3eja Citations

Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family.

Abstract

Currently, the relatively high cost of enzymes such as glycoside hydrolases that catalyze cellulose hydrolysis represents a barrier to commercialization of a biorefinery capable of producing renewable transportable fuels such as ethanol from abundant lignocellulosic biomass. Among the many families of glycoside hydrolases that catalyze cellulose and hemicellulose hydrolysis, few are more enigmatic than family 61 (GH61), originally classified based on measurement of very weak endo-1,4-beta-d-glucanase activity in one family member. Here we show that certain GH61 proteins lack measurable hydrolytic activity by themselves but in the presence of various divalent metal ions can significantly reduce the total protein loading required to hydrolyze lignocellulosic biomass. We also solved the structure of one highly active GH61 protein and find that it is devoid of conserved, closely juxtaposed acidic side chains that could serve as general proton donor and nucleophile/base in a canonical hydrolytic reaction, and we conclude that the GH61 proteins are unlikely to be glycoside hydrolases. Structure-based mutagenesis shows the importance of several conserved residues for GH61 function. By incorporating the gene for one GH61 protein into a commercial Trichoderma reesei strain producing high levels of cellulolytic enzymes, we are able to reduce by 2-fold the total protein loading (and hence the cost) required to hydrolyze lignocellulosic biomass.

Reviews - 3eja mentioned but not cited (7)

  1. Plant-polysaccharide-degrading enzymes from Basidiomycetes. Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR. Microbiol Mol Biol Rev 78 614-649 (2014)
  2. Oxygen Activation by Cu LPMOs in Recalcitrant Carbohydrate Polysaccharide Conversion to Monomer Sugars. Meier KK, Jones SM, Kaper T, Hansson H, Koetsier MJ, Karkehabadi S, Solomon EI, Sandgren M, Kelemen B. Chem Rev 118 2593-2635 (2018)
  3. Lytic polysaccharide monooxygenases: a crystallographer's view on a new class of biomass-degrading enzymes. Frandsen KE, Lo Leggio L. IUCrJ 3 448-467 (2016)
  4. Genomics review of holocellulose deconstruction by aspergilli. Segato F, Damásio AR, de Lucas RC, Squina FM, Prade RA. Microbiol Mol Biol Rev 78 588-613 (2014)
  5. Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family. Morgenstern I, Powlowski J, Tsang A. Brief Funct Genomics 13 471-481 (2014)
  6. A structural overview of GH61 proteins - fungal cellulose degrading polysaccharide monooxygenases. Lo Leggio L, Welner D, De Maria L. Comput Struct Biotechnol J 2 e201209019 (2012)
  7. Oxidative Power: Tools for Assessing LPMO Activity on Cellulose. Calderaro F, Bevers LE, van den Berg MA. Biomolecules 11 1098 (2021)

Articles - 3eja mentioned but not cited (10)

  1. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Li X, Beeson WT, Phillips CM, Marletta MA, Cate JH. Structure 20 1051-1061 (2012)
  2. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Frandsen KE, Simmons TJ, Dupree P, Poulsen JC, Hemsworth GR, Ciano L, Johnston EM, Tovborg M, Johansen KS, von Freiesleben P, Marmuse L, Fort S, Cottaz S, Driguez H, Henrissat B, Lenfant N, Tuna F, Baldansuren A, Davies GJ, Lo Leggio L, Walton PH. Nat Chem Biol 12 298-303 (2016)
  3. Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity. Borisova AS, Isaksen T, Dimarogona M, Kognole AA, Mathiesen G, Várnai A, Røhr ÅK, Payne CM, Sørlie M, Sandgren M, Eijsink VG. J Biol Chem 290 22955-22969 (2015)
  4. Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium. Wu M, Beckham GT, Larsson AM, Ishida T, Kim S, Payne CM, Himmel ME, Crowley MF, Horn SJ, Westereng B, Igarashi K, Samejima M, Ståhlberg J, Eijsink VG, Sandgren M. J Biol Chem 288 12828-12839 (2013)
