3cvu Citations

Crystal structure and mechanism of a DNA (6-4) photolyase.

Angew Chem Int Ed Engl 47 10076-80 (2008)
Cited: 93 times
EuropePMC logo PMID: 18956392

Reviews - 3cvu mentioned but not cited (4)

  1. DNA repair by reversal of DNA damage. Yi C, He C. Cold Spring Harb Perspect Biol 5 a012575 (2013)
  2. Formation and Recognition of UV-Induced DNA Damage within Genome Complexity. Johann To Berens P, Molinier J. Int J Mol Sci 21 E6689 (2020)
  3. Structural biology of DNA (6-4) photoproducts formed by ultraviolet radiation and interactions with their binding proteins. Yokoyama H, Mizutani R. Int J Mol Sci 15 20321-20338 (2014)
  4. Circadian oscillator proteins across the kingdoms of life: structural aspects. Saini R, Jaskolski M, Davis SJ. BMC Biol. 17 13 (2019)

Articles - 3cvu mentioned but not cited (12)

  1. SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH, Bush MF, Pagano M, Zheng N. Nature 496 64-68 (2013)
  2. Crystal structure of a prokaryotic (6-4) photolyase with an Fe-S cluster and a 6,7-dimethyl-8-ribityllumazine antenna chromophore. Zhang F, Scheerer P, Oberpichler I, Lamparter T, Krauß N. Proc. Natl. Acad. Sci. U.S.A. 110 7217-7222 (2013)
  3. The archaeal cofactor F0 is a light-harvesting antenna chromophore in eukaryotes. Glas AF, Maul MJ, Cryle M, Barends TR, Schneider S, Kaya E, Schlichting I, Carell T. Proc. Natl. Acad. Sci. U.S.A. 106 11540-11545 (2009)
  4. Origin of light-induced spin-correlated radical pairs in cryptochrome. Weber S, Biskup T, Okafuji A, Marino AR, Berthold T, Link G, Hitomi K, Getzoff ED, Schleicher E, Norris JR. J Phys Chem B 114 14745-14754 (2010)
  5. The Trichoderma reesei Cry1 protein is a member of the cryptochrome/photolyase family with 6-4 photoproduct repair activity. Guzmán-Moreno J, Flores-Martínez A, Brieba LG, Herrera-Estrella A. PLoS ONE 9 e100625 (2014)
  6. Key Amino Acids in the Bacterial (6-4) Photolyase PhrB from Agrobacterium fabrum. Graf D, Wesslowski J, Ma H, Scheerer P, Krauß N, Oberpichler I, Zhang F, Lamparter T. PLoS ONE 10 e0140955 (2015)
  7. Structural role of two histidines in the (6-4) photolyase reaction. Yamada D, Iwata T, Yamamoto J, Hitomi K, Todo T, Iwai S, Getzoff ED, Kandori H. Biophys Physicobiol 12 139-144 (2015)
  8. Structure of the bifunctional cryptochrome aCRY from Chlamydomonas reinhardtii. Franz S, Ignatz E, Wenzel S, Zielosko H, Putu EPGN, Maestre-Reyna M, Tsai MD, Yamamoto J, Mittag M, Essen LO. Nucleic Acids Res. 46 8010-8022 (2018)
  9. The three-dimensional structure of Drosophila melanogaster (6-4) photolyase at room temperature. Cellini A, Yuan Wahlgren W, Henry L, Pandey S, Ghosh S, Castillon L, Claesson E, Takala H, Kübel J, Nimmrich A, Kuznetsova V, Nango E, Iwata S, Owada S, Stojković EA, Schmidt M, Ihalainen JA, Westenhoff S. Acta Crystallogr D Struct Biol 77 1001-1009 (2021)
  10. Coulomb and CH-π interactions in (6-4) photolyase-DNA complex dominate DNA binding and repair abilities. Terai Y, Sato R, Yumiba T, Harada R, Shimizu K, Toga T, Ishikawa-Fujiwara T, Todo T, Iwai S, Shigeta Y, Yamamoto J. Nucleic Acids Res. 46 6761-6772 (2018)
