3dds Citations

Anthranilimide based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. Part 3: X-ray crystallographic characterization, core and urea optimization and in vivo efficacy.

Abstract

Key binding interactions of the anthranilimide based glycogen phosphorylase a (GPa) inhibitor 2 from X-ray crystallography studies are described. This series of compounds bind to the AMP site of GP. Using the binding information the core and the phenyl urea moieties were optimized. This work culminated in the identification of compounds with single nanomolar potency as well as in vivo efficacy in a diabetic model.

Reviews - 3dds mentioned but not cited (2)

  1. The Structural Biology of Bcl-xL. Lee EF, Fairlie WD. Int J Mol Sci 20 E2234 (2019)
  2. Evaluation of the Anti-Diabetic Activity of Some Common Herbs and Spices: Providing New Insights with Inverse Virtual Screening. Pereira ASP, Banegas-Luna AJ, Peña-García J, Pérez-Sánchez H, Apostolides Z. Molecules 24 E4030 (2019)

Articles - 3dds mentioned but not cited (16)

  1. BCL-XL dimerization by three-dimensional domain swapping. O'Neill JW, Manion MK, Maguire B, Hockenbery DM. J Mol Biol 356 367-381 (2006)
  2. The Recognition of Identical Ligands by Unrelated Proteins. Barelier S, Sterling T, O'Meara MJ, Shoichet BK. ACS Chem Biol 10 2772-2784 (2015)
  3. Functional states of homooligomers: insights from the evolution of glycosyltransferases. Hashimoto K, Madej T, Bryant SH, Panchenko AR. J Mol Biol 399 196-206 (2010)
  4. Emodin regulates neutrophil phenotypes to prevent hypercoagulation and lung carcinogenesis. Li Z, Lin Y, Zhang S, Zhou L, Yan G, Wang Y, Zhang M, Wang M, Lin H, Tong Q, Duan Y, Du G. J Transl Med 17 90 (2019)
  5. Structural transition in Bcl-xL and its potential association with mitochondrial calcium ion transport. Rajan S, Choi M, Nguyen QT, Ye H, Liu W, Toh HT, Kang C, Kamariah N, Li C, Huang H, White C, Baek K, Grüber G, Yoon HS. Sci Rep 5 10609 (2015)
  6. ATP Synthase K+- and H+-fluxes Drive ATP Synthesis and Enable Mitochondrial K+-"Uniporter" Function: II. Ion and ATP Synthase Flux Regulation. Juhaszova M, Kobrinsky E, Zorov DB, Nuss HB, Yaniv Y, Fishbein KW, de Cabo R, Montoliu L, Gabelli SB, Aon MA, Cortassa S, Sollott SJ. Function (Oxf) 3 zqac001 (2022)
  7. Exploring African Medicinal Plants for Potential Anti-Diabetic Compounds with the DIA-DB Inverse Virtual Screening Web Server. Pereira ASP, den Haan H, Peña-García J, Moreno MM, Pérez-Sánchez H, Apostolides Z. Molecules 24 E2002 (2019)
  8. Structural insight into the molecular mechanism of p53-mediated mitochondrial apoptosis. Wei H, Qu L, Dai S, Li Y, Wang H, Feng Y, Chen X, Jiang L, Guo M, Li J, Chen Z, Chen L, Zhang Y, Chen Y. Nat Commun 12 2280 (2021)
  9. High Impact: The Role of Promiscuous Binding Sites in Polypharmacology. Cerisier N, Petitjean M, Regad L, Bayard Q, Réau M, Badel A, Camproux AC. Molecules 24 E2529 (2019)
  10. Peptide Sequence Mapping around Bisecting GlcNAc-Bearing N-Glycans in Mouse Brain. Ohkawa Y, Kizuka Y, Takata M, Nakano M, Ito E, Mishra SK, Akatsuka H, Harada Y, Taniguchi N. Int J Mol Sci 22 8579 (2021)
  11. An In Silico and an In Vitro Inhibition Analysis of Glycogen Phosphorylase by Flavonoids, Styrylchromones, and Pyrazoles. Rocha S, Aniceto N, Guedes RC, Albuquerque HMT, Silva VLM, Silva AMS, Corvo ML, Fernandes E, Freitas M. Nutrients 14 306 (2022)
  12. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  13. Computation Screening of Multi-Target Antidiabetic Properties of Phytochemicals in Common Edible Mediterranean Plants. Goulas V, Banegas-Luna AJ, Constantinou A, Pérez-Sánchez H, Barbouti A. Plants (Basel) 11 1637 (2022)
  14. Computational Study of Asian Propolis Compounds as Potential Anti-Type 2 Diabetes Mellitus Agents by Using Inverse Virtual Screening with the DIA-DB Web Server, Tanimoto Similarity Analysis, and Molecular Dynamic Simulation. Syaifie PH, Harisna AH, Nasution MAF, Arda AG, Nugroho DW, Jauhar MM, Mardliyati E, Maulana NN, Rochman NT, Noviyanto A, Banegas-Luna AJ, Pérez-Sánchez H. Molecules 27 3972 (2022)
  15. Fishing the Targets of Bioactive Compounds from Psidium guajava L. Leaves in the Context of Diabetes. Díaz-de-Cerio E, Girón F, Pérez-Garrido A, Pereira ASP, Gabaldón-Hernández JA, Verardo V, Segura Carretero A, Pérez-Sánchez H. Int J Mol Sci 24 5761 (2023)
  16. Network pharmacology- and molecular docking-based investigation of the therapeutic potential and mechanism of daucosterol against multiple myeloma. Zeng J, Luo Q, Wang X, Xie W, Dong S, Fu H, Wei Y, Liu T. Transl Cancer Res 12 1006-1020 (2023)