  5. Structural and electronic snapshots during the transition from a Cu(II) to Cu(I) metal center of a lytic polysaccharide monooxygenase by X-ray photoreduction. Gudmundsson M, Kim S, Wu M, Ishida T, Momeni MH, Vaaje-Kolstad G, Lundberg D, Royant A, Ståhlberg J, Eijsink VG, Beckham GT, Sandgren M. J Biol Chem 289 18782-18792 (2014)
  6. Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases. Frandsen KEH, Tovborg M, Jørgensen CI, Spodsberg N, Rosso MN, Hemsworth GR, Garman EF, Grime GW, Poulsen JN, Batth TS, Miyauchi S, Lipzen A, Daum C, Grigoriev IV, Johansen KS, Henrissat B, Berrin JG, Lo Leggio L. J Biol Chem 294 17117-17130 (2019)
  7. Characterization of an AA9 LPMO from Thielavia australiensis, TausLPMO9B, under industrially relevant lignocellulose saccharification conditions. Calderaro F, Keser M, Akeroyd M, Bevers LE, Eijsink VGH, Várnai A, van den Berg MA. Biotechnol Biofuels 13 195 (2020)
  8. Bioinformatic characterization of type-specific sequence and structural features in auxiliary activity family 9 proteins. Moses V, Hatherley R, Tastan Bishop Ö. Biotechnol Biofuels 9 239 (2016)
  9. Prediction of Long Loops with Embedded Secondary Structure using the Protein Local Optimization Program. Miller EB, Murrett CS, Zhu K, Zhao S, Goldfeld DA, Bylund JH, Friesner RA. J Chem Theory Comput 9 1846-4864 (2013)
  10. Water-soluble chlorophyll-binding proteins from Brassica oleracea allow for stable photobiocatalytic oxidation of cellulose by a lytic polysaccharide monooxygenase. Dodge N, Russo DA, Blossom BM, Singh RK, van Oort B, Croce R, Bjerrum MJ, Jensen PE. Biotechnol Biofuels 13 192 (2020)


Reviews citing this publication (53)

  1. Deconstruction of lignocellulosic biomass to fuels and chemicals. Chundawat SP, Beckham GT, Himmel ME, Dale BE. Annu Rev Chem Biomol Eng 2 121-145 (2011)
  2. Fungal enzyme sets for plant polysaccharide degradation. van den Brink J, de Vries RP. Appl Microbiol Biotechnol 91 1477-1492 (2011)
  3. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes--factors affecting enzymes, conversion and synergy. Van Dyk JS, Pletschke BI. Biotechnol Adv 30 1458-1480 (2012)
  4. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Bischof RH, Ramoni J, Seiboth B. Microb Cell Fact 15 106 (2016)
  5. Plant cell wall deconstruction by ascomycete fungi. Glass NL, Schmoll M, Cate JH, Coradetti S. Annu Rev Microbiol 67 477-498 (2013)
  6. The biochemistry and structural biology of plant cell wall deconstruction. Gilbert HJ. Plant Physiol 153 444-455 (2010)
  7. Fungal traits that drive ecosystem dynamics on land. Treseder KK, Lennon JT. Microbiol Mol Biol Rev 79 243-262 (2015)
  8. Microbial diversity of cellulose hydrolysis. Wilson DB. Curr Opin Microbiol 14 259-263 (2011)
  9. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides. Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VG. FEBS J 280 3028-3049 (2013)
  10. Cellulose degradation by polysaccharide monooxygenases. Beeson WT, Vu VV, Span EA, Phillips CM, Marletta MA. Annu Rev Biochem 84 923-946 (2015)
  11. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK. Bioresour Technol 128 751-759 (2013)
  12. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Microbiol Mol Biol Rev 82 e00029-18 (2018)
  13. Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Hemsworth GR, Davies GJ, Walton PH. Curr Opin Struct Biol 23 660-668 (2013)
  14. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete Jde J, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. Microbiol Mol Biol Rev 80 205-327 (2016)
  15. Genome analyses highlight the different biological roles of cellulases. Mba Medie F, Davies GJ, Drancourt M, Henrissat B. Nat Rev Microbiol 10 227-234 (2012)
  16. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Arantes V, Jellison J, Goodell B. Appl Microbiol Biotechnol 94 323-338 (2012)