  11. Limited solvation of an electron donating tryptophan stabilizes a photoinduced charge-separated state in plant (6-4) photolyase. Hosokawa Y, Müller P, Kitoh-Nishioka H, Iwai S, Yamamoto J. Sci Rep 12 5084 (2022)
  12. The crystal structure of Vibrio cholerae (6-4) photolyase reveals interactions with cofactors and a DNA-binding region. Cakilkaya B, Kavakli IH, DeMirci H. J Biol Chem 299 102794 (2023)


Reviews citing this publication (21)

  1. The cryptochromes: blue light photoreceptors in plants and animals. Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M. Annu Rev Plant Biol 62 335-364 (2011)
  2. DNA base repair--recognition and initiation of catalysis. Dalhus B, Laerdahl JK, Backe PH, Bjørås M. FEMS Microbiol. Rev. 33 1044-1078 (2009)
  3. Structural biology of DNA photolyases and cryptochromes. Müller M, Carell T. Curr. Opin. Struct. Biol. 19 277-285 (2009)
  4. Surviving the sun: repair and bypass of DNA UV lesions. Yang W. Protein Sci. 20 1781-1789 (2011)
  5. Electron transfer mechanisms of DNA repair by photolyase. Zhong D. Annu Rev Phys Chem 66 691-715 (2015)
  6. Chemical investigation of light induced DNA bipyrimidine damage and repair. Heil K, Pearson D, Carell T. Chem Soc Rev 40 4271-4278 (2011)
  7. Dynamics and mechanisms of DNA repair by photolyase. Liu Z, Wang L, Zhong D. Phys Chem Chem Phys 17 11933-11949 (2015)
  8. Physicochemical mechanism of light-driven DNA repair by (6-4) photolyases. Faraji S, Dreuw A. Annu Rev Phys Chem 65 275-292 (2014)
  9. Formation and Direct Repair of UV-induced Dimeric DNA Pyrimidine Lesions. Kneuttinger AC, Kashiwazaki G, Prill S, Heil K, Müller M, Carell T. Photochem. Photobiol. 90 1-14 (2014)
  10. How is the inner circadian clock controlled by interactive clock proteins?: Structural analysis of clock proteins elucidates their physiological role. Merbitz-Zahradnik T, Wolf E. FEBS Lett. 589 1516-1529 (2015)
  11. Radical and electron recycling in catalysis. Buckel W. Angew Chem Int Ed Engl 48 6779-6787 (2009)
  12. Structural Aspects of DNA Repair and Recombination in Crop Improvement. Verma P, Tandon R, Yadav G, Gaur V. Front Genet 11 574549 (2020)
  13. Repair of (6-4) Lesions in DNA by (6-4) Photolyase: 20 Years of Quest for the Photoreaction Mechanism. Yamamoto J, Plaza P, Brettel K. Photochem. Photobiol. 93 51-66 (2017)
  14. DNA Repair by the Radical SAM Enzyme Spore Photoproduct Lyase: From Biochemistry to Structural Investigations. Berteau O, Benjdia A. Photochem. Photobiol. 93 67-77 (2017)
  15. Photolyase: Dynamics and Mechanisms of Repair of Sun-Induced DNA Damage. Zhang M, Wang L, Zhong D. Photochem. Photobiol. 93 78-92 (2017)
  16. Insights into Light-driven DNA Repair by Photolyases: Challenges and Opportunities for Electronic Structure Theory. Faraji S, Dreuw A. Photochem. Photobiol. 93 37-50 (2017)
  17. All You Need Is Light. Photorepair of UV-Induced Pyrimidine Dimers. Banaś AK, Zgłobicki P, Kowalska E, Bażant A, Dziga D, Strzałka W. Genes (Basel) 11 E1304 (2020)
  18. Photolyase: Dynamics and electron-transfer mechanisms of DNA repair. Zhang M, Wang L, Zhong D. Arch. Biochem. Biophys. 632 158-174 (2017)
  19. Cryptochromes in mammals: a magnetoreception misconception? Zhang L, Malkemper EP. Front Physiol 14 1250798 (2023)
