD, Reinecke T, Clowers BH, Brodbelt JS. Anal Chem 94 9434-9441 (2022)
  61. A Free-Energy Landscape Analysis of Calmodulin Obtained from an NMR Data-Utilized Multi-Scale Divide-and-Conquer Molecular Dynamics Simulation. Shimoyama H, Shigeta Y. Life (Basel) 11 1241 (2021)
  62. Defining the Biologically Plausible Taxonomic Domain of Applicability of an Adverse Outcome Pathway: A Case Study Linking Nicotinic Acetylcholine Receptor Activation to Colony Death. Jensen MA, Blatz DJ, LaLone CA. Environ Toxicol Chem 42 71-87 (2023)
  63. Discovery at the interface: Toward novel anti-proliferative agents targeting human estrogen receptor/S100 interactions. Lee DH, Asare BK, Rajnarayanan RV. Cell Cycle 15 2806-2818 (2016)
  64. Effect of Calcium Ion Removal, Ionic Strength, and Temperature on the Conformation Change in Calmodulin Protein at Physiological pH. Negi S. J Biophys 2014 329703 (2014)
  65. Insights into mechanism kinematics for protein motion simulation. Diez M, Petuya V, Martínez-Cruz LA, Hernández A. BMC Bioinformatics 15 184 (2014)
  66. Lightness Constancy in Surface Visualization. Szafir DA, Sarikaya A, Gleicher M. IEEE Trans Vis Comput Graph 22 2107-2121 (2016)
  67. Structure and function of the N-terminal extension of the formin INF2. Labat-de-Hoz L, Comas L, Rubio-Ramos A, Casares-Arias J, Fernández-Martín L, Pantoja-Uceda D, Martín MT, Kremer L, Jiménez MA, Correas I, Alonso MA. Cell Mol Life Sci 79 571 (2022)
  68. Structure of the Single-lobe Myosin Light Chain C in Complex with the Light Chain-binding Domains of Myosin-1C Provides Insights into Divergent IQ Motif Recognition. Langelaan DN, Liburd J, Yang Y, Miller E, Chitayat S, Crawley SW, Côté GP, Smith SP. J. Biol. Chem. 291 19607-19617 (2016)
  69. The Fluorescent Enzyme Cascade Detects Low Abundance Protein Modifications Suitable for the Assembly of Functionally Annotated Modificatome Databases. Hoppe IJ, Prommegger B, Uhl A, Lohrig U, Huber CG, Brandstetter H. Chembiochem 23 e202200399 (2022)
  70. Visualizing 3D imagery by mouth using candy-like models. Baumer KM, Lopez JJ, Naidu SV, Rajendran S, Iglesias MA, Carleton KM, Eisenmann CJ, Carter LR, Shaw BF. Sci Adv 7 eabh0691 (2021)


Reviews citing this publication (81)

  1. Flexible nets. The roles of intrinsic disorder in protein interaction networks. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN. FEBS J. 272 5129-5148 (2005)
  2. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. O'Neil KT, DeGrado WF. Trends Biochem. Sci. 15 59-64 (1990)
  3. Protein secondary structure and circular dichroism: a practical guide. Johnson WC. Proteins 7 205-214 (1990)
  4. Ca(2+)/CaM-dependent kinases: from activation to function. Hook SS, Means AR. Annu. Rev. Pharmacol. Toxicol. 41 471-505 (2001)
  5. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. Plant Cell 14 Suppl S389-400 (2002)
  6. The role of calmodulin as a signal integrator for synaptic plasticity. Xia Z, Storm DR. Nat. Rev. Neurosci. 6 267-276 (2005)
  7. The EF-hand family of calcium-modulated proteins. Persechini A, Moncrief ND, Kretsinger RH. Trends Neurosci. 12 462-467 (1989)
  8. Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. Maier LS, Bers DM. J. Mol. Cell. Cardiol. 34 919-939 (2002)
  9. Molecular tuning of ion binding to calcium signaling proteins. Falke JJ, Drake SK, Hazard AL, Peersen OB. Q. Rev. Biophys. 27 219-290 (1994)
  10. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Wright HT. Crit. Rev. Biochem. Mol. Biol. 26 1-52 (1991)
  11. Novel aspects of calmodulin target recognition and activation. Vetter SW, Leclerc E. Eur. J. Biochem. 270 404-414 (2003)
  12. Calmodulin's flexibility allows for promiscuity in its interactions with target proteins and peptides. Yamniuk AP, Vogel HJ. Mol. Biotechnol. 27 33-57 (2004)
  13. The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Truong K, Ikura M. Curr. Opin. Struct. Biol. 11 573-578 (2001)
  14. Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Harauz G, Ishiyama N, Hill CM, Bates IR, Libich DS, Farès C. Micron 35 503-542 (2004)
  15. Lessons from zinc-binding peptides. Berg JM, Godwin HA. Annu Rev Biophys Biomol Struct 26 357-371 (1997)
  16. Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Ray SK, Hogan EL, Banik NL. Brain Res. Brain Res. Rev. 42 169-185 (2003)
  17. Calpains in muscle wasting. Bartoli M, Richard I. Int. J. Biochem. Cell Biol. 37 2115-2133 (2005)
  18. Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. Kraus PR, Heitman J. Biochem. Biophys. Res. Commun. 311 1151-1157 (2003)
  19. Protein modules. Baron M, Norman DG, Campbell ID. Trends Biochem. Sci. 16 13-17 (1991)
  20. Ca(2+)-binding proteins in the retina: structure, function, and the etiology of human visual diseases. Palczewski K, Polans AS, Baehr W, Ames JB. Bioessays 22 337-350 (2000)
  21. Structural diversity of calmodulin binding to its target sites. Tidow H, Nissen P. FEBS J. 280 5551-5565 (2013)
  22. The denaturation and degradation of stable enzymes at high temperatures. Daniel RM, Dines M, Petach HH. Biochem. J. 317 ( Pt 1) 1-11 (1996)
  23. Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. Nakayama S, Moncrief ND, Kretsinger RH. J. Mol. Evol. 34 416-448 (1992)
  24. Functional aspects of protein flexibility. Teilum K, Olsen JG, Kragelund BB. Cell. Mol. Life Sci. 66 2231-2247 (2009)
  25. Ca2+-calmodulin-dependent phosphodiesterase (PDE1): current perspectives. Goraya TA, Cooper DM. Cell. Signal. 17 789-797 (2005)
  26. Quest for the molecular mechanism of chromium action and its relationship to diabetes. Vincent JB. Nutr Rev 58 67-72 (2000)
  27. Cell cycle control by calcium and calmodulin in Saccharomyces cerevisiae. Anraku Y, Ohya Y, Iida H. Biochim. Biophys. Acta 1093 169-177 (1991)
  28. Mechanisms of chromium action: low-molecular-weight chromium-binding substance. Vincent JB. J Am Coll Nutr 18 6-12 (1999)
  29. Applications of small-angle X-ray scattering to biomacromolecular solutions. Petoukhov MV, Svergun DI. Int. J. Biochem. Cell Biol. 45 429-437 (2013)
  30. Molecular structure and target recognition of neuronal calcium sensor proteins. Ames JB, Lim S. Biochim. Biophys. Acta 1820 1205-1213 (2012)
  31. Myosin light chain kinase: functional domains and structural motifs. Stull JT, Lin PJ, Krueger JK, Trewhella J, Zhi G. Acta Physiol. Scand. 164 471-482 (1998)
  32. Structure-function relationships in Ca(2+) cycling proteins. MacLennan DH, Abu-Abed M, Kang C. J. Mol. Cell. Cardiol. 34 897-918 (2002)
  33. Modulation of the calcium sensitivity of the smooth muscle contractile apparatus: molecular mechanisms, pharmacological and pathophysiological implications. Savineau JP, Marthan R. Fundam Clin Pharmacol 11 289-299 (1997)
  34. Calmodulin and the regulation of smooth muscle contraction. Walsh MP. Mol. Cell. Biochem. 135 21-41 (1994)
  35. Calmodulin binding proteins provide domains of local Ca2+ signaling in cardiac myocytes. Saucerman JJ, Bers DM. J. Mol. Cell. Cardiol. 52 312-316 (2012)
  36. The evolving model of calmodulin structure, function and activation. Finn BE, Forsén S. Structure 3 7-11 (1995)
  37. Regulation of voltage-gated Ca2+ channels by calmodulin. Halling DB, Aracena-Parks P, Hamilton SL. Sci. STKE 2005 re15 (2005)
  38. S100-annexin complexes--structural insights. Rintala-Dempsey AC, Rezvanpour A, Shaw GS. FEBS J 275 4956-4966 (2008)
  39. Large-scale shape changes in proteins and macromolecular complexes. Wall ME, Gallagher SC, Trewhella J. Annu Rev Phys Chem 51 355-380 (2000)
  40. Protein kinases with calmodulin-like domains: novel targets of calcium signals in plants. Roberts DM. Curr. Opin. Cell Biol. 5 242-246 (1993)
  41. The role of disordered ribosomal protein extensions in the early steps of eubacterial 50 S ribosomal subunit assembly. Timsit Y, Acosta Z, Allemand F, Chiaruttini C, Springer M. Int J Mol Sci 10 817-834 (2009)
  42. PEST sequences in calmodulin-binding proteins. Barnes JA, Gomes AV. Mol. Cell. Biochem. 149-150 17-27 (1995)
  43. The many structural faces of calmodulin: a multitasking molecular jackknife. Kursula P. Amino Acids 46 2295-2304 (2014)
  44. The solution structures of calmodulin and its complexes with synthetic peptides based on target enzyme binding domains. Trewhella J. Cell Calcium 13 377-390 (1992)
  45. Ligand binding and affinity modulation of integrins. Tozer EC, Hughes PE, Loftus JC. Biochem. Cell Biol. 74 785-798 (1996)
  46. Vasoactive intestinal peptide: its interactions with calmodulin and catalytic antibodies. Paul S, Ebadi M. Neurochem. Int. 23 197-214 (1993)
  47. EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view. Capozzi F, Casadei F, Luchinat C. J. Biol. Inorg. Chem. 11 949-962 (2006)
  48. Experimental and computational approaches for the study of calmodulin interactions. Reddy AS, Ben-Hur A, Day IS. Phytochemistry 72 1007-1019 (2011)
  49. Identification of inhibitors of biological interactions involving intrinsically disordered proteins. Marasco D, Scognamiglio PL. Int J Mol Sci 16 7394-7412 (2015)
  50. All roads lead to Rome (but some may be harder to travel): SRP-independent translocation into the endoplasmic reticulum. Ast T, Schuldiner M. Crit. Rev. Biochem. Mol. Biol. 48 273-288 (2013)
  51. Mutational analysis of calmodulin in Saccharomyces cerevisiae. Davis TN. Cell Calcium 13 435-444 (1992)
  52. Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Virdi AS, Singh S, Singh P. Front Plant Sci 6 809 (2015)
  53. Coordination to divalent cations by calcium-binding proteins studied by FTIR spectroscopy. Nara M, Morii H, Tanokura M. Biochim. Biophys. Acta 1828 2319-2327 (2013)
  54. Infrared spectroscopic study of the metal-coordination structures of calcium-binding proteins. Nara M, Tanokura M. Biochem. Biophys. Res. Commun. 369 225-239 (2008)
  55. Taking a long, hard look at calmodulin's warm embrace. Török K, Whitaker M. Bioessays 16 221-224 (1994)
  56. The autoinhibitory control element and calmodulin conspire to provide physiological modulation of endothelial and neuronal nitric oxide synthase activity. Lane P, Gross SS. Acta Physiol. Scand. 168 53-63 (2000)
  57. The linker of calmodulin--to helix or not to helix. Kretsinger RH. Cell Calcium 13 363-376 (1992)
  58. Visualizing CaMKII and CaM activity: a paradigm of compartmentalized signaling. Bossuyt J, Bers DM. J. Mol. Med. 91 907-916 (2013)
  59. Calcium and calmodulin. Williams RJ. Cell Calcium 13 355-362 (1992)
  60. Genetic dissection of Ca2(+)-dependent ion channel function in Paramecium. Preston RR. Bioessays 12 273-281 (1990)
  61. Structural analysis of calmodulin binding to ion channels demonstrates the role of its plasticity in regulation. Kovalevskaya NV, van de Waterbeemd M, Bokhovchuk FM, Bate N, Bindels RJ, Hoenderop JG, Vuister GW. Pflugers Arch. 465 1507-1519 (2013)
  62. Yeast calmodulin: structural and functional elements essential for the cell cycle. Ohya Y, Anraku Y. Cell Calcium 13 445-455 (1992)
  63. Translocation of proteins across the membrane of the endoplasmic reticulum: a place for Saccharomyces cerevisiae. Larriba G. Yeast 9 441-463 (1993)
  64. Use of (113)Cd NMR to probe the native metal binding sites in metalloproteins: an overview. Armitage IM, Drakenberg T, Reilly B. Met Ions Life Sci 11 117-144 (2013)
  65. Calmodulin-Mediated Regulation of Gap Junction Channels. Peracchia C. Int J Mol Sci 21 (2020)
  66. A strange calmodulin of yeast. Yazawa M, Nakashima K, Yagi K. Mol. Cell. Biochem. 190 47-54 (1999)
  67. Calmodulinopathy: A Novel, Life-Threatening Clinical Entity Affecting the Young. Kotta MC, Sala L, Ghidoni A, Badone B, Ronchi C, Parati G, Zaza A, Crotti L. Front Cardiovasc Med 5 175 (2018)
  68. Calmodulin Mutations Associated with Heart Arrhythmia: A Status Report. Chazin WJ, Johnson CN. Int J Mol Sci 21 (2020)
  69. Presynaptic Calmodulin targets: lessons from structural proteomics. Lipstein N, Göth M, Piotrowski C, Pagel K, Sinz A, Jahn O. Expert Rev Proteomics 14 223-242 (2017)
  70. Towards Understanding Plant Calcium Signaling through Calmodulin-Like Proteins: A Biochemical and Structural Perspective. La Verde V, Dominici P, Astegno A. Int J Mol Sci 19 (2018)
  71. Towards the Idea of Molecular Brains. Timsit Y, Grégoire SP. Int J Mol Sci 22 11868 (2021)
