3eja Citations

Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family.

Abstract

Currently, the relatively high cost of enzymes such as glycoside hydrolases that catalyze cellulose hydrolysis represents a barrier to commercialization of a biorefinery capable of producing renewable transportable fuels such as ethanol from abundant lignocellulosic biomass. Among the many families of glycoside hydrolases that catalyze cellulose and hemicellulose hydrolysis, few are more enigmatic than family 61 (GH61), originally classified based on measurement of very weak endo-1,4-beta-d-glucanase activity in one family member. Here we show that certain GH61 proteins lack measurable hydrolytic activity by themselves but in the presence of various divalent metal ions can significantly reduce the total protein loading required to hydrolyze lignocellulosic biomass. We also solved the structure of one highly active GH61 protein and find that it is devoid of conserved, closely juxtaposed acidic side chains that could serve as general proton donor and nucleophile/base in a canonical hydrolytic reaction, and we conclude that the GH61 proteins are unlikely to be glycoside hydrolases. Structure-based mutagenesis shows the importance of several conserved residues for GH61 function. By incorporating the gene for one GH61 protein into a commercial Trichoderma reesei strain producing high levels of cellulolytic enzymes, we are able to reduce by 2-fold the total protein loading (and hence the cost) required to hydrolyze lignocellulosic biomass.

Reviews - 3eja mentioned but not cited (7)

  1. Plant-polysaccharide-degrading enzymes from Basidiomycetes. Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR. Microbiol Mol Biol Rev 78 614-649 (2014)
  2. Oxygen Activation by Cu LPMOs in Recalcitrant Carbohydrate Polysaccharide Conversion to Monomer Sugars. Meier KK, Jones SM, Kaper T, Hansson H, Koetsier MJ, Karkehabadi S, Solomon EI, Sandgren M, Kelemen B. Chem Rev 118 2593-2635 (2018)
  3. Lytic polysaccharide monooxygenases: a crystallographer's view on a new class of biomass-degrading enzymes. Frandsen KE, Lo Leggio L. IUCrJ 3 448-467 (2016)
  4. Genomics review of holocellulose deconstruction by aspergilli. Segato F, Damásio AR, de Lucas RC, Squina FM, Prade RA. Microbiol Mol Biol Rev 78 588-613 (2014)
  5. Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family. Morgenstern I, Powlowski J, Tsang A. Brief Funct Genomics 13 471-481 (2014)
  6. A structural overview of GH61 proteins - fungal cellulose degrading polysaccharide monooxygenases. Lo Leggio L, Welner D, De Maria L. Comput Struct Biotechnol J 2 e201209019 (2012)
  7. Oxidative Power: Tools for Assessing LPMO Activity on Cellulose. Calderaro F, Bevers LE, van den Berg MA. Biomolecules 11 1098 (2021)

Articles - 3eja mentioned but not cited (10)



Reviews citing this publication (53)