  20. Spiers Memorial Lecture. Introductory lecture: the impact of structure on photoinduced processes in nucleic acids and proteins. Domratcheva T, Schlichting I. Faraday Discuss. 207 9-26 (2018)
  21. UV Radiation in DNA Damage and Repair Involving DNA-Photolyases and Cryptochromes. Vechtomova YL, Telegina TA, Buglak AA, Kritsky MS. Biomedicines 9 1564 (2021)

Articles citing this publication (56)

  1. Evolution of genes and genomes on the Drosophila phylogeny. Drosophila 12 Genomes Consortium, Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN, Pollard DA, Sackton TB, Larracuente AM, Singh ND, Abad JP, Abt DN, Adryan B, Aguade M, Akashi H, Anderson WW, Aquadro CF, Ardell DH, Arguello R, Artieri CG, Barbash DA, Barker D, Barsanti P, Batterham P, Batzoglou S, Begun D, Bhutkar A, Blanco E, Bosak SA, Bradley RK, Brand AD, Brent MR, Brooks AN, Brown RH, Butlin RK, Caggese C, Calvi BR, Bernardo de Carvalho A, Caspi A, Castrezana S, Celniker SE, Chang JL, Chapple C, Chatterji S, Chinwalla A, Civetta A, Clifton SW, Comeron JM, Costello JC, Coyne JA, Daub J, David RG, Delcher AL, Delehaunty K, Do CB, Ebling H, Edwards K, Eickbush T, Evans JD, Filipski A, Findeiss S, Freyhult E, Fulton L, Fulton R, Garcia AC, Gardiner A, Garfield DA, Garvin BE, Gibson G, Gilbert D, Gnerre S, Godfrey J, Good R, Gotea V, Gravely B, Greenberg AJ, Griffiths-Jones S, Gross S, Guigo R, Gustafson EA, Haerty W, Hahn MW, Halligan DL, Halpern AL, Halter GM, Han MV, Heger A, Hillier L, Hinrichs AS, Holmes I, Hoskins RA, Hubisz MJ, Hultmark D, Huntley MA, Jaffe DB, Jagadeeshan S, Jeck WR, Johnson J, Jones CD, Jordan WC, Karpen GH, Kataoka E, Keightley PD, Kheradpour P, Kirkness EF, Koerich LB, Kristiansen K, Kudrna D, Kulathinal RJ, Kumar S, Kwok R, Lander E, Langley CH, Lapoint R, Lazzaro BP, Lee SJ, Levesque L, Li R, Lin CF, Lin MF, Lindblad-Toh K, Llopart A, Long M, Low L, Lozovsky E, Lu J, Luo M, Machado CA, Makalowski W, Marzo M, Matsuda M, Matzkin L, McAllister B, McBride CS, McKernan B, McKernan K, Mendez-Lago M, Minx P, Mollenhauer MU, Montooth K, Mount SM, Mu X, Myers E, Negre B, Newfeld S, Nielsen R, Noor MA, O'Grady P, Pachter L, Papaceit M, Parisi MJ, Parisi M, Parts L, Pedersen JS, Pesole G, Phillippy AM, Ponting CP, Pop M, Porcelli D, Powell JR, Prohaska S, Pruitt K, Puig M, Quesneville H, Ram KR, Rand D, Rasmussen MD, Reed LK, Reenan R, Reily A, Remington KA, Rieger TT, Ritchie MG, Robin C, Rogers YH, Rohde C, Rozas J, Rubenfield MJ, Ruiz A, Russo S, Salzberg SL, Sanchez-Gracia A, Saranga DJ, Sato H, Schaeffer SW, Schatz MC, Schlenke T, Schwartz R, Segarra C, Singh RS, Sirot L, Sirota M, Sisneros NB, Smith CD, Smith TF, Spieth J, Stage DE, Stark A, Stephan W, Strausberg RL, Strempel S, Sturgill D, Sutton G, Sutton GG, Tao W, Teichmann S, Tobari YN, Tomimura Y, Tsolas JM, Valente VL, Venter E, Venter JC, Vicario S, Vieira FG, Vilella AJ, Villasante A, Walenz B, Wang J, Wang J, Wasserman M, Watts T, Wilson D, Wilson RK, Wing RA, Wolfner MF, Wong A, Wong GK, Wu CI, Wu G, Yamamoto D, Yang HP, Yang SP, Yorke JA, Yoshida K, Zdobnov E, Zhang P, Zhang Y, Zimin AV, Baldwin J, Abdouelleil A, Abdulkadir J, Abebe A, Abera B, Abreu J, Acer SC, Aftuck L, Alexander A, An P, Anderson E, Anderson S, Arachi H, Azer M, Bachantsang P, Barry A, Bayul