  72. Calcium-regulated mitochondrial ATP-Mg/Pi carriers evolved from a fusion of an EF-hand regulatory domain with a mitochondrial ADP/ATP carrier-like domain. Harborne SPD, Kunji ERS. IUBMB Life 70 1222-1232 (2018)
  73. Calmodulin in Paramecium: Focus on Genomic Data. Villalobo E, Gutiérrez G, Villalobo A. Microorganisms 10 1915 (2022)
  74. Calmodulin-Connexin Partnership in Gap Junction Channel Regulation-Calmodulin-Cork Gating Model. Peracchia C, Leverone Peracchia LM. Int J Mol Sci 22 13055 (2021)
  75. Deletions, fusions and domain rearrangements. Coggins JR. Curr. Opin. Biotechnol. 2 576-581 (1991)
  76. Interaction of Calmodulin with TRPM: An Initiator of Channel Modulation. Vydra Bousova K, Zouharova M, Jiraskova K, Vetyskova V. Int J Mol Sci 24 15162 (2023)
  77. L-Type Ca2+ Channel Regulation by Calmodulin and CaBP1. Ames JB. Biomolecules 11 1811 (2021)
  78. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Antioxidants (Basel) 12 1844 (2023)
  79. Pharmacological Approaches for the Modulation of the Potassium Channel KV4.x and KChIPs. Cercós P, Peraza DA, Benito-Bueno A, Socuéllamos PG, Aziz-Nignan A, Arrechaga-Estévez D, Beato E, Peña-Acevedo E, Albert A, González-Vera JA, Rodríguez Y, Martín-Martínez M, Valenzuela C, Gutiérrez-Rodríguez M. Int J Mol Sci 22 (2021)
  80. Retinal Cyclic Nucleotide-Gated Channel Regulation by Calmodulin. Bej A, Ames JB. Int J Mol Sci 23 14143 (2022)
  81. Structural Basis for the Functional Diversity of Centrins: A Focus on Calcium Sensing Properties and Target Recognition. Pedretti M, Bombardi L, Conter C, Favretto F, Dominici P, Astegno A. Int J Mol Sci 22 12173 (2021)

Articles citing this publication (437)

  1. X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Griffith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, Fleming MA, Caron PR, Hsiao K, Navia MA. Cell 82 507-522 (1995)
  2. Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Kissinger CR, Parge HE, Knighton DR, Lewis CT, Pelletier LA, Tempczyk A, Kalish VJ, Tucker KD, Showalter RE, Moomaw EW. Nature 378 641-644 (1995)
  3. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Zhang M, Tanaka T, Ikura M. Nat. Struct. Biol. 2 758-767 (1995)
  4. Solution structure of calcium-free calmodulin. Kuboniwa H, Tjandra N, Grzesiek S, Ren H, Klee CB, Bax A. Nat. Struct. Biol. 2 768-776 (1995)
  5. Calmodulin structure refined at 1.7 A resolution. Chattopadhyaya R, Meador WE, Means AR, Quiocho FA. J. Mol. Biol. 228 1177-1192 (1992)
  6. Correlated mutations contain information about protein-protein interaction. Pazos F, Helmer-Citterich M, Ausiello G, Valencia A. J. Mol. Biol. 271 511-523 (1997)
  7. Molecular mechanics of calcium-myristoyl switches. Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M. Nature 389 198-202 (1997)
  8. Molecular recognition. Conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors. Hubbard SJ, Campbell SF, Thornton JM. J. Mol. Biol. 220 507-530 (1991)
  9. Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Cuff JA, Barton GJ. Proteins 34 508-519 (1999)
  10. Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. Moncrief ND, Kretsinger RH, Goodman M. J. Mol. Evol. 30 522-562 (1990)
  11. Suggestions for "safe" residue substitutions in site-directed mutagenesis. Bordo D, Argos P. J. Mol. Biol. 217 721-729 (1991)
  12. CALMODULIN AND CALMODULIN-BINDING PROTEINS IN PLANTS. Zielinski RE. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49 697-725 (1998)
  13. Can calmodulin function without binding calcium? Geiser JR, van Tuinen D, Brockerhoff SE, Neff MM, Davis TN. Cell 65 949-959 (1991)
  14. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Tanaka T, Ames JB, Harvey TS, Stryer L, Ikura M. Nature 376 444-447 (1995)
  15. The END3 gene encodes a protein that is required for the internalization step of endocytosis and for actin cytoskeleton organization in yeast. Bénédetti H, Raths S, Crausaz F, Riezman H. Mol. Biol. Cell 5 1023-1037 (1994)
  16. A Ca(2+) switch aligns the active site of calpain. Moldoveanu T, Hosfield CM, Lim D, Elce JS, Jia Z, Davies PL. Cell 108 649-660 (2002)
  17. Five members of a novel Ca(2+)-binding protein (CABP) subfamily with similarity to calmodulin. Haeseleer F, Sokal I, Verlinde CL, Erdjument-Bromage H, Tempst P, Pronin AN, Benovic JL, Fariss RN, Palczewski K. J. Biol. Chem. 275 1247-1260 (2000)
  18. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ. Plant Physiol. 135 2150-2161 (2004)
  19. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Keenan RJ, Freymann DM, Walter P, Stroud RM. Cell 94 181-191 (1998)
  20. Calcium-induced structural changes and domain autonomy in calmodulin. Finn BE, Evenäs J, Drakenberg T, Waltho JP, Thulin E, Forsén S. Nat. Struct. Biol. 2 777-783 (1995)
  21. Calcium: silver bullet in signaling. Reddy AS. Plant Sci. 160 381-404 (2001)
  22. Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements. Tjandra N, Kuboniwa H, Ren H, Bax A. Eur. J. Biochem. 230 1014-1024 (1995)
  23. The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. Zopf D, Bernstein HD, Johnson AE, Walter P. EMBO J. 9 4511-4517 (1990)
  24. Prediction of protein conformational freedom from distance constraints. de Groot BL, van Aalten DM, Scheek RM, Amadei A, Vriend G, Berendsen HJ. Proteins 29 240-251 (1997)
  25. Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Gagné SM, Tsuda S, Li MX, Smillie LB, Sykes BD. Nat. Struct. Biol. 2 784-789 (1995)
  26. Where metal ions bind in proteins. Yamashita MM, Wesson L, Eisenman G, Eisenberg D. Proc. Natl. Acad. Sci. U.S.A. 87 5648-5652 (1990)
  27. Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Hubbard SJ, Eisenmenger F, Thornton JM. Protein Sci. 3 757-768 (1994)
  28. Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Ikura M, Ames JB. Proc. Natl. Acad. Sci. U.S.A. 103 1159-1164 (2006)
  29. Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Bertini I, Del Bianco C, Gelis I, Katsaros N, Luchinat C, Parigi G, Peana M, Provenzani A, Zoroddu MA. Proc. Natl. Acad. Sci. U.S.A. 101 6841-6846 (2004)
  30. Loss of conformational stability in calmodulin upon methionine oxidation. Gao J, Yin DH, Yao Y, Sun H, Qin Z, Schöneich C, Williams TD, Squier TC. Biophys. J. 74 1115-1134 (1998)
  31. Trifluoperazine-induced conformational change in Ca(2+)-calmodulin. Vandonselaar M, Hickie RA, Quail JW, Delbaere LT. Nat. Struct. Biol. 1 795-801 (1994)
  32. Mutations in paramecium calmodulin indicate functional differences between the C-terminal and N-terminal lobes in vivo. Kink JA, Maley ME, Preston RR, Ling KY, Wallen-Friedman MA, Saimi Y, Kung C. Cell 62 165-174 (1990)
  33. Measurement of amide proton exchange rates and NOEs with water in 13C/15N-enriched calcineurin B. Grzesiek S, Bax A. J. Biomol. NMR 3 627-638 (1993)
  34. Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences. Bayley PM, Findlay WA, Martin SR. Protein Sci. 5 1215-1228 (1996)
  35. An interaction-based analysis of calcium-induced conformational changes in Ca2+ sensor proteins. Nelson MR, Chazin WJ. Protein Sci. 7 270-282 (1998)
  36. Structure and dynamics of calmodulin in solution. Wriggers W, Mehler E, Pitici F, Weinstein H, Schulten K. Biophys. J. 74 1622-1639 (1998)
  37. Signal transduction versus buffering activity in Ca(2+)-binding proteins. Skelton NJ, Kördel J, Akke M, Forsén S, Chazin WJ. Nat. Struct. Biol. 1 239-245 (1994)
  38. Tyrosine kinase activation is an immediate and essential step in hypotonic cell swelling-induced ERK activation and c-fos gene expression in cardiac myocytes. Sadoshima J, Qiu Z, Morgan JP, Izumo S. EMBO J. 15 5535-5546 (1996)
  39. Taxonomy and conformational analysis of loops in proteins. Ring CS, Kneller DG, Langridge R, Cohen FE. J. Mol. Biol. 224 685-699 (1992)
  40. Cloning of human calcineurin A: evidence for two isozymes and identification of a polyproline structural domain. Guerini D, Klee CB. Proc. Natl. Acad. Sci. U.S.A. 86 9183-9187 (1989)
  41. Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment. Spera S, Ikura M, Bax A. J. Biomol. NMR 1 155-165 (1991)
  42. Two N-terminal domains of Kv4 K(+) channels regulate binding to and modulation by KChIP1. Scannevin RH, Wang K, Jow F, Megules J, Kopsco DC, Edris W, Carroll KC, Lü Q, Xu W, Xu Z, Katz AH, Olland S, Lin L, Taylor M, Stahl M, Malakian K, Somers W, Mosyak L, Bowlby MR, Chanda P, Rhodes KJ. Neuron 41 587-598 (2004)
  43. Normal modes for predicting protein motions: a comprehensive database assessment and associated Web tool. Alexandrov V, Lehnert U, Echols N, Milburn D, Engelman D, Gerstein M. Protein Sci. 14 633-643 (2005)
  44. Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 A resolution. Strynadka NC, Cherney M, Sielecki AR, Li MX, Smillie LB, James MN. J. Mol. Biol. 273 238-255 (1997)
  45. Novel method for the rapid evaluation of packing in protein structures. Gregoret LM, Cohen FE. J. Mol. Biol. 211 959-974 (1990)
  46. Correlation between 15N NMR chemical shifts in proteins and secondary structure. Le H, Oldfield E. J. Biomol. NMR 4 341-348 (1994)
  47. Phosphodiesterase I, a novel adhesion molecule and/or cytokine involved in oligodendrocyte function. Fuss B, Baba H, Phan T, Tuohy VK, Macklin WB. J. Neurosci. 17 9095-9103 (1997)
  48. Melittin binding causes a large calcium-dependent conformational change in calmodulin. Kataoka M, Head JF, Seaton BA, Engelman DM. Proc. Natl. Acad. Sci. U.S.A. 86 6944-6948 (1989)
  49. The EH-domain-containing protein Pan1 is required for normal organization of the actin cytoskeleton in Saccharomyces cerevisiae. Tang HY, Cai M. Mol. Cell. Biol. 16 4897-4914 (1996)
  50. The latch region of calcineurin B is involved in both immunosuppressant-immunophilin complex docking and phosphatase activation. Milan D, Griffith J, Su M, Price ER, McKeon F. Cell 79 437-447 (1994)
  51. Internalins from the human pathogen Listeria monocytogenes combine three distinct folds into a contiguous internalin domain. Schubert WD, Göbel G, Diepholz M, Darji A, Kloer D, Hain T, Chakraborty T, Wehland J, Domann E, Heinz DW. J. Mol. Biol. 312 783-794 (2001)
  52. Ionic interactions with parvalbumins. Crystal structure determination of pike 4.10 parvalbumin in four different ionic environments. Declercq JP, Tinant B, Parello J, Rambaud J. J. Mol. Biol. 220 1017-1039 (1991)
  53. A novel mode of target recognition suggested by the 2.0 A structure of holo S100B from bovine brain. Matsumura H, Shiba T, Inoue T, Harada S, Kai Y. Structure 6 233-241 (1998)
  54. Energetics of target peptide binding by calmodulin reveals different modes of binding. Brokx RD, Lopez MM, Vogel HJ, Makhatadze GI. J. Biol. Chem. 276 14083-14091 (2001)
  55. Mutations in yeast calmodulin cause defects in spindle pole body functions and nuclear integrity. Sun GH, Hirata A, Ohya Y, Anraku Y. J. Cell Biol. 119 1625-1639 (1992)
  56. Hormone-induced secretory and nuclear translocation of calmodulin: oscillations of calmodulin concentration with the nucleus as an integrator. Craske M, Takeo T, Gerasimenko O, Vaillant C, Török K, Petersen OH, Tepikin AV. Proc. Natl. Acad. Sci. U.S.A. 96 4426-4431 (1999)
  57. Study of conformational rearrangement and refinement of structural homology models by the use of heteronuclear dipolar couplings. Chou JJ, Li S, Bax A. J. Biomol. NMR 18 217-227 (2000)
  58. Multiple Ca(2+)-binding sites in the extracellular domain of the Ca(2+)-sensing receptor corresponding to cooperative Ca(2+) response. Huang Y, Zhou Y, Castiblanco A, Yang W, Brown EM, Yang JJ. Biochemistry 48 388-398 (2009)
  59. Identification and characterization of two distinct calmodulin-binding sites in the Trpl ion-channel protein of Drosophila melanogaster. Warr CG, Kelly LE. Biochem. J. 314 ( Pt 2) 497-503 (1996)
  60. An automatic method involving cluster analysis of secondary structures for the identification of domains in proteins. Sowdhamini R, Blundell TL. Protein Sci 4 506-520 (1995)
  61. Homology modelling of integrin EF-hands. Evidence for widespread use of a conserved cation-binding site. Tuckwell DS, Brass A, Humphries MJ. Biochem. J. 285 ( Pt 1) 325-331 (1992)
  62. Topology of the calmodulin-melittin complex. Scaloni A, Miraglia N, Orrù S, Amodeo P, Motta A, Marino G, Pucci P. J. Mol. Biol. 277 945-958 (1998)