  17. Structural diversity of lytic polysaccharide monooxygenases. Vaaje-Kolstad G, Forsberg Z, Loose JS, Bissaro B, Eijsink VG. Curr Opin Struct Biol 44 67-76 (2017)
  18. Plant cell walls to ethanol. Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschal K. Biochem J 442 241-252 (2012)
  19. Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Koppram R, Tomás-Pejó E, Xiros C, Olsson L. Trends Biotechnol 32 46-53 (2014)
  20. New enzyme insights drive advances in commercial ethanol production. Harris PV, Xu F, Kreel NE, Kang C, Fukuyama S. Curr Opin Chem Biol 19 162-170 (2014)
  21. Oxidoreductases on their way to industrial biotransformations. Martínez AT, Ruiz-Dueñas FJ, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, Herold-Majumdar OM, Hofrichter M, Liers C, Ullrich R, Scheibner K, Sannia G, Piscitelli A, Pezzella C, Sener ME, Kılıç S, van Berkel WJH, Guallar V, Lucas MF, Zuhse R, Ludwig R, Hollmann F, Fernández-Fueyo E, Record E, Faulds CB, Tortajada M, Winckelmann I, Rasmussen JA, Gelo-Pujic M, Gutiérrez A, Del Río JC, Rencoret J, Alcalde M. Biotechnol Adv 35 815-831 (2017)
  22. Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Gibson DM, King BC, Hayes ML, Bergstrom GC. Curr Opin Microbiol 14 264-270 (2011)
  23. Enzymatic degradation of plant biomass and synthetic polymers. Chen CC, Dai L, Ma L, Guo RT, Guo RT. Nat Rev Chem 4 114-126 (2020)
  24. Novel traits of Trichoderma predicted through the analysis of its secretome. Druzhinina IS, Shelest E, Kubicek CP. FEMS Microbiol Lett 337 1-9 (2012)
  25. Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes. Kersten P, Cullen D. Fungal Genet Biol 72 124-130 (2014)
  26. Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila. Karnaouri A, Topakas E, Antonopoulou I, Christakopoulos P. Front Microbiol 5 281 (2014)
  27. Distinct Substrate Specificities and Electron-Donating Systems of Fungal Lytic Polysaccharide Monooxygenases. Frommhagen M, Westphal AH, van Berkel WJH, Kabel MA. Front Microbiol 9 1080 (2018)
  28. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A. J Ind Microbiol Biotechnol 47 623-657 (2020)
  29. Glycoside hydrolases: catalytic base/nucleophile diversity. Vuong TV, Wilson DB. Biotechnol Bioeng 107 195-205 (2010)
  30. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Kim IJ, Lee HJ, Choi IG, Kim KH. Appl Microbiol Biotechnol 98 8469-8480 (2014)
  31. Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Li X, Zheng Y. Biotechnol Adv 35 466-489 (2017)
  32. Processive and nonprocessive cellulases for biofuel production--lessons from bacterial genomes and structural analysis. Wilson DB. Appl Microbiol Biotechnol 93 497-502 (2012)
  33. Recalcitrant polysaccharide degradation by novel oxidative biocatalysts. Dimarogona M, Topakas E, Christakopoulos P. Appl Microbiol Biotechnol 97 8455-8465 (2013)
  34. Cellulose degradation by oxidative enzymes. Dimarogona M, Topakas E, Christakopoulos P. Comput Struct Biotechnol J 2 e201209015 (2012)
  35. Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Phitsuwan P, Laohakunjit N, Kerdchoechuen O, Kyu KL, Ratanakhanokchai K. Folia Microbiol (Praha) 58 163-176 (2013)
  36. Biocatalytic conversion of lignocellulose to platform chemicals. Jäger G, Büchs J. Biotechnol J 7 1122-1136 (2012)
  37. Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Srivastava N, Rathour R, Jha S, Pandey K, Srivastava M, Thakur VK, Sengar RS, Gupta VK, Mazumder PB, Khan AF, Mishra PK. Biomolecules 9 E220 (2019)
  38. Lytic polysaccharide monooxygenases and other histidine-brace copper proteins: structure, oxygen activation and biotechnological applications. Ipsen JØ, Hallas-Møller M, Brander S, Lo Leggio L, Johansen KS. Biochem Soc Trans 49 531-540 (2021)
  39. Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Wang BT, Hu S, Yu XY, Jin L, Zhu YJ, Jin FJ. Polymers (Basel) 12 E530 (2020)