Reviews citing this publication (3)

  1. Glycogen phosphorylase inhibitors: a patent review (2008 - 2012). Gaboriaud-Kolar N, Skaltsounis AL. Expert Opin Ther Pat 23 1017-1032 (2013)
  2. Crystal structures of eukaryote glycosyltransferases reveal biologically relevant enzyme homooligomers. Harrus D, Kellokumpu S, Glumoff T. Cell Mol Life Sci 75 833-848 (2018)
  3. Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. Li A, Benkoulouche M, Ladeveze S, Durand J, Cioci G, Laville E, Potocki-Veronese G. Int J Mol Sci 23 3043 (2022)

Articles citing this publication (7)

  1. Anthranilic acid-based diamides derivatives incorporating aryl-isoxazoline pharmacophore as potential anticancer agents: design, synthesis and biological evaluation. Shi L, Hu R, Wei Y, Liang Y, Yang Z, Ke S. Eur J Med Chem 54 549-556 (2012)
  2. The Design and Development of Potent Small Molecules as Anticancer Agents Targeting EGFR TK and Tubulin Polymerization. Ihmaid S, Ahmed HEA, Zayed MF. Int J Mol Sci 19 E408 (2018)
  3. Structural investigations of anthranilimide derivatives by CoMFA and CoMSIA 3D-QSAR studies reveal novel insight into their structures toward glycogen phosphorylase inhibition. Saqib U, Kumar B, Siddiqi MI. SAR QSAR Environ Res 22 411-449 (2011)
  4. Discovery of a series of indan carboxylic acid glycogen phosphorylase inhibitors. Bennett SN, Campbell AD, Hancock A, Johnstone C, Kenny PW, Pickup A, Plowright AT, Selmi N, Simpson I, Stocker A, Whalley DP, Whittamore PR. Bioorg Med Chem Lett 20 3511-3514 (2010)
  5. Discovery of new nanomolar inhibitors of GPa: Extension of 2-oxo-1,2-dihydropyridinyl-3-yl amide-based GPa inhibitors. Loughlin WA, Jenkins ID, Karis ND, Healy PC. Eur J Med Chem 127 341-356 (2017)
  6. Exploring the Dual Inhibitory Activity of Novel Anthranilic Acid Derivatives towards α-Glucosidase and Glycogen Phosphorylase Antidiabetic Targets: Design, In Vitro Enzyme Assay, and Docking Studies. Ihmaid S. Molecules 23 E1304 (2018)
  7. Synthesis, screening and docking of small heterocycles as glycogen phosphorylase inhibitors. Schweiker SS, Loughlin WA, Lohning AS, Petersson MJ, Jenkins ID. Eur J Med Chem 84 584-594 (2014)