  63. Crystal structures of CheY from Thermotoga maritima do not support conventional explanations for the structural basis of enhanced thermostability. Usher KC, de la Cruz AF, Dahlquist FW, Swanson RV, Simon MI, Remington SJ. Protein Sci. 7 403-412 (1998)
  64. Mapping protein interfaces by a trifunctional cross-linker combined with MALDI-TOF and ESI-FTICR mass spectrometry. Sinz A, Kalkhof S, Ihling C. J. Am. Soc. Mass Spectrom. 16 1921-1931 (2005)
  65. Letter Protein folding and calcium binding defects arising from familial hypercholesterolemia mutations of the LDL receptor. Blacklow SC, Kim PS. Nat. Struct. Biol. 3 758-762 (1996)
  66. Genetic interactions between CDC31 and KAR1, two genes required for duplication of the microtubule organizing center in Saccharomyces cerevisiae. Vallen EA, Ho W, Winey M, Rose MD. Genetics 137 407-422 (1994)
  67. Structure of Paramecium tetraurelia calmodulin at 1.8 A resolution. Rao ST, Wu S, Satyshur KA, Ling KY, Kung C, Sundaralingam M. Protein Sci. 2 436-447 (1993)
  68. Dynamics of the transition between open and closed conformations in a calmodulin C-terminal domain mutant. Evenäs J, Malmendal A, Akke M. Structure 9 185-195 (2001)
  69. Identification of N-terminal helix capping boxes by means of 13C chemical shifts. Gronenborn AM, Clore GM. J. Biomol. NMR 4 455-458 (1994)
  70. Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. van Asselt EJ, Dijkstra AJ, Kalk KH, Takacs B, Keck W, Dijkstra BW. Structure 7 1167-1180 (1999)
  71. Structural insights into activation of phosphatidylinositol 4-kinase (Pik1) by yeast frequenin (Frq1). Strahl T, Huttner IG, Lusin JD, Osawa M, King D, Thorner J, Ames JB. J Biol Chem 282 30949-30959 (2007)
  72. Calmodulin isoforms in Arabidopsis encoded by multiple divergent mRNAs. Gawienowski MC, Szymanski D, Perera IY, Zielinski RE. Plant Mol. Biol. 22 215-225 (1993)
  73. Noncanonical binding of calmodulin to aquaporin-0: implications for channel regulation. Reichow SL, Gonen T. Structure 16 1389-1398 (2008)
  74. Structural analysis of Mg2+ and Ca2+ binding to CaBP1, a neuron-specific regulator of calcium channels. Wingard JN, Chan J, Bosanac I, Haeseleer F, Palczewski K, Ikura M, Ames JB. J. Biol. Chem. 280 37461-37470 (2005)
  75. Pump-probe molecular dynamics as a tool for studying protein motion and long range coupling. Sharp K, Skinner JJ. Proteins 65 347-361 (2006)
  76. Structure of a sarcoplasmic calcium-binding protein from Nereis diversicolor refined at 2.0 A resolution. Vijay-Kumar S, Cook WJ. J. Mol. Biol. 224 413-426 (1992)
  77. Analysis of deuterium relaxation-derived methyl axis order parameters and correlation with local structure. Mittermaier A, Kay LE, Forman-Kay JD. J. Biomol. NMR 13 181-185 (1999)
  78. Bending of the calmodulin central helix: a theoretical study. van der Spoel D, de Groot BL, Hayward S, Berendsen HJ, Vogel HJ. Protein Sci. 5 2044-2053 (1996)
  79. Expression of three members of the calcium-dependent protein kinase gene family in Arabidopsis thaliana. Hong Y, Takano M, Liu CM, Gasch A, Chye ML, Chua NH. Plant Mol. Biol. 30 1259-1275 (1996)
  80. Metal-ion affinity and specificity in EF-hand proteins: coordination geometry and domain plasticity in parvalbumin. Cates MS, Berry MB, Ho EL, Li Q, Potter JD, Phillips GN. Structure 7 1269-1278 (1999)
  81. Structure of a trapped intermediate of calmodulin: calcium regulation of EF-hand proteins from a new perspective. Grabarek Z. J. Mol. Biol. 346 1351-1366 (2005)
  82. Integrin LFA-1 alpha subunit contains an ICAM-1 binding site in domains V and VI. Stanley P, Bates PA, Harvey J, Bennett RI, Hogg N. EMBO J. 13 1790-1798 (1994)
  83. An extended conformation of calmodulin induces interactions between the structural domains of adenylyl cyclase from Bacillus anthracis to promote catalysis. Drum CL, Yan SZ, Sarac R, Mabuchi Y, Beckingham K, Bohm A, Grabarek Z, Tang WJ. J. Biol. Chem. 275 36334-36340 (2000)
  84. Arrestin binding to calmodulin: a direct interaction between two ubiquitous signaling proteins. Wu N, Hanson SM, Francis DJ, Vishnivetskiy SA, Thibonnier M, Klug CS, Shoham M, Gurevich VV. J. Mol. Biol. 364 955-963 (2006)
  85. Functional dynamics of the hydrophobic cleft in the N-domain of calmodulin. Vigil D, Gallagher SC, Trewhella J, García AE. Biophys. J. 80 2082-2092 (2001)
  86. The cross-reactive calcium-binding pollen allergen, Phl p 7, reveals a novel dimer assembly. Verdino P, Westritschnig K, Valenta R, Keller W. EMBO J. 21 5007-5016 (2002)
  87. The three-dimensional structure of a molecular motor. Rayment I, Holden HM. Trends Biochem. Sci. 19 129-134 (1994)
  88. Calcium channels are models of self-control. Dunlap K. J. Gen. Physiol. 129 379-383 (2007)
  89. Calcium input frequency, duration and amplitude differentially modulate the relative activation of calcineurin and CaMKII. Li L, Stefan MI, Le Novère N. PLoS ONE 7 e43810 (2012)
  90. Evidence of noncovalent dimerization of calmodulin. Lafitte D, Heck AJ, Hill TJ, Jumel K, Harding SE, Derrick PJ. Eur. J. Biochem. 261 337-344 (1999)
  91. Calcium- and calcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth. Kraus PR, Nichols CB, Heitman J. Eukaryotic Cell 4 1079-1087 (2005)
  92. Electrospray ionization mass spectrometry and hydrogen/deuterium exchange for probing the interaction of calmodulin with calcium. Nemirovskiy O, Giblin DE, Gross ML. J. Am. Soc. Mass Spectrom. 10 711-718 (1999)
  93. Predicting calcium-binding sites in proteins - a graph theory and geometry approach. Deng H, Chen G, Yang W, Yang JJ. Proteins 64 34-42 (2006)
  94. Structure of a Ca2+-myristoyl switch protein that controls activation of a phosphatidylinositol 4-kinase in fission yeast. Lim S, Strahl T, Thorner J, Ames JB. J. Biol. Chem. 286 12565-12577 (2011)
  95. The use of 1JC alpha H alpha coupling constants as a probe for protein backbone conformation. Vuister GW, Delaglio F, Bax A. J. Biomol. NMR 3 67-80 (1993)
  96. Solution structure of a protein inhibitor of neuronal nitric oxide synthase. Tochio H, Ohki S, Zhang Q, Li M, Zhang M. Nat. Struct. Biol. 5 965-969 (1998)
  97. Structural insights into Ca2+-dependent regulation of inositol 1,4,5-trisphosphate receptors by CaBP1. Li C, Chan J, Haeseleer F, Mikoshiba K, Palczewski K, Ikura M, Ames JB. J. Biol. Chem. 284 2472-2481 (2009)
  98. The three-dimensional structure of bovine calcium ion-bound osteocalcin using 1H NMR spectroscopy. Dowd TL, Rosen JF, Li L, Gundberg CM. Biochemistry 42 7769-7779 (2003)
  99. A conformation- and ion-sensitive plasmonic biosensor. Hall WP, Modica J, Anker J, Lin Y, Mrksich M, Van Duyne RP. Nano Lett. 11 1098-1105 (2011)
  100. Molecular dynamics simulations revealed Ca(2+)-dependent conformational change of Calmodulin. Komeiji Y, Ueno Y, Uebayasi M. FEBS Lett. 521 133-139 (2002)
  101. Congress What's new with calcium? Davis TN. Cell 71 557-564 (1992)
  102. Isolation and characterization of a biologically active chromium oligopeptide from bovine liver. Davis CM, Vincent JB. Arch. Biochem. Biophys. 339 335-343 (1997)
  103. Calcium(II) site specificity: effect of size and charge on metal ion binding to an EF-hand-like site. Snyder EE, Buoscio BW, Falke JJ. Biochemistry 29 3937-3943 (1990)
  104. Towards the molecular basis for the regulation of mitochondrial dehydrogenases by calcium ions. Nichols BJ, Denton RM. Mol. Cell. Biochem. 149-150 203-212 (1995)
  105. In vitro aging of calmodulin generates isoaspartate at multiple Asn-Gly and Asp-Gly sites in calcium-binding domains II, III, and IV. Potter SM, Henzel WJ, Aswad DW. Protein Sci. 2 1648-1663 (1993)
  106. Interaction of troponin I and troponin C. Use of the two-dimensional nuclear magnetic resonance transferred nuclear Overhauser effect to determine the structure of the inhibitory troponin I peptide when bound to skeletal troponin C. Campbell AP, Sykes BD. J. Mol. Biol. 222 405-421 (1991)
  107. Measurement of one-bond 15N-13C' dipolar couplings in medium sized proteins. Chou JJ, Delaglio F, Bax A. J. Biomol. NMR 18 101-105 (2000)
  108. Nuclear magnetic resonance studies of the internal dynamics in Apo, (Cd2+)1 and (Ca2+)2 calbindin D9k. The rates of amide proton exchange with solvent. Skelton NJ, Kördel J, Akke M, Chazin WJ. J. Mol. Biol. 227 1100-1117 (1992)
  109. Structure and dynamics of calcium-activated calmodulin in solution. Yang C, Jas GS, Kuczera K. J. Biomol. Struct. Dyn. 19 247-271 (2001)
  110. Crystal structure of the unique parvalbumin component from muscle of the leopard shark (Triakis semifasciata). The first X-ray study of an alpha-parvalbumin. Roquet F, Declercq JP, Tinant B, Rambaud J, Parello J. J. Mol. Biol. 223 705-720 (1992)
  111. A mass spectrometry method for mapping the interface topography of interacting proteins, illustrated by the melittin-calmodulin system. Steiner RF, Albaugh S, Fenselau C, Murphy C, Vestling M. Anal. Biochem. 196 120-125 (1991)
  112. Molecular basis for co-operativity in Ca2+ binding to calbindin D9k. 1H nuclear magnetic resonance studies of (Cd2+)1-bovine calbindin D9k. Akke M, Forsén S, Chazin WJ. J. Mol. Biol. 220 173-189 (1991)
  113. Solvation energetics and conformational change in EF-hand proteins. Ababou A, Desjarlais JR. Protein Sci. 10 301-312 (2001)
  114. Stopped-flow studies of calcium dissociation from calcium-binding-site mutants of Drosophila melanogaster calmodulin. Martin SR, Maune JF, Beckingham K, Bayley PM. Eur. J. Biochem. 205 1107-1114 (1992)
  115. Structure-based systematic isolation of conditional-lethal mutations in the single yeast calmodulin gene. Ohya Y, Botstein D. Genetics 138 1041-1054 (1994)
  116. The calmodulin-related calcium sensor CML42 plays a role in trichome branching. Dobney S, Chiasson D, Lam P, Smith SP, Snedden WA. J. Biol. Chem. 284 31647-31657 (2009)
  117. Measurement of two-bond JCOH alpha coupling constants in proteins uniformly enriched with 13C. Vuister GW, Bax A. J. Biomol. NMR 2 401-405 (1992)
  118. Protein conformational changes studied by diffusion NMR spectroscopy: application to helix-loop-helix calcium binding proteins. Weljie AM, Yamniuk AP, Yoshino H, Izumi Y, Vogel HJ. Protein Sci. 12 228-236 (2003)
  119. Protein-metal interactions of calmodulin and alpha-synuclein monitored by selective noncovalent adduct protein probing mass spectrometry. Ly T, Julian RR. J. Am. Soc. Mass Spectrom. 19 1663-1672 (2008)
  120. Structure of oncomodulin refined at 1.85 A resolution. An example of extensive molecular aggregation via Ca2+. Ahmed FR, Przybylska M, Rose DR, Birnbaum GI, Pippy ME, MacManus JP. J. Mol. Biol. 216 127-140 (1990)
  121. The complex structure of calmodulin bound to a calcineurin peptide. Ye Q, Wang H, Zheng J, Wei Q, Jia Z. Proteins 73 19-27 (2008)
  122. A common structural basis for pH- and calmodulin-mediated regulation in plant glutamate decarboxylase. Gut H, Dominici P, Pilati S, Astegno A, Petoukhov MV, Svergun DI, Grütter MG, Capitani G. J. Mol. Biol. 392 334-351 (2009)
  123. A molecular dynamics study of the effect of Ca2+ removal on calmodulin structure. Project E, Friedman R, Nachliel E, Gutman M. Biophys. J. 90 3842-3850 (2006)
  124. Characterization of the Ca2+ -dependent and -independent interactions between calmodulin and its binding domain of inducible nitric oxide synthase. Yuan T, Vogel HJ, Sutherland C, Walsh MP. FEBS Lett. 431 210-214 (1998)
  125. Multiscale characterization of protein conformational ensembles. Shehu A, Kavraki LE, Clementi C. Proteins 76 837-851 (2009)
  126. NMR studies of the methionine methyl groups in calmodulin. Siivari K, Zhang M, Palmer AG, Vogel HJ. FEBS Lett. 366 104-108 (1995)
  127. News Releasing the calcium trigger. Chazin WJ. Nat. Struct. Biol. 2 707-710 (1995)
  128. Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy. Yamamoto D, Nagura N, Omote S, Taniguchi M, Ando T. Biophys. J. 97 2358-2367 (2009)
  129. Analysis of the oxidative damage-induced conformational changes of apo- and holocalmodulin by dose-dependent protein oxidative surface mapping. Sharp JS, Tomer KB. Biophys. J. 92 1682-1692 (2007)
  130. The kinetic cycle of cardiac troponin C: calcium binding and dissociation at site II trigger slow conformational rearrangements. Hazard AL, Kohout SC, Stricker NL, Putkey JA, Falke JJ. Protein Sci. 7 2451-2459 (1998)