  40. Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases. Agostoni M, Hangasky JA, Marletta MA. Microbiol Mol Biol Rev 81 e00015-17 (2017)
  41. Structural biology of starch-degrading enzymes and their regulation. Møller MS, Svensson B. Curr Opin Struct Biol 40 33-42 (2016)
  42. Starch-degrading polysaccharide monooxygenases. Vu VV, Marletta MA. Cell Mol Life Sci 73 2809-2819 (2016)
  43. AA9 and AA10: from enigmatic to essential enzymes. Corrêa TL, dos Santos LV, Pereira GA. Appl Microbiol Biotechnol 100 9-16 (2016)
  44. Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus. Shida Y, Furukawa T, Ogasawara W. Biosci Biotechnol Biochem 80 1712-1729 (2016)
  45. Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation. Zhang R. Appl Microbiol Biotechnol 104 3229-3243 (2020)
  46. Fungal lytic polysaccharide monooxygenases from family AA9: Recent developments and application in lignocelullose breakdown. Monclaro AV, Filho EXF. Int J Biol Macromol 102 771-778 (2017)
  47. On the impact of carbohydrate-binding modules (CBMs) in lytic polysaccharide monooxygenases (LPMOs). Forsberg Z, Courtade G. Essays Biochem 67 561-574 (2023)
  48. Harnessing microbial wealth for lignocellulose biomass valorization through secretomics: a review. Sethupathy S, Morales GM, Li Y, Wang Y, Jiang J, Sun J, Zhu D. Biotechnol Biofuels 14 154 (2021)
  49. Molecular Mechanism of Substrate Oxidation in Lytic Polysaccharide Monooxygenases: Insight from Theoretical Investigations. Hagemann MM, Hedegård ED. Chemistry 29 e202202379 (2023)
  50. Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases. Munzone A, Eijsink VGH, Berrin JG, Bissaro B. Nat Rev Chem 8 106-119 (2024)
  51. Revisiting the role of electron donors in lytic polysaccharide monooxygenase biochemistry. Hemsworth GR. Essays Biochem 67 585-595 (2023)
  52. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Int J Mol Sci 24 6368 (2023)
  53. Hemicellulolytic enzymes in lignocellulose processing. Østby H, Várnai A. Essays Biochem 67 533-550 (2023)

Articles citing this publication (287)

  1. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Biotechnol Biofuels 6 41 (2013)
  2. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VG. Science 330 219-222 (2010)
  3. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC, Johansen KS, Krogh KB, Jørgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH. Proc Natl Acad Sci U S A 108 15079-15084 (2011)
  4. Novel enzymes for the degradation of cellulose. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG. Biotechnol Biofuels 5 45 (2012)
  5. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Otillar R, Lindquist EA, Sun H, LaButti KM, Schmutz J, Jabbour D, Luo H, Baker SE, Pisabarro AG, Walton JD, Blanchette RA, Henrissat B, Martin F, Cullen D, Hibbett DS, Grigoriev IV. Proc Natl Acad Sci U S A 111 9923-9928 (2014)
  6. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC, Dhillon B, Glaser F, Hesse CN, Kosti I, LaButti K, Lindquist EA, Lucas S, Salamov AA, Bradshaw RE, Ciuffetti L, Hamelin RC, Kema GH, Lawrence C, Scott JA, Spatafora JW, Turgeon BG, de Wit PJ, Zhong S, Goodwin SB, Grigoriev IV. PLoS Pathog 8 e1003037 (2012)
  7. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan MC, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LD, Baker SE, Magnuson J, Laboissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A. Nat Biotechnol 29 922-927 (2011)
  8. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD. Appl Environ Microbiol 77 7007-7015 (2011)
  9. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B. Proc Natl Acad Sci U S A 111 6287-6292 (2014)
  10. Cleavage of cellulose by a CBM33 protein. Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunæs AC, Stenstrøm Y, MacKenzie A, Sørlie M, Horn SJ, Eijsink VG. Protein Sci 20 1479-1483 (2011)