  1. Deconstruction of lignocellulosic biomass to fuels and chemicals. Chundawat SP, Beckham GT, Himmel ME, Dale BE. Annu Rev Chem Biomol Eng 2 121-145 (2011)
  2. Fungal enzyme sets for plant polysaccharide degradation. van den Brink J, de Vries RP. Appl Microbiol Biotechnol 91 1477-1492 (2011)
  3. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes--factors affecting enzymes, conversion and synergy. Van Dyk JS, Pletschke BI. Biotechnol Adv 30 1458-1480 (2012)
  4. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Bischof RH, Ramoni J, Seiboth B. Microb Cell Fact 15 106 (2016)
  5. Plant cell wall deconstruction by ascomycete fungi. Glass NL, Schmoll M, Cate JH, Coradetti S. Annu Rev Microbiol 67 477-498 (2013)
  6. The biochemistry and structural biology of plant cell wall deconstruction. Gilbert HJ. Plant Physiol 153 444-455 (2010)
  7. Fungal traits that drive ecosystem dynamics on land. Treseder KK, Lennon JT. Microbiol Mol Biol Rev 79 243-262 (2015)
  8. Microbial diversity of cellulose hydrolysis. Wilson DB. Curr Opin Microbiol 14 259-263 (2011)
  9. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides. Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VG. FEBS J 280 3028-3049 (2013)
  10. Cellulose degradation by polysaccharide monooxygenases. Beeson WT, Vu VV, Span EA, Phillips CM, Marletta MA. Annu Rev Biochem 84 923-946 (2015)
  11. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK. Bioresour Technol 128 751-759 (2013)
  12. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Microbiol Mol Biol Rev 82 e00029-18 (2018)
  13. Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Hemsworth GR, Davies GJ, Walton PH. Curr Opin Struct Biol 23 660-668 (2013)
  14. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete Jde J, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. Microbiol Mol Biol Rev 80 205-327 (2016)
  15. Genome analyses highlight the different biological roles of cellulases. Mba Medie F, Davies GJ, Drancourt M, Henrissat B. Nat Rev Microbiol 10 227-234 (2012)
  16. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Arantes V, Jellison J, Goodell B. Appl Microbiol Biotechnol 94 323-338 (2012)
  17. Structural diversity of lytic polysaccharide monooxygenases. Vaaje-Kolstad G, Forsberg Z, Loose JS, Bissaro B, Eijsink VG. Curr Opin Struct Biol 44 67-76 (2017)
  18. Plant cell walls to ethanol. Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschal K. Biochem J 442 241-252 (2012)
  19. Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Koppram R, Tomás-Pejó E, Xiros C, Olsson L. Trends Biotechnol 32 46-53 (2014)
  20. New enzyme insights drive advances in commercial ethanol production. Harris PV, Xu F, Kreel NE, Kang C, Fukuyama S. Curr Opin Chem Biol 19 162-170 (2014)
  21. Oxidoreductases on their way to industrial biotransformations. Martínez AT, Ruiz-Dueñas FJ, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, Herold-Majumdar OM, Hofrichter M, Liers C, Ullrich R, Scheibner K, Sannia G, Piscitelli A, Pezzella C, Sener ME, Kılıç S, van Berkel WJH, Guallar V, Lucas MF, Zuhse R, Ludwig R, Hollmann F, Fernández-Fueyo E, Record E, Faulds CB, Tortajada M, Winckelmann I, Rasmussen JA, Gelo-Pujic M, Gutiérrez A, Del Río JC, Rencoret J, Alcalde M. Biotechnol Adv 35 815-831 (2017)
  22. Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Gibson DM, King BC, Hayes ML, Bergstrom GC. Curr Opin Microbiol 14 264-270 (2011)
  23. Enzymatic degradation of plant biomass and synthetic polymers. Chen CC, Dai L, Ma L, Guo RT, Guo RT. Nat Rev Chem 4 114-126 (2020)
  24. Novel traits of Trichoderma predicted through the analysis of its secretome. Druzhinina IS, Shelest E, Kubicek CP. FEMS Microbiol Lett 337 1-9 (2012)
  25. Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes. Kersten P, Cullen D. Fungal Genet Biol 72 124-130 (2014)
  26. Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila. Karnaouri A, Topakas E, Antonopoulou I, Christakopoulos P. Front Microbiol 5 281 (2014)