  131. A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II. Pepke S, Kinzer-Ursem T, Mihalas S, Kennedy MB. PLoS Comput. Biol. 6 e1000675 (2010)
  132. Critical evaluation of mass spectrometric measurement of dissociation constants: accuracy and cross-validation against surface plasmon resonance and circular dichroism for the calmodulin-melittin system. Mathur S, Badertscher M, Scott M, Zenobi R. Phys Chem Chem Phys 9 6187-6198 (2007)
  133. Domain organization of calbindin D28k as determined from the association of six synthetic EF-hand fragments. Linse S, Thulin E, Gifford LK, Radzewsky D, Hagan J, Wilk RR, Akerfeldt KS. Protein Sci. 6 2385-2396 (1997)
  134. Partitioning of the plasma membrane Ca2+-ATPase into lipid rafts in primary neurons: effects of cholesterol depletion. Jiang L, Fernandes D, Mehta N, Bean JL, Michaelis ML, Zaidi A. J. Neurochem. 102 378-388 (2007)
  135. Solution structure of calmodulin and its complex with a myosin light chain kinase fragment. Ikura M, Barbato G, Klee CB, Bax A. Cell Calcium 13 391-400 (1992)
  136. Structural analysis of wild-type and mutant yeast calmodulins by limited proteolysis and electrospray ionization mass spectrometry. Brockerhoff SE, Edmonds CG, Davis TN. Protein Sci. 1 504-516 (1992)
  137. Structure of calmodulin complexed with an olfactory CNG channel fragment and role of the central linker: residual dipolar couplings to evaluate calmodulin binding modes outside the kinase family. Contessa GM, Orsale M, Melino S, Torre V, Paci M, Desideri A, Cicero DO. J. Biomol. NMR 31 185-199 (2005)
  138. Calculation of proteins' total side-chain torsional entropy and its influence on protein-ligand interactions. DuBay KH, Geissler PL. J. Mol. Biol. 391 484-497 (2009)
  139. Characterization of the calcium-binding sites of calcineurin B. Kakalis LT, Kennedy M, Sikkink R, Rusnak F, Armitage IM. FEBS Lett. 362 55-58 (1995)
  140. Cytoplasmic calcium buffers in intact human red cells. Tiffert T, Lew VL. J. Physiol. (Lond.) 500 ( Pt 1) 139-154 (1997)
  141. Annexin I and annexin II N-terminal peptides binding to S100 protein family members: specificity and thermodynamic characterization. Streicher WW, Lopez MM, Makhatadze GI. Biochemistry 48 2788-2798 (2009)
  142. Fluorescence intensity and lifetime distribution analysis: toward higher accuracy in fluorescence fluctuation spectroscopy. Palo K, Brand L, Eggeling C, Jäger S, Kask P, Gall K. Biophys. J. 83 605-618 (2002)
  143. Identification of a high-affinity network of secretagogin-binding proteins involved in vesicle secretion. Bauer MC, O'Connell DJ, Maj M, Wagner L, Cahill DJ, Linse S. Mol Biosyst 7 2196-2204 (2011)
  144. Immunosuppressive activity of a molecule isolated from Artemisia annua on DTH responses compared with cyclosporin A. Noori S, Naderi GA, Hassan ZM, Habibi Z, Bathaie SZ, Hashemi SM. Int. Immunopharmacol. 4 1301-1306 (2004)
  145. Model for the interaction of amphiphilic helices with troponin C and calmodulin. Strynadka NC, James MN. Proteins 7 234-248 (1990)
  146. Protein engineering and NMR studies of calmodulin. Vogel HJ, Zhang M. Mol. Cell. Biochem. 149-150 3-15 (1995)
  147. The effect of protein concentration on ion binding. Linse S, Jönsson B, Chazin WJ. Proc. Natl. Acad. Sci. U.S.A. 92 4748-4752 (1995)
  148. A peptide analog of the calmodulin-binding domain of myosin light chain kinase adopts an alpha-helical structure in aqueous trifluoroethanol. Zhang M, Yuan T, Vogel HJ. Protein Sci. 2 1931-1937 (1993)
  149. Amplitude and frequency dissociation spectra of ion-protein complexes rotating in magnetic fields. Binhi VN. Bioelectromagnetics 21 34-45 (2000)
  150. Computational and site-specific mutagenesis analyses of the asymmetric charge distribution on calmodulin. Weber PC, Lukas TJ, Craig TA, Wilson E, King MM, Kwiatkowski AP, Watterson DM. Proteins 6 70-85 (1989)
  151. Dynamic light scattering study of calmodulin-target peptide complexes. Papish AL, Tari LW, Vogel HJ. Biophys. J. 83 1455-1464 (2002)
  152. Metal binding affinity and structural properties of an isolated EF-loop in a scaffold protein. Ye Y, Lee HW, Yang W, Shealy SJ, Wilkins AL, Liu ZR, Torshin I, Harrison R, Wohlhueter R, Yang JJ. Protein Eng. 14 1001-1013 (2001)
  153. Activation of calcineurin and smooth muscle myosin light chain kinase by Met-to-Leu mutants of calmodulin. Edwards RA, Walsh MP, Sutherland C, Vogel HJ. Biochem. J. 331 ( Pt 1) 149-152 (1998)
  154. Calcium binding decreases the stokes radius of calmodulin and mutants R74A, R90A, and R90G. Sorensen BR, Shea MA. Biophys. J. 71 3407-3420 (1996)
  155. Directed evolution for the development of conformation-specific affinity reagents using yeast display. Weaver-Feldhaus JM, Miller KD, Feldhaus MJ, Siegel RW. Protein Eng. Des. Sel. 18 527-536 (2005)
  156. Heteronuclear 3D NMR and isotopic labeling of calmodulin. Towards the complete assignment of the 1H NMR spectrum. Ikura M, Marion D, Kay LE, Shih H, Krinks M, Klee CB, Bax A. Biochem. Pharmacol. 40 153-160 (1990)
  157. Isolation of an Arabidopsis cDNA sequence encoding a 22 kDa calcium-binding protein (CaBP-22) related to calmodulin. Ling V, Zielinski RE. Plant Mol. Biol. 22 207-214 (1993)
  158. Kinetic control of Ca(II) signaling: tuning the ion dissociation rates of EF-hand Ca(II) binding sites. Renner M, Danielson MA, Falke JJ. Proc. Natl. Acad. Sci. U.S.A. 90 6493-6497 (1993)
  159. Narrowing the conformational space sampled by two-domain proteins with paramagnetic probes in both domains. Dasgupta S, Hu X, Keizers PH, Liu WM, Luchinat C, Nagulapalli M, Overhand M, Parigi G, Sgheri L, Ubbink M. J. Biomol. NMR 51 253-263 (2011)
  160. Phenylalanine fluorescence studies of calcium binding to N-domain fragments of Paramecium calmodulin mutants show increased calcium affinity correlates with increased disorder. VanScyoc WS, Shea MA. Protein Sci. 10 1758-1768 (2001)
  161. Systematic delineation of a calmodulin peptide interaction. Hultschig C, Hecht HJ, Frank R. J. Mol. Biol. 343 559-568 (2004)
  162. A series of point mutations reveal interactions between the calcium-binding sites of calmodulin. Starovasnik MA, Su DR, Beckingham K, Klevit RE. Protein Sci. 1 245-253 (1992)
  163. Calcium-free calmodulin is a substrate of proteases from human immunodeficiency viruses 1 and 2. Tomasselli AG, Howe WJ, Hui JO, Sawyer TK, Reardon IM, DeCamp DL, Craik CS, Heinrikson RL. Proteins 10 1-9 (1991)
  164. Calculations of one-, two- and three-bond nuclear spin-spin couplings in a model peptide and correlations with experimental data. Edison AS, Markley JL, Weinhold F. J. Biomol. NMR 4 519-542 (1994)
  165. Multiple-sited interaction of caldesmon with Ca(2+)-calmodulin. Huber PA, El-Mezgueldi M, Grabarek Z, Slatter DA, Levine BA, Marston SB. Biochem. J. 316 ( Pt 2) 413-420 (1996)
  166. Phosphorylation of calmodulin on Tyr99 selectively attenuates the action of calmodulin antagonists on type-I cyclic nucleotide phosphodiesterase activity. Saville MK, Houslay MD. Biochem. J. 299 ( Pt 3) 863-868 (1994)
  167. Site-specific methionine oxidation in calmodulin affects structural integrity and interaction with Ca2+/calmodulin-dependent protein kinase II. Snijder J, Rose RJ, Raijmakers R, Heck AJ. J. Struct. Biol. 174 187-195 (2011)
  168. Spectroscopic characterization of the interaction between calmodulin-dependent protein kinase I and calmodulin. Gomes AV, Barnes JA, Vogel HJ. Arch. Biochem. Biophys. 379 28-36 (2000)
  169. Structural basis for Ca2+-induced activation and dimerization of estrogen receptor α by calmodulin. Zhang Y, Li Z, Sacks DB, Ames JB. J. Biol. Chem. 287 9336-9344 (2012)
  170. The structure of apo-calmodulin. A 1H NMR examination of the carboxy-terminal domain. Finn BE, Drakenberg T, Forsén S. FEBS Lett. 336 368-374 (1993)
  171. An efficient NMR approach for obtaining sequence-specific resonance assignments of larger proteins based on multiple isotopic labeling. Ikura M, Krinks M, Torchia DA, Bax A. FEBS Lett. 266 155-158 (1990)
  172. Approaches for the measurement of solvent exposure in proteins by 19F NMR. Kitevski-LeBlanc JL, Evanics F, Prosser RS. J. Biomol. NMR 45 255-264 (2009)
  173. Centrin is essential for the activity of the ciliary reversal-coupled voltage-gated Ca2+ channels. Gonda K, Yoshida A, Oami K, Takahashi M. Biochem. Biophys. Res. Commun. 323 891-897 (2004)
  174. Coexistence of two protein folding states in the crystal structure of ribosomal protein L20. Timsit Y, Allemand F, Chiaruttini C, Springer M. EMBO Rep. 7 1013-1018 (2006)
  175. Interlobe communication in multiple calcium-binding site mutants of Drosophila calmodulin. Mukherjea P, Maune JF, Beckingham K. Protein Sci. 5 468-477 (1996)
  176. NMR and molecular dynamics studies of the interaction of melatonin with calmodulin. Turjanski AG, Estrin DA, Rosenstein RE, McCormick JE, Martin SR, Pastore A, Biekofsky RR, Martorana V. Protein Sci. 13 2925-2938 (2004)
  177. Resonance energy transfer in a calcium concentration-dependent cameleon protein. Habuchi S, Cotlet M, Hofkens J, Dirix G, Michiels J, Vanderleyden J, Subramaniam V, De Schryver FC. Biophys. J. 83 3499-3506 (2002)
  178. The structure of a calmodulin mutant with a deletion in the central helix: implications for molecular recognition and protein binding. Tabernero L, Taylor DA, Chandross RJ, VanBerkum MF, Means AR, Quiocho FA, Sack JS. Structure 5 613-622 (1997)
  179. Activation and inactivation of neuronal nitric oxide synthase: characterization of Ca(2+)-dependent [125I]Calmodulin binding. Weissman BA, Jones CL, Liu Q, Gross SS. Eur. J. Pharmacol. 435 9-18 (2002)
  180. Basic interdomain boundary residues in calmodulin decrease calcium affinity of sites I and II by stabilizing helix-helix interactions. Faga LA, Sorensen BR, VanScyoc WS, Shea MA. Proteins 50 381-391 (2003)
  181. Comparative structural analysis of the calcium free and bound states of the calcium regulatory protein calbindin D9K. Skelton NJ, Kördel J, Forsén S, Chazin WJ. J. Mol. Biol. 213 593-598 (1990)
  182. In vivo mutations of calmodulin: a mutant Paramecium with altered ion current regulation has an isoleucine-to-threonine change at residue 136 and an altered methylation state at lysine residue 115. Lukas TJ, Wallen-Friedman M, Kung C, Watterson DM. Proc. Natl. Acad. Sci. U.S.A. 86 7331-7335 (1989)
  183. Indolicidin, a 13-residue basic antimicrobial peptide rich in tryptophan and proline, interacts with Ca(2+)-calmodulin. Sitaram N, Subbalakshmi C, Nagaraj R. Biochem. Biophys. Res. Commun. 309 879-884 (2003)
  184. NMR solution structure of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea. Tossavainen H, Permi P, Annila A, Kilpeläinen I, Drakenberg T. Eur. J. Biochem. 270 2505-2512 (2003)
  185. The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis. Laine E, Yoneda JD, Blondel A, Malliavin TE. Proteins 71 1813-1829 (2008)
  186. The interaction of calmodulin with fluorescent and photoreactive model peptides: evidence for a short interdomain separation. O'Neil KT, DeGrado WF. Proteins 6 284-293 (1989)
  187. Calcium-dependent stabilization of the central sequence between Met(76) and Ser(81) in vertebrate calmodulin. Qin Z, Squier TC. Biophys. J. 81 2908-2918 (2001)
  188. Energetics of calmodulin domain interactions with the calmodulin binding domain of CaMKII. Evans TI, Shea MA. Proteins 76 47-61 (2009)
  189. News Finding the right fold. Dobson CM. Nat. Struct. Biol. 2 513-517 (1995)
  190. Interactions of the 18.5-kDa isoform of myelin basic protein with Ca(2+)-calmodulin: in vitro studies using fluorescence microscopy and spectroscopy. Libich DS, Harauz G. Biochem. Cell Biol. 80 395-406 (2002)
  191. Single-molecule dynamics of the calcium-dependent activation of plasma-membrane Ca2+-ATPase by calmodulin. Osborn KD, Zaidi A, Mandal A, Urbauer RJ, Johnson CK. Biophys. J. 87 1892-1899 (2004)
  192. Substitution of the methionine residues of calmodulin with the unnatural amino acid analogs ethionine and norleucine: biochemical and spectroscopic studies. Yuan T, Vogel HJ. Protein Sci. 8 113-121 (1999)
  193. Tryptophan fluorescence of calmodulin binding domain peptides interacting with calmodulin containing unnatural methionine analogues. Weljie AM, Vogel HJ. Protein Eng. 13 59-66 (2000)