  11. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Hemsworth GR, Henrissat B, Davies GJ, Walton PH. Nat Chem Biol 10 122-126 (2014)
  12. Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Kittl R, Kracher D, Burgstaller D, Haltrich D, Ludwig R. Biotechnol Biofuels 5 79 (2012)
  13. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Forsberg Z, Mackenzie AK, Sørlie M, Røhr ÅK, Helland R, Arvai AS, Vaaje-Kolstad G, Eijsink VG. Proc Natl Acad Sci U S A 111 8446-8451 (2014)
  14. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Lo Leggio L, Simmons TJ, Poulsen JC, Frandsen KE, Hemsworth GR, Stringer MA, von Freiesleben P, Tovborg M, Johansen KS, De Maria L, Harris PV, Soong CL, Dupree P, Tryfona T, Lenfant N, Henrissat B, Davies GJ, Walton PH. Nat Commun 6 5961 (2015)
  15. A family of starch-active polysaccharide monooxygenases. Vu VV, Beeson WT, Span EA, Farquhar ER, Marletta MA. Proc Natl Acad Sci U S A 111 13822-13827 (2014)
  16. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Aachmann FL, Sørlie M, Skjåk-Bræk G, Eijsink VG, Vaaje-Kolstad G. Proc Natl Acad Sci U S A 109 18779-18784 (2012)
  17. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VG, Igarashi K, Samejima M, Ståhlberg J, Horn SJ, Sandgren M. PLoS One 6 e27807 (2011)
  18. Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. Eibinger M, Ganner T, Bubner P, Rošker S, Kracher D, Haltrich D, Ludwig R, Plank H, Nidetzky B. J Biol Chem 289 35929-35938 (2014)
  19. Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Bennati-Granier C, Garajova S, Champion C, Grisel S, Haon M, Zhou S, Fanuel M, Ropartz D, Rogniaux H, Gimbert I, Record E, Berrin JG. Biotechnol Biofuels 8 90 (2015)
  20. Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Kim S, Ståhlberg J, Sandgren M, Paton RS, Beckham GT. Proc Natl Acad Sci U S A 111 149-154 (2014)
  21. In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. Zhang XW, Jia LJ, Zhang Y, Jiang G, Li X, Zhang D, Tang WH. Plant Cell 24 5159-5176 (2012)
  22. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hällberg BM, Ludwig R, Divne C. Nat Commun 6 7542 (2015)
  23. The copper active site of CBM33 polysaccharide oxygenases. Hemsworth GR, Taylor EJ, Kim RQ, Gregory RC, Lewis SJ, Turkenburg JP, Parkin A, Davies GJ, Walton PH. J Am Chem Soc 135 6069-6077 (2013)
  24. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM. Biotechnol Biofuels 4 4 (2011)
  25. Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Frommhagen M, Sforza S, Westphal AH, Visser J, Hinz SW, Koetsier MJ, van Berkel WJ, Gruppen H, Kabel MA. Biotechnol Biofuels 8 101 (2015)
  26. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Müller G, Várnai A, Johansen KS, Eijsink VG, Horn SJ. Biotechnol Biofuels 8 187 (2015)
  27. Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases. Kjaergaard CH, Qayyum MF, Wong SD, Xu F, Hemsworth GR, Walton DJ, Young NA, Davies GJ, Walton PH, Johansen KS, Hodgson KO, Hedman B, Solomon EI. Proc Natl Acad Sci U S A 111 8797-8802 (2014)
  28. Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina. Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho PM, Berrin JG, Sigoillot JC. Appl Environ Microbiol 79 488-496 (2013)
  29. Reactivity of O2 versus H2O2 with polysaccharide monooxygenases. Hangasky JA, Iavarone AT, Marletta MA. Proc Natl Acad Sci U S A 115 4915-4920 (2018)
  30. Fungal Beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Sørensen A, Lübeck M, Lübeck PS, Ahring BK. Biomolecules 3 612-631 (2013)
  31. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Cannella D, Hsieh CW, Felby C, Jørgensen H. Biotechnol Biofuels 5 26 (2012)
  32. Endo-exo synergism in cellulose hydrolysis revisited. Jalak J, Kurašin M, Teugjas H, Väljamäe P. J Biol Chem 287 28802-28815 (2012)