T, Berlin A, Bessette D, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Bourzgui I, Brown A, Cahill P, Channer S, Cheshatsang Y, Chuda L, Citroen M, Collymore A, Cooke P, Costello M, D'Aco K, Daza R, De Haan G, DeGray S, DeMaso C, Dhargay N, Dooley K, Dooley E, Doricent M, Dorje P, Dorjee K, Dupes A, Elong R, Falk J, Farina A, Faro S, Ferguson D, Fisher S, Foley CD, Franke A, Friedrich D, Gadbois L, Gearin G, Gearin CR, Giannoukos G, Goode T, Graham J, Grandbois E, Grewal S, Gyaltsen K, Hafez N, Hagos B, Hall J, Henson C, Hollinger A, Honan T, Huard MD, Hughes L, Hurhula B, Husby ME, Kamat A, Kanga B, Kashin S, Khazanovich D, Kisner P, Lance K, Lara M, Lee W, Lennon N, Letendre F, LeVine R, Lipovsky A, Liu X, Liu J, Liu S, Lokyitsang T, Lokyitsang Y, Lubonja R, Lui A, MacDonald P, Magnisalis V, Maru K, Matthews C, McCusker W, McDonough S, Mehta T, Meldrim J, Meneus L, Mihai O, Mihalev A, Mihova T, Mittelman R, Mlenga V, Montmayeur A, Mulrain L, Navidi A, Naylor J, Negash T, Nguyen T, Nguyen N, Nicol R, Norbu C, Norbu N, Novod N, O'Neill B, Osman S, Markiewicz E, Oyono OL, Patti C, Phunkhang P, Pierre F, Priest M, Raghuraman S, Rege F, Reyes R, Rise C, Rogov P, Ross K, Ryan E, Settipalli S, Shea T, Sherpa N, Shi L, Shih D, Sparrow T, Spaulding J, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Strader C, Tesfaye S, Thomson T, Thoulutsang Y, Thoulutsang D, Topham K, Topping I, Tsamla T, Vassiliev H, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Young G, Yu Q, Zembek L, Zhong D, Zimmer A, Zwirko Z, Jaffe DB, Alvarez P, Brockman W, Butler J, Chin C, Gnerre S, Grabherr M, Kleber M, Mauceli E, MacCallum I. Nature 450 203-218 (2007)
  2. Cryptochromes--a potential magnetoreceptor: what do we know and what do we want to know? Liedvogel M, Mouritsen H. J R Soc Interface 7 Suppl 2 S147-62 (2010)
  3. Dynamics and mechanism of repair of ultraviolet-induced (6-4) photoproduct by photolyase. Li J, Liu Z, Tan C, Guo X, Wang L, Sancar A, Zhong D. Nature 466 887-890 (2010)
  4. Structure of full-length Drosophila cryptochrome. Zoltowski BD, Vaidya AT, Top D, Widom J, Young MW, Crane BR. Nature 480 396-399 (2011)
  5. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Czarna A, Berndt A, Singh HR, Grudziecki A, Ladurner AG, Timinszky G, Kramer A, Wolf E. Cell 153 1394-1405 (2013)
  6. CryB from Rhodobacter sphaeroides: a unique class of cryptochromes with new cofactors. Geisselbrecht Y, Frühwirth S, Schroeder C, Pierik AJ, Klug G, Essen LO. EMBO Rep 13 223-229 (2012)
  7. Crystal structures of an archaeal class II DNA photolyase and its complex with UV-damaged duplex DNA. Kiontke S, Geisselbrecht Y, Pokorny R, Carell T, Batschauer A, Essen LO. EMBO J. 30 4437-4449 (2011)
  8. Structural insights into recognition and repair of UV-DNA damage by Spore Photoproduct Lyase, a radical SAM enzyme. Benjdia A, Heil K, Barends TR, Carell T, Schlichting I. Nucleic Acids Res. 40 9308-9318 (2012)
  9. Letter Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Nangle S, Xing W, Zheng N. Cell Res. 23 1417-1419 (2013)
  10. Crystal structure of the T(6-4)C lesion in complex with a (6-4) DNA photolyase and repair of UV-induced (6-4) and Dewar photolesions. Glas AF, Schneider S, Maul MJ, Hennecke U, Carell T. Chemistry 15 10387-10396 (2009)