  194. Letter X-ray analysis reveals conformational adaptation of the linker in functional calmodulin mutants. Meador WE, George SE, Means AR, Quiocho FA. Nat. Struct. Biol. 2 943-945 (1995)
  195. Calmodulin disrupts the structure of the HIV-1 MA protein. Chow JY, Jeffries CM, Kwan AH, Guss JM, Trewhella J. J. Mol. Biol. 400 702-714 (2010)
  196. NMR assignments, secondary structure, and global fold of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea. Aitio H, Annila A, Heikkinen S, Thulin E, Drakenberg T, Kilpeläinen I. Protein Sci. 8 2580-2588 (1999)
  197. Reconstitution of calmodulin from domains and subdomains: Influence of target peptide. Shuman CF, Jiji R, Kerfeldt KS, Linse S. J. Mol. Biol. 358 870-881 (2006)
  198. Regulation of smooth muscle myosin light chain kinase. Allosteric effects and co-operative activation by calmodulin. Sobieszek A. J. Mol. Biol. 220 947-957 (1991)
  199. Role of interchain alpha-helical hydrophobic interactions in Ca2+ affinity, formation, and stability of a two-site domain in troponin C. Monera OD, Shaw GS, Zhu BY, Sykes BD, Kay CM, Hodges RS. Protein Sci. 1 945-955 (1992)
  200. Thermodynamics of target peptide recognition by calmodulin and a calmodulin analogue: implications for the role of the central linker. Moorthy AK, Gopal B, Satish PR, Bhattacharya S, Bhattacharya A, Murthy MR, Surolia A. FEBS Lett. 461 19-24 (1999)
  201. Top-down structural analysis of posttranslationally modified proteins by Fourier transform ion cyclotron resonance-MS with hydrogen/deuterium exchange and electron capture dissociation. Pan J, Borchers CH. Proteomics 13 974-981 (2013)
  202. A mass spectrometric study of metal binding to osteocalcin. Nousiainen M, Derrick PJ, Kaartinen MT, Mäenpää PH, Rouvinen J, Vainiotalo P. Chem. Biol. 9 195-202 (2002)
  203. Characterisation of two calmodulin-like proteins from the liver fluke, Fasciola hepatica. Russell SL, McFerran NV, Hoey EM, Trudgett A, Timson DJ. Biol. Chem. 388 593-599 (2007)
  204. Comparative modeling of the three-dimensional structure of the calmodulin-related TCH2 protein from Arabidopsis. Khan AR, Johnson KA, Braam J, James MN. Proteins 27 144-153 (1997)
  205. Dynamic properties of Lednev's parametric resonance mechanism. Engström S. Bioelectromagnetics 17 58-70 (1996)
  206. Evaluation of stereo-array isotope labeling (SAIL) patterns for automated structural analysis of proteins with CYANA. Ikeya T, Terauchi T, Güntert P, Kainosho M. Magn Reson Chem 44 Spec No S152-7 (2006)
  207. Identification of functional connections between calmodulin and the yeast actin cytoskeleton. Sekiya-Kawasaki M, Botstein D, Ohya Y. Genetics 150 43-58 (1998)
  208. Mapping protein interfaces by chemical cross-linking and Fourier transform ion cyclotron resonance mass spectrometry: application to a calmodulin / adenylyl cyclase 8 peptide complex. Schmidt A, Kalkhof S, Ihling C, Cooper DM, Sinz A. Eur J Mass Spectrom (Chichester) 11 525-534 (2005)
  209. Molecular pathology of dityrosine cross-links in proteins: structural and functional analysis of four proteins. Balasubramanian D, Kanwar R. Mol. Cell. Biochem. 234-235 27-38 (2002)
  210. New non-lethal calmodulin mutations in Paramecium. A structural and functional bipartition hypothesis. Ling KY, Maley ME, Preston RR, Saimi Y, Kung C. Eur. J. Biochem. 222 433-439 (1994)
  211. Thermodynamic model of secondary structure for alpha-helical peptides and proteins. Lomize AL, Mosberg HI. Biopolymers 42 239-269 (1997)
  212. An NMR and spin label study of the effects of binding calcium and troponin I inhibitory peptide to cardiac troponin C. Howarth JW, Krudy GA, Lin X, Putkey JA, Rosevear PR. Protein Sci. 4 671-680 (1995)
  213. Assignment and secondary structure of calcium-bound human S100B. Smith SP, Shaw GS. J. Biomol. NMR 10 77-88 (1997)
  214. Calmodulin binding of a peptide derived from the regulatory domain of Bordetella pertussis adenylate cyclase. Craescu CT, Bouhss A, Mispelter J, Diesis E, Popescu A, Chiriac M, Bârzu O. J. Biol. Chem. 270 7088-7096 (1995)
  215. Comparative analysis of the amino- and carboxy-terminal domains of calmodulin by Fourier transform infrared spectroscopy. Fabian H, Yuan T, Vogel HJ, Mantsch HH. Eur. Biophys. J. 24 195-201 (1996)
  216. Construction and molecular dynamics simulation of calmodulin in the extended and in a bent conformation. Vorherr T, Kessler O, Mark A, Carafoli E. Eur. J. Biochem. 204 931-937 (1992)
  217. Oligomerization and Ca2+/calmodulin control binding of the ER Ca2+-sensors STIM1 and STIM2 to plasma membrane lipids. Bhardwaj R, Müller HM, Nickel W, Seedorf M. Biosci. Rep. 33 (2013)
  218. Quantitative evaluation of indirect ELISA. Effect of calmodulin antagonists on antibody binding to calmodulin. Liliom K, Orosz F, Horváth L, Ovádi J. J. Immunol. Methods 143 119-125 (1991)
  219. Spectroscopic characterization of the calmodulin-binding and autoinhibitory domains of calcium/calmodulin-dependent protein kinase I. Yuan T, Gomes AV, Barnes JA, Hunter HN, Vogel HJ. Arch. Biochem. Biophys. 421 192-206 (2004)
  220. The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca(2+) sensor in Arabidopsis. Bender KW, Dobney S, Ogunrinde A, Chiasson D, Mullen RT, Teresinski HJ, Singh P, Munro K, Smith SP, Snedden WA. Biochem. J. 457 127-136 (2014)
  221. Unwinding the helical linker of calcium-loaded calmodulin: a molecular dynamics study. Fiorin G, Biekofsky RR, Pastore A, Carloni P. Proteins 61 829-839 (2005)
  222. A 1.3-A structure of zinc-bound N-terminal domain of calmodulin elucidates potential early ion-binding step. Warren JT, Guo Q, Tang WJ. J. Mol. Biol. 374 517-527 (2007)
  223. A model for human cardiac troponin C and for modulation of its Ca2+ affinity by drugs. Ovaska M, Taskinen J. Proteins 11 79-94 (1991)
  224. Calcium-binding by p26olf, an S100-like protein in the frog olfactory epithelium. Miwa N, Shinmyo Y, Kawamura S. Eur. J. Biochem. 268 6029-6036 (2001)
  225. Efficient expression of the Paramecium calmodulin gene in Escherichia coli after four TAA-to-CAA changes through a series of polymerase chain reactions. Kink JA, Maley ME, Ling KY, Kanabrocki JA, Kung C. J. Protozool. 38 441-447 (1991)
  226. Identification of the binding and inhibition sites in the calmodulin molecule for ophiobolin A by site-directed mutagenesis. Kong Au T, Chow Leung P. Plant Physiol. 118 965-973 (1998)
  227. Influence of calcium/calmodulin on budding of Ebola VLPs: implications for the involvement of the Ras/Raf/MEK/ERK pathway. Han Z, Harty RN. Virus Genes 35 511-520 (2007)
  228. Melatonin stimulates dendrite formation and complexity in the hilar zone of the rat hippocampus: participation of the Ca++/Calmodulin complex. Domínguez-Alonso A, Valdés-Tovar M, Solís-Chagoyán H, Benítez-King G. Int J Mol Sci 16 1907-1927 (2015)
  229. Multiple sites of methyl esterification of calmodulin in intact human erythrocytes. Ota IM, Clarke S. Arch. Biochem. Biophys. 279 320-327 (1990)
  230. Serine/threonine phosphorylation of calmodulin modulates its interaction with the binding domains of target enzymes. Leclerc E, Corti C, Schmid H, Vetter S, James P, Carafoli E. Biochem. J. 344 Pt 2 403-411 (1999)
  231. Single molecule analyses of the conformational substates of calmodulin bound to the phosphorylase kinase complex. Priddy TS, Price ES, Johnson CK, Carlson GM. Protein Sci. 16 1017-1023 (2007)
  232. A novel target recognition revealed by calmodulin in complex with the basic helix--loop--helix transcription factor SEF2-1/E2-2. Larsson G, Schleucher J, Onions J, Hermann S, Grundström T, Wijmenga SS. Protein Sci. 10 169-186 (2001)
  233. Backbone dynamic properties of the central linker region of calcium-calmodulin in 35% trifluoroethanol. Brokx RD, Scheek RM, Weljie AM, Vogel HJ. J. Struct. Biol. 146 272-280 (2004)
  234. Backbone dynamics of a symmetric calmodulin dimer in complex with the calmodulin-binding domain of the basic-helix-loop-helix transcription factor SEF2-1/E2-2: a highly dynamic complex. Larsson G, Schleucher J, Onions J, Hermann S, Grundström T, Wijmenga SS. Biophys. J. 89 1214-1226 (2005)
  235. Calmodulins with deletions in the central helix functionally replace the native protein in yeast cells. Persechini A, Kretsinger RH, Davis TN. Proc. Natl. Acad. Sci. U.S.A. 88 449-452 (1991)
  236. Characterization of calcium-binding sites in the kidney stone inhibitor glycoprotein nephrocalcin with vanadyl ions: electron paramagnetic resonance and electron nuclear double resonance spectroscopy. Mustafi D, Nakagawa Y. Proc. Natl. Acad. Sci. U.S.A. 91 11323-11327 (1994)
  237. FhCaBP4: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Orr R, Kinkead R, Newman R, Anderson L, Hoey EM, Trudgett A, Timson DJ. Parasitol. Res. 111 1707-1713 (2012)
  238. Flexible-body motions of calmodulin and the farnesylated hypervariable region yield a high-affinity interaction enabling K-Ras4B membrane extraction. Jang H, Banerjee A, Chavan T, Gaponenko V, Nussinov R. J. Biol. Chem. 292 12544-12559 (2017)
  239. Molecular dynamics simulations of calcium-free calmodulin in solution. Yang C, Kuczera K. J. Biomol. Struct. Dyn. 19 801-819 (2002)
  240. Molecular structure and target recognition of neuronal calcium sensor proteins. Ames JB, Lim S, Ikura M. Front Mol Neurosci 5 10 (2012)
  241. Relative affinity constants by electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry: calmodulin binding to peptide analogs of myosin light chain kinase. Nousiainen M, Derrick PJ, Lafitte D, Vainiotalo P. Biophys. J. 85 491-500 (2003)
  242. Relative stabilities of synthetic peptide homo- and heterodimeric troponin-C domains. Shaw GS, Hodges RS, Kay CM, Sykes BD. Protein Sci. 3 1010-1019 (1994)
  243. Role of the N-terminal region of the skeletal muscle myosin light chain kinase target sequence in its interaction with calmodulin. Findlay WA, Gradwell MJ, Bayley PM. Protein Sci. 4 2375-2382 (1995)
  244. Structural basis of regulation and substrate specificity of protein kinase CK2 deduced from the modeling of protein-protein interactions. Rekha N, Srinivasan N. BMC Struct. Biol. 3 4 (2003)
  245. Structure, expression, and functional analysis of the gene coding for calmodulin in the chytridiomycete Blastocladiella emersonii. Simão RC, Gomes SL. J. Bacteriol. 183 2280-2288 (2001)
  246. 113Cd-NMR evidence for cooperative interaction between amino- and carboxyl-terminal domains of calmodulin. Ikura M, Hasegawa N, Aimoto S, Yazawa M, Yagi K, Hikichi K. Biochem. Biophys. Res. Commun. 161 1233-1238 (1989)
  247. A flagellar calmodulin gene of Naegleria, coexpressed during differentiation with flagellar tubulin genes, shares DNA, RNA, and encoded protein sequence elements. Fulton C, Lai EY, Remillard SP. J. Biol. Chem. 270 5839-5848 (1995)
  248. An altered mode of calcium coordination in methionine-oxidized calmodulin. Jones EM, Squier TC, Sacksteder CA. Biophys. J. 95 5268-5280 (2008)
  249. An intragenic suppressor of a calmodulin mutation in Paramecium: genetic and biochemical characterization. Hinrichsen RD, Pollock M, Hennessey T, Russell C. Genetics 129 717-725 (1991)
  250. Analysis of the molecular basis of calmodulin defects that affect ion channel-mediated cellular responses: site-specific mutagenesis and microinjection. Hinrichsen R, Wilson E, Lukas T, Craig T, Schultz J, Watterson DM. J. Cell Biol. 111 2537-2542 (1990)
  251. Bioluminescent indicators for Ca2+ based on split Renilla luciferase complementation in living cells. Kaihara A, Umezawa Y, Furukawa T. Anal Sci 24 1405-1408 (2008)
  252. Cloning and characterization of the calmodulin-encoding gene from Pneumocystis carinii. Fletcher LD, Berger LC, Tidwell RR, Dykstra CC. Gene 129 307-308 (1993)
  253. Distribution of distances between the tryptophan and the N-terminal residue of melittin in its complex with calmodulin, troponin C, and phospholipids. Lakowicz JR, Gryczynski I, Laczko G, Wiczk W, Johnson ML. Protein Sci. 3 628-637 (1994)
  254. Fas apoptosis inhibitory molecule contains a novel beta-sandwich in contact with a partially ordered domain. Hemond M, Rothstein TL, Wagner G. J. Mol. Biol. 386 1024-1037 (2009)