  33. Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA sequencing. Delmas S, Pullan ST, Gaddipati S, Kokolski M, Malla S, Blythe MJ, Ibbett R, Campbell M, Liddell S, Aboobaker A, Tucker GA, Archer DB. PLoS Genet 8 e1002875 (2012)
  34. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1. Gui YJ, Chen JY, Zhang DD, Li NY, Li TG, Zhang WQ, Wang XY, Short DPG, Li L, Guo W, Kong ZQ, Bao YM, Subbarao KV, Dai XF. Environ Microbiol 19 1914-1932 (2017)
  35. Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Cannella D, Möllers KB, Frigaard NU, Jensen PE, Bjerrum MJ, Johansen KS, Felby C. Nat Commun 7 11134 (2016)
  36. Sequencing and comparative analysis of the straw mushroom (Volvariella volvacea) genome. Bao D, Gong M, Zheng H, Chen M, Zhang L, Wang H, Jiang J, Wu L, Zhu Y, Zhu G, Zhou Y, Li C, Wang S, Zhao Y, Zhao G, Tan Q. PLoS One 8 e58294 (2013)
  37. Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM33 enzyme. Vaaje-Kolstad G, Bøhle LA, Gåseidnes S, Dalhus B, Bjørås M, Mathiesen G, Eijsink VG. J Mol Biol 416 239-254 (2012)
  38. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. Couturier M, Navarro D, Olivé C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho PM, Berrin JG. BMC Genomics 13 57 (2012)
  39. Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates. Simmons TJ, Frandsen KEH, Ciano L, Tryfona T, Lenfant N, Poulsen JC, Wilson LFL, Tandrup T, Tovborg M, Schnorr K, Johansen KS, Henrissat B, Walton PH, Lo Leggio L, Dupree P. Nat Commun 8 1064 (2017)
  40. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii. Floudas D, Held BW, Riley R, Nagy LG, Koehler G, Ransdell AS, Younus H, Chow J, Chiniquy J, Lipzen A, Tritt A, Sun H, Haridas S, LaButti K, Ohm RA, Kües U, Blanchette RA, Grigoriev IV, Minto RE, Hibbett DS. Fungal Genet Biol 76 78-92 (2015)
  41. The synergistic action of accessory enzymes enhances the hydrolytic potential of a "cellulase mixture" but is highly substrate specific. Hu J, Arantes V, Pribowo A, Saddler JN. Biotechnol Biofuels 6 112 (2013)
  42. Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation. Sygmund C, Kracher D, Scheiblbrandner S, Zahma K, Felice AK, Harreither W, Kittl R, Ludwig R. Appl Environ Microbiol 78 6161-6171 (2012)
  43. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Cannella D, Jørgensen H. Biotechnol Bioeng 111 59-68 (2014)
  44. Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species. Vanden Wymelenberg A, Gaskell J, Mozuch M, BonDurant SS, Sabat G, Ralph J, Skyba O, Mansfield SD, Blanchette RA, Grigoriev IV, Kersten PJ, Cullen D. Appl Environ Microbiol 77 4499-4507 (2011)
  45. AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes. Filiatrault-Chastel C, Navarro D, Haon M, Grisel S, Herpoël-Gimbert I, Chevret D, Fanuel M, Henrissat B, Heiss-Blanquet S, Margeot A, Berrin JG. Biotechnol Biofuels 12 55 (2019)
  46. Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose. Garajova S, Mathieu Y, Beccia MR, Bennati-Granier C, Biaso F, Fanuel M, Ropartz D, Guigliarelli B, Record E, Rogniaux H, Henrissat B, Berrin JG. Sci Rep 6 28276 (2016)
  47. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Hori C, Gaskell J, Igarashi K, Samejima M, Hibbett D, Henrissat B, Cullen D. Mycologia 105 1412-1427 (2013)
  48. A comparative systems analysis of polysaccharide-elicited responses in Neurospora crassa reveals carbon source-specific cellular adaptations. Benz JP, Chau BH, Zheng D, Bauer S, Glass NL, Somerville CR. Mol Microbiol 91 275-299 (2014)
  49. Quantitative proteomic approach for cellulose degradation by Neurospora crassa. Phillips CM, Iavarone AT, Marletta MA. J Proteome Res 10 4177-4185 (2011)
  50. Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. Ries L, Pullan ST, Delmas S, Malla S, Blythe MJ, Archer DB. BMC Genomics 14 541 (2013)
  51. Catalytic properties, functional attributes and industrial applications of β-glucosidases. Singh G, Verma AK, Kumar V. 3 Biotech 6 3 (2016)