  11. A photolyase-like protein from Agrobacterium tumefaciens with an iron-sulfur cluster. Oberpichler I, Pierik AJ, Wesslowski J, Pokorny R, Rosen R, Vugman M, Zhang F, Neubauer O, Ron EZ, Batschauer A, Lamparter T. PLoS ONE 6 e26775 (2011)
  12. Light-induced activation of class II cyclobutane pyrimidine dimer photolyases. Okafuji A, Biskup T, Hitomi K, Getzoff ED, Kaiser G, Batschauer A, Bacher A, Hidema J, Teranishi M, Yamamoto K, Schleicher E, Weber S. DNA Repair (Amst.) 9 495-505 (2010)
  13. Quantitative analyses of cryptochrome-mBMAL1 interactions: mechanistic insights into the transcriptional regulation of the mammalian circadian clock. Czarna A, Breitkreuz H, Mahrenholz CC, Arens J, Strauss HM, Wolf E. J. Biol. Chem. 286 22414-22425 (2011)
  14. Repair of the (6-4) photoproduct by DNA photolyase requires two photons. Yamamoto J, Martin R, Iwai S, Plaza P, Brettel K. Angew. Chem. Int. Ed. Engl. 52 7432-7436 (2013)
  15. Dynamic determination of the functional state in photolyase and the implication for cryptochrome. Liu Z, Zhang M, Guo X, Tan C, Li J, Wang L, Sancar A, Zhong D. Proc. Natl. Acad. Sci. U.S.A. 110 12972-12977 (2013)
  16. Isoform-selective regulation of mammalian cryptochromes. Miller S, Son YL, Aikawa Y, Makino E, Nagai Y, Srivastava A, Oshima T, Sugiyama A, Hara A, Abe K, Hirata K, Oishi S, Hagihara S, Sato A, Tama F, Itami K, Kay SA, Hatori M, Hirota T. Nat Chem Biol 16 676-685 (2020)
  17. DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization. Papp SJ, Huber AL, Jordan SD, Kriebs A, Nguyen M, Moresco JJ, Yates JR, Lamia KA. Elife 4 (2015)
  18. Crystal structures and repair studies reveal the identity and the base-pairing properties of the UV-induced spore photoproduct DNA lesion. Heil K, Kneuttinger AC, Schneider S, Lischke U, Carell T. Chemistry 17 9651-9657 (2011)
  19. Eukaryotic class II cyclobutane pyrimidine dimer photolyase structure reveals basis for improved ultraviolet tolerance in plants. Hitomi K, Arvai AS, Yamamoto J, Hitomi C, Teranishi M, Hirouchi T, Yamamoto K, Iwai S, Tainer JA, Hidema J, Getzoff ED. J. Biol. Chem. 287 12060-12069 (2012)
  20. The class III cyclobutane pyrimidine dimer photolyase structure reveals a new antenna chromophore binding site and alternative photoreduction pathways. Scheerer P, Zhang F, Kalms J, von Stetten D, Krauß N, Oberpichler I, Lamparter T. J. Biol. Chem. 290 11504-11514 (2015)
  21. Structural and evolutionary aspects of antenna chromophore usage by class II photolyases. Kiontke S, Gnau P, Haselsberger R, Batschauer A, Essen LO. J. Biol. Chem. 289 19659-19669 (2014)
  22. Photoreduction of the folate cofactor in members of the photolyase family. Moldt J, Pokorny R, Orth C, Linne U, Geisselbrecht Y, Marahiel MA, Essen LO, Batschauer A. J. Biol. Chem. 284 21670-21683 (2009)
  23. UV damage endonuclease employs a novel dual-dinucleotide flipping mechanism to recognize different DNA lesions. Meulenbroek EM, Peron Cane C, Jala I, Iwai S, Moolenaar GF, Goosen N, Pannu NS. Nucleic Acids Res. 41 1363-1371 (2013)
  24. New roles of flavoproteins in molecular cell biology: blue-light active flavoproteins studied by electron paramagnetic resonance. Schleicher E, Bittl R, Weber S. FEBS J. 276 4290-4303 (2009)