  27. Distinct Substrate Specificities and Electron-Donating Systems of Fungal Lytic Polysaccharide Monooxygenases. Frommhagen M, Westphal AH, van Berkel WJH, Kabel MA. Front Microbiol 9 1080 (2018)
  28. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A. J Ind Microbiol Biotechnol 47 623-657 (2020)
  29. Glycoside hydrolases: catalytic base/nucleophile diversity. Vuong TV, Wilson DB. Biotechnol Bioeng 107 195-205 (2010)
  30. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Kim IJ, Lee HJ, Choi IG, Kim KH. Appl Microbiol Biotechnol 98 8469-8480 (2014)
  31. Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Li X, Zheng Y. Biotechnol Adv 35 466-489 (2017)
  32. Processive and nonprocessive cellulases for biofuel production--lessons from bacterial genomes and structural analysis. Wilson DB. Appl Microbiol Biotechnol 93 497-502 (2012)
  33. Recalcitrant polysaccharide degradation by novel oxidative biocatalysts. Dimarogona M, Topakas E, Christakopoulos P. Appl Microbiol Biotechnol 97 8455-8465 (2013)
  34. Cellulose degradation by oxidative enzymes. Dimarogona M, Topakas E, Christakopoulos P. Comput Struct Biotechnol J 2 e201209015 (2012)
  35. Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Phitsuwan P, Laohakunjit N, Kerdchoechuen O, Kyu KL, Ratanakhanokchai K. Folia Microbiol (Praha) 58 163-176 (2013)
  36. Biocatalytic conversion of lignocellulose to platform chemicals. Jäger G, Büchs J. Biotechnol J 7 1122-1136 (2012)
  37. Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Srivastava N, Rathour R, Jha S, Pandey K, Srivastava M, Thakur VK, Sengar RS, Gupta VK, Mazumder PB, Khan AF, Mishra PK. Biomolecules 9 E220 (2019)
  38. Lytic polysaccharide monooxygenases and other histidine-brace copper proteins: structure, oxygen activation and biotechnological applications. Ipsen JØ, Hallas-Møller M, Brander S, Lo Leggio L, Johansen KS. Biochem Soc Trans 49 531-540 (2021)
  39. Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Wang BT, Hu S, Yu XY, Jin L, Zhu YJ, Jin FJ. Polymers (Basel) 12 E530 (2020)
  40. Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases. Agostoni M, Hangasky JA, Marletta MA. Microbiol Mol Biol Rev 81 e00015-17 (2017)
  41. Structural biology of starch-degrading enzymes and their regulation. Møller MS, Svensson B. Curr Opin Struct Biol 40 33-42 (2016)
  42. Starch-degrading polysaccharide monooxygenases. Vu VV, Marletta MA. Cell Mol Life Sci 73 2809-2819 (2016)
  43. AA9 and AA10: from enigmatic to essential enzymes. Corrêa TL, dos Santos LV, Pereira GA. Appl Microbiol Biotechnol 100 9-16 (2016)
  44. Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus. Shida Y, Furukawa T, Ogasawara W. Biosci Biotechnol Biochem 80 1712-1729 (2016)
  45. Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation. Zhang R. Appl Microbiol Biotechnol 104 3229-3243 (2020)
  46. Fungal lytic polysaccharide monooxygenases from family AA9: Recent developments and application in lignocelullose breakdown. Monclaro AV, Filho EXF. Int J Biol Macromol 102 771-778 (2017)
  47. On the impact of carbohydrate-binding modules (CBMs) in lytic polysaccharide monooxygenases (LPMOs). Forsberg Z, Courtade G. Essays Biochem 67 561-574 (2023)
  48. Harnessing microbial wealth for lignocellulose biomass valorization through secretomics: a review. Sethupathy S, Morales GM, Li Y, Wang Y, Jiang J, Sun J, Zhu D. Biotechnol Biofuels 14 154 (2021)
  49. Molecular Mechanism of Substrate Oxidation in Lytic Polysaccharide Monooxygenases: Insight from Theoretical Investigations. Hagemann MM, Hedegård ED. Chemistry 29 e202202379 (2023)
  50. Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases. Munzone A, Eijsink VGH, Berrin JG, Bissaro B. Nat Rev Chem 8 106-119 (2024)
  51. Revisiting the role of electron donors in lytic polysaccharide monooxygenase biochemistry. Hemsworth GR. Essays Biochem 67 585-595 (2023)
  52. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Int J Mol Sci 24 6368 (2023)
  53. Hemicellulolytic enzymes in lignocellulose processing. Østby H, Várnai A. Essays Biochem 67 533-550 (2023)

Articles citing this publication (287)