  255. Mutations in the N- and D-helices of the N-domain of troponin C affect the C-domain and regulatory function. Smith L, Greenfield NJ, Hitchcock-DeGregori SE. Biophys. J. 76 400-408 (1999)
  256. Primary structure of a gene-sized DNA encoding calmodulin from the hypotrichous ciliate Stylonychia lemnae. Gaunitz C, Witte H, Gaunitz F. Gene 119 191-198 (1992)
  257. Regulation of K-Ras4B Membrane Binding by Calmodulin. Sperlich B, Kapoor S, Waldmann H, Winter R, Weise K. Biophys. J. 111 113-122 (2016)
  258. Structural plasticity of calmodulin on the surface of CaF2 nanoparticles preserves its biological function. Astegno A, Maresi E, Marino V, Dominici P, Pedroni M, Piccinelli F, Dell'Orco D. Nanoscale 6 15037-15047 (2014)
  259. Structure of Guanylyl Cyclase Activator Protein 1 (GCAP1) Mutant V77E in a Ca2+-free/Mg2+-bound Activator State. Lim S, Peshenko IV, Olshevskaya EV, Dizhoor AM, Ames JB. J. Biol. Chem. 291 4429-4441 (2016)
  260. The stability and dynamics of ribosomal protein L9: investigations of a molecular strut by amide proton exchange and circular dichroism. Lillemoen J, Cameron CS, Hoffman DW. J. Mol. Biol. 268 482-493 (1997)
  261. A 1H NMR study of a ternary peptide complex that mimics the interaction between troponin C and troponin I. Slupsky CM, Shaw GS, Campbell AP, Sykes BD. Protein Sci. 1 1595-1603 (1992)
  262. Conformational analysis of the leukocyte-specific EF-hand protein p65/L-plastin by X-ray scattering in solution. Shinomiya H, Shinjo M, Fengzhi L, Asano Y, Kihara H. Biophys. Chem. 131 36-42 (2007)
  263. Mannan-binding lectin (MBL)-associated plasma protein present in human urine inhibits calcium oxalate crystal growth. Kang I, Kim JI, Chang SG, Lee SJ, Choi SL, Ha J, Kim SS. FEBS Lett. 462 89-93 (1999)
  264. Molecular cloning of a cDNA encoding calmodulin from Neurospora crassa. Capelli N, van Tuinen D, Ortega Perez R, Arrighi JF, Turian G. FEBS Lett. 321 63-68 (1993)
  265. The linker of des-Glu84-calmodulin is bent. Raghunathan S, Chandross RJ, Cheng BP, Persechini A, Sobottka SE, Kretsinger RH. Proc. Natl. Acad. Sci. U.S.A. 90 6869-6873 (1993)
  266. Al(3+) interaction sites of calmodulin and the Al(3+) effect on target binding of calmodulin. Kurita H, Nakatomi A, Shimahara H, Yazawa M, Ohki SY. Biochem. Biophys. Res. Commun. 333 1060-1065 (2005)
  267. Building blocks, hinge-bending motions and protein topology. Sinha N, Tsa CJ, Nussinov R. J. Biomol. Struct. Dyn. 19 369-380 (2001)
  268. Calcium-induced conformational changes in the regulatory domain of the human mitochondrial ATP-Mg/Pi carrier. Harborne SP, Ruprecht JJ, Kunji ER. Biochim. Biophys. Acta 1847 1245-1253 (2015)
  269. Carbon-13 NMR studies of the lysine side chains of calmodulin and its proteolytic fragments. Huque ME, Vogel HJ. J. Protein Chem. 12 695-707 (1993)
  270. Characterization of apo and partially saturated states of calerythrin, an EF-hand protein from S. erythraea: a molten globule when deprived of Ca(2+). Aitio H, Laakso T, Pihlajamaa T, Torkkeli M, Kilpeläinen I, Drakenberg T, Serimaa R, Annila A. Protein Sci. 10 74-82 (2001)
  271. Comparison of negative and positive ion electrospray ionization mass spectra of calmodulin and its complex with trifluoperazine. Watt SJ, Oakley A, Sheil MM, Beck JL. Rapid Commun. Mass Spectrom. 19 2123-2130 (2005)
  272. Crystal structure of human calmodulin-like protein: insights into its functional role. Han BG, Han M, Sui H, Yaswen P, Walian PJ, Jap BK. FEBS Lett. 521 24-30 (2002)
  273. Differential isotype labeling strategy for determining the structure of myristoylated recoverin by NMR spectroscopy. Tanaka T, Ames JB, Kainosho M, Stryer L, Ikura M. J. Biomol. NMR 11 135-152 (1998)
  274. FRET-FCS detection of intralobe dynamics in calmodulin. Price ES, Aleksiejew M, Johnson CK. J Phys Chem B 115 9320-9326 (2011)
  275. Hydrophobic Peptides Affect Binding of Calmodulin and Ca as Explored by H/D Amide Exchange and Mass Spectrometry. Sperry JB, Huang RY, Zhu MM, Rempel DL, Gross ML. Int J Mass Spectrom 302 85-92 (2011)
  276. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin. Springer TI, Goebel E, Hariraju D, Finley NL. Biochem. Biophys. Res. Commun. 453 43-48 (2014)
  277. Polymorphism of the epidermal growth factor receptor extracellular ligand binding domain: the dimer interface depends on domain stabilization. Zhang Z, Wriggers W. Biochemistry 50 2144-2156 (2011)
  278. Structural requirements for N-trimethylation of lysine 115 of calmodulin. Cobb JA, Roberts DM. J. Biol. Chem. 275 18969-18975 (2000)
  279. An investigation of the dynamics of ribosomal protein L9 using heteronuclear NMR relaxation measurements. Lillemoen J, Hoffman DW. J. Mol. Biol. 281 539-551 (1998)
  280. Bicyclic peptides as models of calcium binding sites: synthesis and conformation of a homodetic undecapeptide. Oliva R, Falcigno L, D'Auria G, Saviano M, Paolillo L, Ansanelli G, Zanotti G. Biopolymers 53 581-595 (2000)
  281. Binding orientation and specificity of calmodulin to rat olfactory cyclic nucleotide-gated ion channel. Irene D, Huang JW, Chung TY, Li FY, Tzen JT, Lin TH, Chyan CL. J. Biomol. Struct. Dyn. 31 414-425 (2013)
  282. Crystallographic snapshots of initial steps in the collapse of the calmodulin central helix. Kursula P. Acta Crystallogr. D Biol. Crystallogr. 70 24-30 (2014)
  283. Different Ca²⁺-sensitivities between the EF-hands of T- and L-plastins. Miyakawa T, Shinomiya H, Yumoto F, Miyauchi Y, Tanaka H, Ojima T, Kato YS, Tanokura M. Biochem. Biophys. Res. Commun. 429 137-141 (2012)
  284. Functional restoration of the Ca2+-myristoyl switch in a recoverin mutant. Senin II, Vaganova SA, Weiergräber OH, Ergorov NS, Philippov PP, Koch KW. J. Mol. Biol. 330 409-418 (2003)
  285. Gain-of-function mutations in a human calmodulin-like protein identify residues critical for calmodulin action in yeast. Harris E, Yaswen P, Thorner J. Mol. Gen. Genet. 247 137-147 (1995)
  286. Global and local mobility of apocalmodulin monitored through fast-field cycling relaxometry. Borsi V, Luchinat C, Parigi G. Biophys. J. 97 1765-1771 (2009)
  287. Investigation on the binding of TNS to centrin, an EF-hand protein. Wang ZJ, Ren LX, Zhao YQ, Li GT, Duan L, Liang AH, Yang BS. Spectrochim Acta A Mol Biomol Spectrosc 70 892-897 (2008)
  288. Modified helix-loop-helix motifs of calmodulin--The influence of the exchange of helical regions on calcium-binding affinity. Sharma Y, Chandani S, Sukhaswami MB, Uma L, Balasubramanian D, Fairwell T. Eur. J. Biochem. 243 42-48 (1997)
  289. Molecular dynamics simulations of a calmodulin-peptide complex in solution. Yang C, Kuczera K. J. Biomol. Struct. Dyn. 20 179-197 (2002)
  290. Structural genomics of caenorhabditis elegans: crystal structure of calmodulin. Symersky J, Lin G, Li S, Qiu S, Carson M, Schormann N, Luo M. Proteins 53 947-949 (2003)
  291. Subtle pH differences trigger single residue motions for moderating conformations of calmodulin. Atilgan AR, Aykut AO, Atilgan C. J Chem Phys 135 155102 (2011)
  292. Thermodynamics of Calcium binding to the Calmodulin N-terminal domain to evaluate site-specific affinity constants and cooperativity. Beccia MR, Sauge-Merle S, Lemaire D, Brémond N, Pardoux R, Blangy S, Guilbaud P, Berthomieu C. J. Biol. Inorg. Chem. 20 905-919 (2015)
  293. A flexible triangulation method to describe the solvent-accessible surface of biopolymers. Juffer AH, Vogel HJ. J. Comput. Aided Mol. Des. 12 289-299 (1998)
  294. Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor. Shen M, Zhang N, Zheng S, Zhang WB, Zhang HM, Lu Z, Su QP, Sun Y, Ye K, Li XD. Proc. Natl. Acad. Sci. U.S.A. 113 E5812-E5820 (2016)
  295. Electric charge balance mechanism of extended soluble proteins. Uchikoga N, Takahashi SY, Ke R, Sonoyama M, Mitaku S. Protein Sci. 14 74-80 (2005)
  296. Förster resonance energy transfer studies of calmodulin produced by native protein ligation reveal inter-domain electrostatic repulsion. Hellstrand E, Kukora S, Shuman CF, Steenbergen S, Thulin E, Kohli A, Krouse B, Linse S, Åkerfeldt KS. FEBS J. 280 2675-2687 (2013)
  297. Heme-CO as a probe of the conformational state of calmodulin. Marden MC, Leclerc L, Poyart C. FEBS Lett. 273 188-190 (1990)
  298. Human S100b protein: formation of a tetramer from synthetic calcium-binding site peptides. Donaldson C, Barber KR, Kay CM, Shaw GS. Protein Sci 4 765-772 (1995)
  299. Isotope-labeled vibrational circular dichroism studies of calmodulin and its interactions with ligands. Pandyra AA, Yamniuk AP, Andrushchenko VV, Wieser H, Vogel HJ. Biopolymers 79 231-237 (2005)
  300. Molecular dynamics simulation of the calmodulin-trifluoperazine complex in aqueous solution. Yamaotsu N, Suga M, Hirono S. Biopolymers 58 410-421 (2001)
  301. Movement of calmodulin between cells in the ovary and embryo of drosophila. Andruss BF, Bolduc C, Beckingham K. Genesis 38 93-103 (2004)
  302. NMR investigation and secondary structure of domains I and II of rat brain calbindin D28k (1-93). Klaus W, Grzesiek S, Labhardt AM, Buchwald P, Hunziker W, Gross MD, Kallick DA. Eur. J. Biochem. 262 933-938 (1999)
  303. Prediction of three dimensional structure of calmodulin. Chen K, Ruan J, Kurgan LA. Protein J. 25 57-70 (2006)
  304. Structure of the Branched-chain Amino Acid and GTP-sensing Global Regulator, CodY, from Bacillus subtilis. Levdikov VM, Blagova E, Young VL, Belitsky BR, Lebedev A, Sonenshein AL, Wilkinson AJ. J. Biol. Chem. 292 2714-2728 (2017)
  305. Surface dynamics in allosteric regulation of protein-protein interactions: modulation of calmodulin functions by Ca2+. Kuttner YY, Nagar T, Engel S. PLoS Comput. Biol. 9 e1003028 (2013)
  306. The role of glycine (residue 89) in the central helix of EF-hand protein troponin-C exposed following amino-terminal alpha-helix deletion. Ding XL, Akella AB, Su H, Gulati J. Protein Sci. 3 2089-2096 (1994)
  307. Two distinct calmodulin binding sites in the third intracellular loop and carboxyl tail of angiotensin II (AT(1A)) receptor. Zhang R, Liu Z, Qu Y, Xu Y, Yang Q. PLoS ONE 8 e65266 (2013)
  308. A Single Approach Reveals the Composite Conformational Changes, Order of Binding, and Affinities for Calcium Binding to Calmodulin. Liu XR, Zhang MM, Rempel DL, Gross ML. Anal Chem 91 5508-5512 (2019)
  309. Cleavage of phosphorylase kinase and calcium-free calmodulin by HIV-1 protease. Daube H, Billich A, Mann K, Schramm HJ. Biochem. Biophys. Res. Commun. 178 892-898 (1991)
  310. Engineered lanthanide-binding metallohomeodomains: designing folded chimeras by modular turn substitution. Lim S, Franklin SJ. Protein Sci. 15 2159-2165 (2006)
  311. Initial kinetics of the inactivation of calmodulin by the fungal toxin ophiobolin A. Au TK, S H Chick W, Leung PC. Int. J. Biochem. Cell Biol. 32 1173-1182 (2000)
  312. Lobe-specific calcium binding in calmodulin regulates endothelial nitric oxide synthase activation. Wu PR, Kuo CC, Yet SF, Liou JY, Wu KK, Chen PF. PLoS ONE 7 e39851 (2012)
  313. Performance comparison of computational methods for modeling alpha-helical structures. Lupan A, Kun AZ, Carrascoza F, Silaghi-Dumitrescu R. J Mol Model 19 193-203 (2013)
  314. Resolved Structural States of Calmodulin in Regulation of Skeletal Muscle Calcium Release. McCarthy MR, Savich Y, Cornea RL, Thomas DD. Biophys J 118 1090-1100 (2020)
  315. Single molecule observation of hard-soft-acid-base (HSAB) interaction in engineered Mycobacterium smegmatis porin A (MspA) nanopores. Wang S, Cao J, Jia W, Guo W, Yan S, Wang Y, Zhang P, Chen HY, Huang S. Chem Sci 11 879-887 (2019)
  316. Structural characterization by nuclear magnetic resonance spectroscopy of a genetically engineered high-affinity calmodulin-binding peptide derived from Bordetella pertussis adenylate cyclase. Munier H, Bouhss A, Gilles AM, Palibroda N, Bârzu O, Mispelter J, Craescu CT. Arch. Biochem. Biophys. 320 224-235 (1995)
  317. Variations at the semiconserved glycine in the IQ domain consensus sequence have a major impact on Ca2+-dependent switching in calmodulin-IQ domain complexes. Black DJ, Persechini A. Biochemistry 49 78-83 (2010)
  318. Assessing predictions on fitness effects of missense variants in calmodulin. Zhang J, Kinch LN, Cong Q, Katsonis P, Lichtarge O, Savojardo C, Babbi G, Martelli PL, Capriotti E, Casadio R, Garg A, Pal D, Weile J, Sun S, Verby M, Roth FP, Grishin NV. Hum Mutat 40 1463-1473 (2019)