  25. Watching DNA repair in real time. Stuchebrukhov A. Proc. Natl. Acad. Sci. U.S.A. 108 19445-19446 (2011)
  26. The Electronic State of Flavoproteins: Investigations with Proton Electron-Nuclear Double Resonance. Schleicher E, Wenzel R, Ahmad M, Batschauer A, Essen LO, Hitomi K, Getzoff ED, Bittl R, Weber S, Okafuji A. Appl Magn Reson 37 339-352 (2010)
  27. Very fast product release and catalytic turnover of DNA photolyase. Espagne A, Byrdin M, Eker AP, Brettel K. Chembiochem 10 1777-1780 (2009)
  28. Bifurcating electron-transfer pathways in DNA photolyases determine the repair quantum yield. Zhang M, Wang L, Shu S, Sancar A, Zhong D. Science 354 209-213 (2016)
  29. A quantum chemical perspective on (6-4) photolesion repair by photolyases. Dreuw A, Faraji S. Phys Chem Chem Phys 15 19957-19969 (2013)
  30. Rhodobacter sphaeroides CryB is a bacterial cryptochrome with (6-4) photolyase activity. von Zadow A, Ignatz E, Pokorny R, Essen LO, Klug G. FEBS J. 283 4291-4309 (2016)
  31. Quantum chemical study of the enzymatic repair of T(6-4)C/C(6-4)T UV-photolesions by DNA photolyases. Faraji S, Wirz L, Dreuw A. Chemphyschem 14 2817-2824 (2013)
  32. Structure of a double-stranded DNA (6-4) photoproduct in complex with the 64M-5 antibody Fab. Yokoyama H, Mizutani R, Satow Y. Acta Crystallogr. D Biol. Crystallogr. 69 504-512 (2013)
  33. Characterization of the Intermediate in and Identification of the Repair Mechanism of (6-4) Photolesions by Photolyases. Faraji S, Zhong D, Dreuw A. Angew. Chem. Int. Ed. Engl. 55 5175-5178 (2016)
  34. Once overlooked, now made visible: ATL proteins and DNA repair. Reissner T, Schorr S, Carell T. Angew Chem Int Ed Engl 48 7293-7295 (2009)
  35. Structure of the DNA (6-4) photoproduct dTT(6-4)TT in complex with the 64M-2 antibody Fab fragment implies increased antibody-binding affinity by the flanking nucleotides. Yokoyama H, Mizutani R, Satow Y, Sato K, Komatsu Y, Ohtsuka E, Nikaido O. Acta Crystallogr. D Biol. Crystallogr. 68 232-238 (2012)
  36. Ultrafast flavin photoreduction in an oxidized animal (6-4) photolyase through an unconventional tryptophan tetrad. Martin R, Lacombat F, Espagne A, Dozova N, Plaza P, Yamamoto J, Müller P, Brettel K, de la Lande A. Phys Chem Chem Phys 19 24493-24504 (2017)
  37. Divalent Cations Increase DNA Repair Activities of Bacterial (6-4) Photolyases. Ma H, Zhang F, Ignatz E, Suehnel M, Xue P, Scheerer P, Essen LO, Krauß N, Lamparter T. Photochem. Photobiol. 93 323-330 (2017)
  38. Folding kinetics of recognition loop peptides from a photolyase and cryptochrome-DASH. Brolich MA, Wang L, O'Neill MA. Biochem. Biophys. Res. Commun. 391 874-878 (2010)
  39. Kinetic Isotope Effects and Hydrogen/Deuterium Exchange Reveal Large Conformational Changes During the Catalysis of the Clostridium acetobutylicum Spore Photoproduct Lyase. Yang L, Adhikari J, Gross ML, Li L. Photochem Photobiol 93 331-342 (2017)
  40. Repair of a Dimeric Azetidine Related to the Thymine-Cytosine (6-4) Photoproduct by Electron Transfer Photoreduction. Fraga-Timiraos AB, Lhiaubet-Vallet V, Miranda MA. Angew. Chem. Int. Ed. Engl. 55 6037-6040 (2016)