  52. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Walton JD. Biotechnol Biofuels 3 22 (2010)
  53. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level. Battaglia E, Benoit I, van den Brink J, Wiebenga A, Coutinho PM, Henrissat B, de Vries RP. BMC Genomics 12 38 (2011)
  54. Molecular mechanism of the chitinolytic peroxygenase reaction. Bissaro B, Streit B, Isaksen I, Eijsink VGH, Beckham GT, DuBois JL, Røhr ÅK. Proc Natl Acad Sci U S A 117 1504-1513 (2020)
  55. The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail. Müller G, Chylenski P, Bissaro B, Eijsink VGH, Horn SJ. Biotechnol Biofuels 11 209 (2018)
  56. Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood. MacDonald J, Doering M, Canam T, Gong Y, Guttman DS, Campbell MM, Master ER. Appl Environ Microbiol 77 3211-3218 (2011)
  57. The Role of the Secondary Coordination Sphere in a Fungal Polysaccharide Monooxygenase. Span EA, Suess DLM, Deller MC, Britt RD, Marletta MA. ACS Chem Biol 12 1095-1103 (2017)
  58. Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Arfi Y, Shamshoum M, Rogachev I, Peleg Y, Bayer EA. Proc Natl Acad Sci U S A 111 9109-9114 (2014)
  59. Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass. Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Bongers M, Walton JD. Bioresour Technol 101 9097-9105 (2010)
  60. The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases. Crouch LI, Labourel A, Walton PH, Davies GJ, Gilbert HJ. J Biol Chem 291 7439-7449 (2016)
  61. Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile. Dimarogona M, Topakas E, Olsson L, Christakopoulos P. Bioresour Technol 110 480-487 (2012)
  62. Structural determinants of bacterial lytic polysaccharide monooxygenase functionality. Forsberg Z, Bissaro B, Gullesen J, Dalhus B, Vaaje-Kolstad G, Eijsink VGH. J Biol Chem 293 1397-1412 (2018)
  63. Temporal alterations in the secretome of the selective ligninolytic fungus Ceriporiopsis subvermispora during growth on aspen wood reveal this organism's strategy for degrading lignocellulose. Hori C, Gaskell J, Igarashi K, Kersten P, Mozuch M, Samejima M, Cullen D. Appl Environ Microbiol 80 2062-2070 (2014)
  64. The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation. Courtade G, Forsberg Z, Heggset EB, Eijsink VGH, Aachmann FL. J Biol Chem 293 13006-13015 (2018)
  65. Classification of fungal and bacterial lytic polysaccharide monooxygenases. Busk PK, Lange L. BMC Genomics 16 368 (2015)
  66. Methylation of the N-terminal histidine protects a lytic polysaccharide monooxygenase from auto-oxidative inactivation. Petrović DM, Bissaro B, Chylenski P, Skaugen M, Sørlie M, Jensen MS, Aachmann FL, Courtade G, Várnai A, Eijsink VGH. Protein Sci 27 1636-1650 (2018)
  67. The metagenome of an anaerobic microbial community decomposing poplar wood chips. van der Lelie D, Taghavi S, McCorkle SM, Li LL, Malfatti SA, Monteleone D, Donohoe BS, Ding SY, Adney WS, Himmel ME, Tringe SG. PLoS One 7 e36740 (2012)
  68. Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on cellulose. Nimlos MR, Beckham GT, Matthews JF, Bu L, Himmel ME, Crowley MF. J Biol Chem 287 20603-20612 (2012)
  69. Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola. Morais do Amaral A, Antoniw J, Rudd JJ, Hammond-Kosack KE. PLoS One 7 e49904 (2012)
  70. Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus. Couturier M, Navarro D, Chevret D, Henrissat B, Piumi F, Ruiz-Dueñas FJ, Martinez AT, Grigoriev IV, Riley R, Lipzen A, Berrin JG, Master ER, Rosso MN. Biotechnol Biofuels 8 216 (2015)
  71. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. McClendon SD, Batth T, Petzold CJ, Adams PD, Simmons BA, Singer SW. Biotechnol Biofuels 5 54 (2012)
  72. Towards a carbon-negative sustainable bio-based economy. Vanholme B, Desmet T, Ronsse F, Rabaey K, Van Breusegem F, De Mey M, Soetaert W, Boerjan W. Front Plant Sci 4 174 (2013)