  319. Calcium-dependent conformational transition of calmodulin determined by Fourier transform infrared spectroscopy. Yu T, Wu G, Yang H, Wang J, Yu S. Int. J. Biol. Macromol. 56 57-61 (2013)
  320. Calcium-dependent energetics of calmodulin domain interactions with regulatory regions of the Ryanodine Receptor Type 1 (RyR1). Newman RA, Sorensen BR, Kilpatrick AM, Shea MA. Biophys. Chem. 193-194 35-49 (2014)
  321. Calmodulin interacts with Rab3D and modulates osteoclastic bone resorption. Zhu S, Chim SM, Cheng T, Ang E, Ng B, Lim B, Chen K, Qiu H, Tickner J, Xu H, Pavlos N, Xu J. Sci Rep 6 37963 (2016)
  322. Engineering strontium binding affinity in an EF-hand motif: a quantum chemical and molecular dynamics study. Rinaldo D, Vita C, Field MJ. J. Biomol. Struct. Dyn. 22 281-297 (2004)
  323. Exploring the natural conformational changes of the C-terminal domain of calmodulin. Elezgaray J, Marcou G, Sanejouand YH. Phys Rev E Stat Nonlin Soft Matter Phys 66 031908 (2002)
  324. Free-energy simulations of the oxidation of c-terminal methionines in calmodulin. Jas GS, Kuczera K. Proteins 48 257-268 (2002)
  325. Methyl dynamics of a Ca2+-calmodulin-peptide complex from NMR/SRLS. Shapiro YE, Polimeno A, Freed JH, Meirovitch E. J Phys Chem B 115 354-365 (2011)
  326. Modeling the mutational effects on calmodulin structure: prediction of alteration in the amino acid interactions. Rashid A, Khurshid R, Begum M, Gul-e-Raana, Latif M, Salim A. Biochem. Biophys. Res. Commun. 317 363-369 (2004)
  327. Modulating the affinity and the selectivity of engineered calmodulin EF-Hand peptides for lanthanides. Clainche LL, Figuet M, Montjardet-Bas V, Blanchard S, Vita C. Biotechnol. Bioeng. 95 29-36 (2006)
  328. Mutation of the pseudo-EF-hand of calbindin D9k into a normal EF-hand. Biophysical studies. Johansson C, Brodin P, Grundström T, Forsén S, Drakenberg T. Eur. J. Biochem. 202 1283-1290 (1991)
  329. NMR hawk-eyed view of AlphaFold2 structures. Zweckstetter M. Protein Sci 30 2333-2337 (2021)
  330. Non-Additive Effects of Binding Site Mutations in Calmodulin. Edington SC, Halling DB, Bennett SM, Middendorf TR, Aldrich RW, Baiz CR. Biochemistry 58 2730-2739 (2019)
  331. Optimization and Corroboration of the Regulatory Pathway of p42.3 Protein in the Pathogenesis of Gastric Carcinoma. Hao Y, Fan T, Nan K. Comput Math Methods Med 2015 683679 (2015)
  332. Pivot residue: an analysis of domain motion in proteins. Yan B, Zhang W, Ding J, Arnold E. J Protein Chem 18 807-811 (1999)
  333. Primary mutations in calmodulin prevent activation of the Ca(++)-dependent Na+ channel in Paramecium. Ling KY, Preston RR, Burns R, Kink JA, Saimi Y, Kung C. Proteins 12 365-371 (1992)
  334. Roles of the C-terminal residues of calmodulin in structure and function. Kitagawa C, Nakatomi A, Hwang D, Osaka I, Fujimori H, Kawasaki H, Arakawa R, Murakami Y, Ohki S. Biophysics (Nagoya-shi) 7 35-49 (2011)
  335. Size-dependent impact of CNTs on dynamic properties of calmodulin. Gao J, Wang L, Kang SG, Zhao L, Ji M, Chen C, Zhao Y, Zhou R, Li J. Nanoscale 6 12828-12837 (2014)
  336. Structural elements within the methylation loop (residues 112-117) and EF hands III and IV of calmodulin are required for Lys(115) trimethylation. Cobb JA, Han CH, Wills DM, Roberts DM. Biochem. J. 340 ( Pt 2) 417-424 (1999)
  337. Structural insights into activation of the retinal L-type Ca²⁺ channel (Cav1.4) by Ca²⁺-binding protein 4 (CaBP4). Park S, Li C, Haeseleer F, Palczewski K, Ames JB. J. Biol. Chem. 289 31262-31273 (2014)
  338. Structure of the ACF7 EF-Hand-GAR Module and Delineation of Microtubule Binding Determinants. Lane TR, Fuchs E, Slep KC. Structure 25 1130-1138.e6 (2017)
  339. Synthesis and properties of some novel anti-calmodulin drugs. Sakai TT, Krishna NR. Bioorg. Med. Chem. 7 1559-1565 (1999)
  340. The CaMKII inhibitor KN93-calmodulin interaction and implications for calmodulin tuning of NaV1.5 and RyR2 function. Johnson CN, Pattanayek R, Potet F, Rebbeck RT, Blackwell DJ, Nikolaienko R, Sequeira V, Le Meur R, Radwański PB, Davis JP, Zima AV, Cornea RL, Damo SM, Györke S, George AL, Knollmann BC. Cell Calcium 82 102063 (2019)
  341. The interaction of auramine O with calmodulin: location of the binding site on the connecting strand. Steiner RF, Albaugh S, Nenortas E, Norris L. Biopolymers 32 73-83 (1992)
  342. cDNA, genomic sequence cloning and overexpression of ribosomal protein gene L9 (rpL9) of the giant panda (Ailuropoda melanoleuca). Hou WR, Hou YL, Wu GF, Song Y, Su XL, Sun B, Li J. Genet Mol Res 10 1576-1588 (2011)
  343. A model for the calmodulin-peptide complex based on the troponin C crystal packing and its similarity to the NMR structure of the calmodulin-myosin light chain kinase peptide complex. Sekharudu CY, Sundaralingam M. Protein Sci. 2 620-625 (1993)
  344. Altered methylation substrate kinetics and calcium binding of a calmodulin with a Val136-->Thr substitution. Han CH, Roberts DM. Eur. J. Biochem. 244 904-912 (1997)
  345. Atomic force microscopy study of the conformational change in immobilized calmodulin. Trajkovic S, Zhang X, Daunert S, Cai Y. Langmuir 27 10793-10799 (2011)
  346. Characterization and identification of calmodulin and calmodulin binding proteins in hemocyte of the black tiger shrimp (Penaeus monodon). Sengprasert P, Amparyup P, Tassanakajorn A, Wongpanya R. Dev. Comp. Immunol. 50 87-97 (2015)
  347. Competitive tuning: Competition's role in setting the frequency-dependence of Ca2+-dependent proteins. Romano DR, Pharris MC, Patel NM, Kinzer-Ursem TL. PLoS Comput. Biol. 13 e1005820 (2017)
  348. Conformational and binding studies on peptides related to domains I and III of calmodulin. Foffani MT, Battistutta R, Calderan A, Ruzza P, Borin G, Peggion E. Biopolymers 31 671-681 (1991)
  349. Crystal Structure of Okadaic Acid Binding Protein 2.1: A Sponge Protein Implicated in Cytotoxin Accumulation. Ehara H, Makino M, Kodama K, Konoki K, Ito T, Sekine S, Fukuzawa S, Yokoyama S, Tachibana K. Chembiochem 16 1435-1439 (2015)
  350. Electron paramagnetic resonance spectroscopy of nitroxide-labeled calmodulin. Bowman PB, Puett D. Protein J. 33 267-277 (2014)
  351. Fluorescence polarization assay for calmodulin binding to plasma membrane Ca2+-ATPase: dependence on enzyme and Ca2+ concentrations. Liyanage MR, Zaidi A, Johnson CK. Anal. Biochem. 385 1-6 (2009)
  352. Functional implications of the unusual amino acid sequence of the regulatory light chain of Acanthamoeba castellanii myosin-II. Kobayashi T, Zot HG, Pollard TD, Collins JH. J. Muscle Res. Cell. Motil. 12 553-559 (1991)
  353. Goat testis calmodulin: purification and physicochemical characterization. Bandyopadhyay S, Ghosh SK. J. Protein Chem. 9 603-611 (1990)
  354. Heme as an optical probe for studying the interactions between calmodulin and the Ca(2+)-ATPase of the human erythrocyte membrane. Zaidi A, Leclerc-L'Hostis E, Marden MC, Poyart C, Leclerc L. Biochim. Biophys. Acta 1236 114-118 (1995)
  355. High performance capillary electrophoresis of calmodulin. Chan KF, Chen WH. Electrophoresis 11 15-18 (1990)
  356. Ligand-linked stability of mutants of the C-domain of calmodulin. Hobson KF, Housley NA, Pedigo S. Biophys. Chem. 114 43-52 (2005)
  357. MD simulations of anthrax edema factor: calmodulin complexes with mutations in the edema factor "switch a" region and docking of 3'-deoxy ATP into the adenylyl cyclase active site of wild-type and mutant edema factor variants. Zhao J, Roy SA, Nelson DJ. J. Biomol. Struct. Dyn. 21 159-170 (2003)
  358. Mapping the sevoflurane-binding sites of calmodulin. Brath U, Lau K, Van Petegem F, Erdélyi M. Pharmacol Res Perspect 2 5 (2014)
  359. Mass Spectrometric Analysis of Surface-Exposed Regions in the Hexadecameric Phosphorylase Kinase Complex. Rimmer MA, Artigues A, Nadeau OW, Villar MT, Vasquez-Montes V, Carlson GM. Biochemistry 54 6887-6895 (2015)
  360. Metal-free and Ca2+-bound structures of a multidomain EF-hand protein, CBP40, from the lower eukaryote Physarum polycephalum. Iwasaki W, Sasaki H, Nakamura A, Kohama K, Tanokura M. Structure 11 75-85 (2003)
  361. Monitoring conformational changes in protein complexes using chemical cross-linking and Fourier transform ion cyclotron resonance mass spectrometry: the effect of calcium binding on the calmodulin-melittin complex. Novak P, Havlicek V, Derrick PJ, Beran KA, Bashir S, Giannakopulos AE. Eur J Mass Spectrom (Chichester) 13 281-290 (2007)
  362. POWAINDv1.0: A Program for Protein-Water Interactions Determination. Banerjee S, Mondal B, Islam RNU, Gupta PSS, Mitra D, Bandyopadhyay A. Bioinformation 14 530-539 (2018)
  363. Peptide and metal ion-dependent association of isolated helix-loop-helix calcium binding domains: studies of thrombic fragments of calmodulin. Brokx RD, Vogel HJ. Protein Sci. 9 964-975 (2000)
  364. Protein fishing using magnetic nanobeads containing calmodulin site-specifically immobilized via an azido group. Ikeda-Boku A, Kondo K, Ohno S, Yoshida E, Yokogawa T, Hayashi N, Nishikawa K. J. Biochem. 154 159-165 (2013)
  365. Spin-labeling studies of the conformation of the Ca(2+)-regulatory protein calmodulin in solution and bound to the membrane skeleton in erythrocyte ghosts: implications to transmembrane signaling. Yacko MA, Butterfield DA. Biophys. J. 63 317-322 (1992)
  366. The exchanged EF-hands in calmodulin and troponin C chimeras impair the Ca²⁺-induced hydrophobicity and alter the interaction with Orai1: a spectroscopic, thermodynamic and kinetic study. Jensen D, Reynolds N, Yang YP, Shakya S, Wang ZQ, Stuehr DJ, Wei CC. BMC Biochem. 16 6 (2015)
  367. Two synthetic peptides corresponding to the proximal heme-binding domain and CD1 domain of human endothelial nitric-oxide synthase inhibit the oxygenase activity by interacting with CaM. Chen PF, Wu KK. Arch. Biochem. Biophys. 486 132-140 (2009)
  368. A calbindin D9k mutant containing a novel structural extension: 1H nuclear magnetic resonance studies. Groves P, Linse S, Thulin E, Forsén S. Protein Sci. 6 323-330 (1997)
  369. A joint 2D NMR and theoretical investigation of Ca2+ binding loops III and IV of calmodulin. Gresh N, Guittet E, Lallemand JY. J. Biomol. Struct. Dyn. 7 1003-1018 (1990)
  370. A synthetic peptide representing residues 7 to 21 of human luteinizing hormone beta-subunit binds calcium, facilitates calcium uptake by liposomes and possesses sequence similarity to calcium-binding domains of calmodulin. Grasso P. Regul. Pept. 65 109-114 (1996)
  371. Asymmetry of calmodulin revealed by peptide binding. Leclerc E, Leclerc L, Marden MC. J Fluoresc 3 45-49 (1993)
  372. Binding symmetry of extracellular divalent cations to conduction pore studied using tandem dimers of a CNG channel. Kwon RJ, Ha TS, Kim W, Park CS. Biochem. Biophys. Res. Commun. 298 478-485 (2002)
  373. Biophysical analysis of the dynamics of calmodulin interactions with neurogranin and Ca2+ /calmodulin-dependent kinase II. Seeger C, Talibov VO, Danielson UH. J. Mol. Recognit. 30 (2017)
  374. Ca2+-independent activity of nitric oxide synthase. Lee SJ, Beckingham K, Stull JT. Biochem. Biophys. Res. Commun. 284 526-530 (2001)
  375. Calmodulin binding to alpha 1-purothionin: solution binding and modeling of the complex. Rao U, Teeter MM, Erickson-Viitanen S, DeGrado WF. Proteins 14 127-138 (1992)
  376. Chemical shift assignments of calmodulin under standard conditions at neutral pH. Bej A, Ames JB. Biomol NMR Assign 16 213-218 (2022)
  377. Comparison of Ca(II), Cd(II), and Mg(II) titrations of tyrosine-99 spin-labeled bovine calmodulin. You GF, Buccigross JM, Nelson DJ. J. Inorg. Biochem. 38 117-125 (1990)
  378. Computational Insights into the Interactions between Calmodulin and the c/nSH2 Domains of p85α Regulatory Subunit of PI3Kα: Implication for PI3Kα Activation by Calmodulin. Ni D, Liu D, Zhang J, Lu S. Int J Mol Sci 19 (2018)
  379. Crystal structures of human CaMKIα reveal insights into the regulation mechanism of CaMKI. Zha M, Zhong C, Ou Y, Han L, Wang J, Ding J. PLoS ONE 7 e44828 (2012)
  380. Crystallization and preliminary X-ray investigation of a sarcoplasmic calcium-binding protein from amphioxus. Cook WJ, Babu YS, Cox JA. J. Mol. Biol. 221 1071-1073 (1991)