  41. Theoretical analyses on a flipping mechanism of UV-induced DNA damage. Sato R, Harada R, Shigeta Y. Biophys Physicobiol 13 311-319 (2016)
  42. Crystal Structures of Bacterial (6-4) Photolyase Mutants with Impaired DNA Repair Activity. Zhang F, Ma H, Bowatte K, Kwiatkowski D, Mittmann E, Qasem H, Krauß N, Zeng X, Ren Z, Scheerer P, Yang X, Lamparter T. Photochem. Photobiol. 93 304-314 (2017)
  43. DNA Repair. Carell T. Angew. Chem. Int. Ed. Engl. 54 15330-15333 (2015)
  44. Residues at a Single Site Differentiate Animal Cryptochromes from Cyclobutane Pyrimidine Dimer Photolyases by Affecting the Proteins' Preferences for Reduced FAD. Xu L, Wen B, Wang Y, Tian C, Wu M, Zhu G. Chembiochem 18 1129-1137 (2017)
  45. Role of Lys281 in the Dunaliella salina (6-4) photolyase reaction. Zhang F, Xu H, Cao Y, Wen T, Lin J, Ma G, Qiao D, Cao Y. Curr. Microbiol. 62 146-151 (2011)
  46. Two aspartate residues close to the lesion binding site of Agrobacterium (6-4) photolyase are required for Mg2+ stimulation of DNA repair. Ma H, Holub D, Gillet N, Kaeser G, Thoulass K, Elstner M, Krauß N, Lamparter T. FEBS J 286 1765-1779 (2019)
  47. Congresses Chemical biologists gather in Heidelberg. Köhn M, Schultz C. Nat. Chem. Biol. 5 66-69 (2009)
  48. Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer. Fraga-Timiraos AB, Francés-Monerris A, Rodríguez-Muñiz GM, Navarrete-Miguel M, Miranda MA, Roca-Sanjuán D, Lhiaubet-Vallet V. Chemistry 24 15346-15354 (2018)
  49. Key interactions with deazariboflavin cofactor for light-driven energy transfer in Xenopus (6-4) photolyase. Morimoto A, Hosokawa Y, Miyamoto H, Verma RK, Iwai S, Sato R, Yamamoto J. Photochem Photobiol Sci 20 875-887 (2021)
  50. Model Studies on the Photoreduction of the 5-Hydroxy-5,6-dihydrothymine and 5-Methyl-2-pyrimidone Moieties of (6-4) Photoproducts by Photolyase. Rodríguez-Muñiz GM, Miranda MA, Lhiaubet-Vallet V. Photochem Photobiol 98 671-677 (2022)
  51. Structural basis of the radical pair state in photolyases and cryptochromes. Cellini A, Shankar MK, Wahlgren WY, Nimmrich A, Furrer A, James D, Wranik M, Aumonier S, Beale EV, Dworkowski F, Standfuss J, Weinert T, Westenhoff S. Chem Commun (Camb) 58 4889-4892 (2022)
  52. Structure and mechanism of pyrimidine-pyrimidone (6-4) photoproduct recognition by the Rad4/XPC nucleotide excision repair complex. Paul D, Mu H, Zhao H, Ouerfelli O, Jeffrey PD, Broyde S, Min JH. Nucleic Acids Res. 47 6015-6028 (2019)
  53. Synthesis of the first tellurium-derivatized oligonucleotides for structural and functional studies. Sheng J, Hassan AE, Huang Z. Chemistry 15 10210-10216 (2009)
  54. Synthesis of the tellurium-derivatized phosphoramidites and their incorporation into DNA oligonucleotides. Jiang S, Sheng J, Huang Z. Curr Protoc Nucleic Acid Chem Chapter 1 Unit 1.25.1-16 (2011)
  55. The effect of DNA backbone on the triplet mechanism of UV-induced thymine-thymine (6-4) dimer formation. Wang X, Yu H. J Mol Model 24 319 (2018)
  56. Theoretical Study on the Photo-Oxidation and Photoreduction of an Azetidine Derivative as a Model of DNA Repair. Navarrete-Miguel M, Francés-Monerris A, Miranda MA, Lhiaubet-Vallet V, Roca-Sanjuán D. Molecules 26 2911 (2021)