  381. Crystallization and preliminary X-ray investigation of the recombinant Trypanosoma brucei rhodesiense calmodulin. el-Sayed NM, Harkins PC, Fox RO, Anderson K, Patton CL. Proteins 21 354-357 (1995)
  382. Crystallization and preliminary diffraction analysis of Ca(2+)-calmodulin-drug and apocalmodulin-drug complexes. Vertessy BG, Böcskei Z, Harmath V, Náray-Szabó G, Ovádi J. Proteins 28 131-134 (1997)
  383. Delineating the Molecular Basis of the Calmodulin‒bMunc13-2 Interaction by Cross-Linking/Mass Spectrometry-Evidence for a Novel CaM Binding Motif in bMunc13-2. Piotrowski C, Moretti R, Ihling CH, Haedicke A, Liepold T, Lipstein N, Meiler J, Jahn O, Sinz A. Cells 9 (2020)
  384. Does helix dipole have any role in binding metal ions in protein structures? Chakrabarti P. Arch. Biochem. Biophys. 290 387-390 (1991)
  385. Effects of calmodulin antagonists on antibody binding to calmodulin. Distinct conformers of calmodulin induced by the binding of drugs. Orosz F, Liliom K, Barkhudaryan NA, Horváth L, Ovádi J. Biochem. J. 284 ( Pt 3) 803-808 (1992)
  386. Impact of graphyne on structural and dynamical properties of calmodulin. Feng M, Bell DR, Luo J, Zhou R. Phys Chem Chem Phys 19 10187-10195 (2017)
  387. Met125 is essential for maintaining the structural integrity of calmodulin's C-terminal domain. Nelson SED, Weber DK, Rebbeck RT, Cornea RL, Veglia G, Thomas DD. Sci Rep 10 21320 (2020)
  388. N-terminal and C-terminal domains of calmodulin mediate FADD and TRADD interaction. Papoff G, Trivieri N, Marsilio S, Crielesi R, Lalli C, Castellani L, Balog EM, Ruberti G. PLoS ONE 10 e0116251 (2015)
  389. Nickel reduces calcium dependent dimerization in neural cadherin. Dukes MP, Rowe RK, Harvey T, Rangel W, Pedigo S. Metallomics 11 475-482 (2019)
  390. Phosphorylation of calmodulin by myosin light chain kinase is altered by exchange or duplication of EF-hand pairs. Davis HW. Biochem. Biophys. Res. Commun. 236 702-705 (1997)
  391. Residue-residue interactions regulating the Ca2+-induced EF-hand conformation changes in calmodulin. Shimoyama H, Takeda-Shitaka M. J. Biochem. 162 259-270 (2017)
  392. Single-Molecule FRET States, Conformational Interchange, and Conformational Selection by Dye Labels in Calmodulin. DeVore MS, Braimah A, Benson DR, Johnson CK. J Phys Chem B 120 4357-4364 (2016)
  393. Specific conformation and Ca(2+)-binding mode of yeast calmodulin: insight into evolutionary development. Nakashima K, Ishida H, Nakatomi A, Yazawa M. J. Biochem. 152 27-35 (2012)
  394. Structural basis for prokaryotic calcium-mediated regulation by a Streptomyces coelicolor calcium binding protein. Zhao X, Pang H, Wang S, Zhou W, Yang K, Bartlam M. Protein Cell 1 771-779 (2010)
  395. Synthesis and analysis of the enantiomers of calmidazolium, and a 1H NMR demonstration of a chiral interaction with calmodulin. Edwards AJ, Sweeney PJ, Reid DG, Walker JM, Elshourbagy N, Egwuagu CE, Young JF, Patton CL. Chirality 8 545-550 (1996)
  396. The 'Shape-Shifter' Peptide from the Disulphide Isomerase PmScsC Shows Context-Dependent Conformational Preferences. Smith LJ, Green CW, Redfield C. Biomolecules 11 642 (2021)
  397. The Crystal Structure of Calmodulin Bound to the Cardiac Ryanodine Receptor (RyR2) at Residues Phe4246-Val4271 Reveals a Fifth Calcium Binding Site. Yu Q, Anderson DE, Kaur R, Fisher AJ, Ames JB. Biochemistry 60 1088-1096 (2021)
  398. The structure of the large regulatory α subunit of phosphorylase kinase examined by modeling and hydrogen-deuterium exchange. Rimmer MA, Nadeau OW, Yang J, Artigues A, Zhang Y, Carlson GM. Protein Sci. 27 472-484 (2018)
  399. What determines the degree of compactness of a calcium-binding protein? Mouawad L, Isvoran A, Quiniou E, Craescu CT. FEBS J. 276 1082-1093 (2009)
  400. A structural comparison of 'real' and 'model' calmodulin clarified allosteric interactions regulating domain motion. Shimoyama H. J. Biomol. Struct. Dyn. 37 1567-1581 (2019)
  401. Allostery in Orai1 binding to calmodulin revealed from conformational thermodynamics. Maganti L, Dutta S, Ghosh M, Chakrabarti J. J. Biomol. Struct. Dyn. 37 493-502 (2019)
  402. An EF-handed Ca(2+)-binding protein of Chinese liver fluke Clonorchis sinensis. Chung EJ, Kim TY, Hong SJ, Yong TS. Parasitol. Res. 112 4121-4128 (2013)
  403. Binding and backbone dynamics of protein under topological constraint: calmodulin as a model system. Katyal P, Yang Y, Fu YJ, Iandosca J, Vinogradova O, Lin Y. Chem. Commun. (Camb.) 54 8917-8920 (2018)
  404. Ca2+-dependent regulation of sodium channels NaV1.4 and NaV1.5 is controlled by the post-IQ motif. Yoder JB, Ben-Johny M, Farinelli F, Srinivasan L, Shoemaker SR, Tomaselli GF, Gabelli SB, Amzel LM. Nat Commun 10 1514 (2019)
  405. Calmodulin acts as a state-dependent switch to control a cardiac potassium channel opening. Kang PW, Westerlund AM, Shi J, White KM, Dou AK, Cui AH, Silva JR, Delemotte L, Cui J. Sci Adv 6 (2020)
  406. Calmodulin complexes with brain and muscle creatine kinase peptides. Sprenger J, Trifan A, Patel N, Vanderbeck A, Bredfelt J, Tajkhorshid E, Rowlett R, Lo Leggio L, Åkerfeldt KS, Linse S. Curr Res Struct Biol 3 121-132 (2021)
  407. Calmodulin extracts the Ras family protein RalA from lipid bilayers by engagement with two membrane-targeting motifs. Chamberlain SG, Gohlke A, Shafiq A, Squires IJ, Owen D, Mott HR. Proc Natl Acad Sci U S A 118 e2104219118 (2021)
  408. Chemical shift assignments of calmodulin bound to a C-terminal site (residues 1120-1147) in the β-subunit of a retinal cyclic nucleotide-gated channel (CNGB1). Bej A, Ames JB. Biomol NMR Assign 16 337-341 (2022)
  409. Chemical shift assignments of calmodulin bound to the GluN1 C0 domain (residues 841-865) of the NMDA receptor. Bej A, Ames JB. Biomol NMR Assign 17 61-65 (2023)
  410. Chemical shift assignments of calmodulin bound to the β-subunit of a retinal cyclic nucleotide-gated channel (CNGB1). Bej A, Ames JB. Biomol NMR Assign 16 147-151 (2022)
  411. Computer programming and biomolecular structure studies: A step beyond internet bioinformatics. Likić VA. Biochem Mol Biol Educ 34 1-4 (2006)
  412. Coordination structures of Mg2+ and Ca2+ in three types of tobacco calmodulins in solution: Fourier-transform infrared spectroscopic studies of side-chain COO- groups. Suzuki N, Imai LF, Kato Y, Nagata K, Ohashi Y, Kuchitsu K, Tanokura M, Sakamoto A, Nara M, Nakano M, Yonezawa N. Biopolymers 99 472-483 (2013)
  413. Crystallization and preliminary X-ray diffraction studies of the calcium-binding protein CalD from Streptomyces coelicolor. Zhao X, Wang S, Pang H, Yang K, Bartlam M. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 816-818 (2008)
  414. Heme-CO binding to tryptophan-containing calmodulin mutants. Leclerc L'Hostis E, Leclerc L, Haiech J, Poyart C, Marden MC. Biochim. Biophys. Acta 1313 209-216 (1996)
  415. Human disease-associated calmodulin mutations alter calcineurin function through multiple mechanisms. Williams RB, Alam Afsar MN, Tikunova S, Kou Y, Fang X, Somarathne RP, Gyawu RF, Knotts GM, Agee TA, Garcia SA, Losordo LD, Fitzkee NC, Kekenes-Huskey PM, Davis JP, Johnson CN. Cell Calcium 113 102752 (2023)
  416. Illuminating Brain Activities with Fluorescent Protein-Based Biosensors. Chen Z, Truong TM, Ai HW. Chemosensors (Basel) 5 (2017)
  417. Immobilization of azide-functionalized proteins to micro- and nanoparticles directly from cell lysate. Saini G, Parasa MK, Clayton KN, Fraseur JG, Bolton SC, Lin KP, Wereley ST, Kinzer-Ursem TL. Mikrochim Acta 191 46 (2023)
  418. Inter-Site Cooperativity of Calmodulin N-Terminal Domain and Phosphorylation Synergistically Improve the Affinity and Selectivity for Uranyl. Beccia MR, Sauge-Merle S, Brémond N, Lemaire D, Henri P, Battesti C, Guilbaud P, Crouzy S, Berthomieu C. Biomolecules 12 1703 (2022)
  419. Interdomain Dynamics via Paramagnetic NMR on the Highly Flexible Complex Calmodulin/Munc13-1. Karschin N, Becker S, Griesinger C. J Am Chem Soc 144 17041-17053 (2022)
  420. Markov state modelling reveals heterogeneous drug-inhibition mechanism of Calmodulin. Westerlund AM, Sridhar A, Dahl L, Andersson A, Bodnar AY, Delemotte L. PLoS Comput Biol 18 e1010583 (2022)
  421. Molecular cloning and expression of the calmodulin gene from guinea pig hearts. Feng R, Liu Y, Sun X, Wang Y, Hu H, Guo F, Zhao J, Hao L. Exp Ther Med 9 2311-2318 (2015)
  422. Molecular dynamics studies on conformational thermodynamics of Orai1-calmodulin complex. Maganti L, Ghosh M, Chakrabarti J. J. Biomol. Struct. Dyn. 36 3411-3419 (2018)
  423. Molecular modeling of calmodulin: a comparison with crystallographic data. McDonald JJ, Rein R. Int J Quantum Chem Quantum Biol Symp 16 57-72 (1989)
  424. Novel CaM-binding motif in its NudT9H domain contributes to temperature sensitivity of TRPM2. Gattkowski E, Johnsen A, Bauche A, Möckl F, Kulow F, Garcia Alai M, Rutherford TJ, Fliegert R, Tidow H. Biochim Biophys Acta Mol Cell Res 1866 1162-1170 (2019)
  425. Periodicity of the Affinity of Lanmodulin for Trivalent Lanthanides and Actinides: Structural and Electronic Insights from Quantum Chemical Calculations. Prejanò M, Toscano M, Marino T. Inorg Chem 62 7461-7470 (2023)
  426. Phototransduction. Shedding light on recoverin. Head JF. Curr. Biol. 4 64-66 (1994)
  427. Probing Ca2+-induced conformational change of calmodulin with gold nanoparticle-decorated single-walled carbon nanotube field-effect transistors. Shao W, Burkert SC, White DL, Scott VL, Ding J, Li Z, Ouyang J, Lapointe F, Malenfant PRL, Islam K, Star A. Nanoscale 11 13397-13406 (2019)
  428. Protein Dimerization via Tyr Residues: Highlight of a Slow Process with Co-Existence of Numerous Intermediates and Final Products. Gatin A, Duchambon P, Rest GV, Billault I, Sicard-Roselli C. Int J Mol Sci 23 1174 (2022)
  429. Replacement of Lys-75 of calmodulin affects its interaction with smooth muscle caldesmon. Medvedeva MV, Djemuchadze DR, Watterson DM, Marston SB, Gusev NB. Biochim. Biophys. Acta 1544 143-150 (2001)
  430. Resonance assignments and secondary structure of calmodulin in complex with its target sequence in rat olfactory cyclic nucleotide-gated ion channel. Irene D, Sung FH, Huang JW, Lin TH, Chen YC, Chyan CL. Biomol NMR Assign 8 97-102 (2014)
  431. Structural basis of calmodulin modulation of the rod cyclic nucleotide-gated channel. Barret DCA, Schuster D, Rodrigues MJ, Leitner A, Picotti P, Schertler GFX, Kaupp UB, Korkhov VM, Marino J. Proc Natl Acad Sci U S A 120 e2300309120 (2023)
  432. Structures of calmodulin-melittin complexes show multiple binding modes lacking classical anchoring interactions. Dürvanger Z, Juhász T, Liliom K, Harmat V. J Biol Chem 299 104596 (2023)
  433. TRPM6 N-Terminal CaM- and S100A1-Binding Domains. Zouharova M, Herman P, Hofbauerová K, Vondrasek J, Bousova K. Int J Mol Sci 20 (2019)
  434. The Recognition of Calmodulin to the Target Sequence of Calcineurin-A Novel Binding Mode. Chyan CL, Irene D, Lin SM. Molecules 22 (2017)
  435. The mechanism of complex formation between calmodulin and voltage gated calcium channels revealed by molecular dynamics. Yaduvanshi S, Ero R, Kumar V. PLoS One 16 e0258112 (2021)
  436. Visualizing Heterogeneous Protein Conformations with Multi-Tilt Nanoparticle-Aided Cryo-Electron Microscopy Sampling. Kim C, Kim Y, Lee SJ, Yun SR, Choi J, Kim SO, Yang Y, Ihee H. Nano Lett 23 3334-3343 (2023)
  437. Zinc Increases ABCA1 by Attenuating Its Clearance Through the Modulation of Calmodulin Activity. Lu R, Ishikawa T, Tanaka M, Tsuboi T, Yokoyama S. J Atheroscler Thromb 28 261-270 (2021)


Related citations provided by authors (4)

  1. Three-Dimensional Structure of Calmodulin. Babu YS, Sack JS, Greenhough TJ, Bugg CE, Means AR, Cook WJ Nature 315 37- (1985)
  2. Preparation of Calmodulin Crystals. Cook WJ, Sack JS Meth. Enzymol. 102 143- (1983)
  3. Chicken Calmodulin Genes. A Species Comparison of C/DNA Sequences and Isolation of a Genomic Clone. Putkey JA, Ts'Ui KF, Tanaka T, Lagace L, Stein JP, Lai EC, Means AR J. Biol. Chem. 258 11864- (1983)
  4. Crystallization and Preliminary X-Ray Investigation of Calmodulin. Cook WJ, Dedman JR, Means AR, Bugg CE J. Biol. Chem. 255 8152- (1980)