  73. Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment. Salvachúa D, Martínez AT, Tien M, López-Lucendo MF, García F, de Los Ríos V, Martínez MJ, Prieto A. Biotechnol Biofuels 6 115 (2013)
  74. Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass. Gourlay K, Hu J, Arantes V, Andberg M, Saloheimo M, Penttilä M, Saddler J. Bioresour Technol 142 498-503 (2013)
  75. A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover. Saykhedkar S, Ray A, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ. Biotechnol Biofuels 5 52 (2012)
  76. Formation of a Copper(II)-Tyrosyl Complex at the Active Site of Lytic Polysaccharide Monooxygenases Following Oxidation by H2O2. Paradisi A, Johnston EM, Tovborg M, Nicoll CR, Ciano L, Dowle A, McMaster J, Hancock Y, Davies GJ, Walton PH. J Am Chem Soc 141 18585-18599 (2019)
  77. Molecular Mechanisms of Oxygen Activation and Hydrogen Peroxide Formation in Lytic Polysaccharide Monooxygenases. Wang B, Walton PH, Rovira C. ACS Catal 9 4958-4969 (2019)
  78. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability. Kracher D, Andlar M, Furtmüller PG, Ludwig R. J Biol Chem 293 1676-1687 (2018)
  79. Evolution of substrate specificity in bacterial AA10 lytic polysaccharide monooxygenases. Book AJ, Yennamalli RM, Takasuka TE, Currie CR, Phillips GN, Fox BG. Biotechnol Biofuels 7 109 (2014)
  80. Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose-degrading enzyme system. Zhu N, Liu J, Yang J, Lin Y, Yang Y, Ji L, Li M, Yuan H. Biotechnol Biofuels 9 42 (2016)
  81. Cerato-platanin shows expansin-like activity on cellulosic materials. Baccelli I, Luti S, Bernardi R, Scala A, Pazzagli L. Appl Microbiol Biotechnol 98 175-184 (2014)
  82. Molecular mechanism of lytic polysaccharide monooxygenases. Hedegård ED, Ryde U. Chem Sci 9 3866-3880 (2018)
  83. Consistent mutational paths predict eukaryotic thermostability. van Noort V, Bradatsch B, Arumugam M, Amlacher S, Bange G, Creevey C, Falk S, Mende DR, Sinning I, Hurt E, Bork P. BMC Evol Biol 13 7 (2013)
  84. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs. Busk PK, Lange L. Appl Environ Microbiol 79 3380-3391 (2013)
  85. Influence of the carbohydrate-binding module on the activity of a fungal AA9 lytic polysaccharide monooxygenase on cellulosic substrates. Chalak A, Villares A, Moreau C, Haon M, Grisel S, d'Orlando A, Herpoël-Gimbert I, Labourel A, Cathala B, Berrin JG. Biotechnol Biofuels 12 206 (2019)
  86. A bioinformatics analysis of 3400 lytic polysaccharide oxidases from family AA9. Lenfant N, Hainaut M, Terrapon N, Drula E, Lombard V, Henrissat B. Carbohydr Res 448 166-174 (2017)
  87. Kinetic insights into the role of the reductant in H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. Kuusk S, Kont R, Kuusk P, Heering A, Sørlie M, Bissaro B, Eijsink VGH, Väljamäe P. J Biol Chem 294 1516-1528 (2019)
  88. Ruminant Nutrition Symposium: Improving cell wall digestion and animal performance with fibrolytic enzymes. Adesogan AT, Ma ZX, Romero JJ, Arriola KG. J Anim Sci 92 1317-1330 (2014)
  89. Substrate-specific transcription of the enigmatic GH61 family of the pathogenic white-rot fungus Heterobasidion irregulare during growth on lignocellulose. Yakovlev I, Vaaje-Kolstad G, Hietala AM, Stefańczyk E, Solheim H, Fossdal CG. Appl Microbiol Biotechnol 95 979-990 (2012)
  90. Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes. Navarro D, Rosso MN, Haon M, Olivé C, Bonnin E, Lesage-Meessen L, Chevret D, Coutinho PM, Henrissat B, Berrin JG. Biotechnol Biofuels 7 143 (2014)
  91. High-resolution structure of a lytic polysaccharide monooxygenase from Hypocrea jecorina reveals a predicted linker as an integral part of the catalytic domain. Hansson H, Karkehabadi S, Mikkelsen N, Douglas NR, Kim S, Lam A, Kaper T, Kelemen B, Meier KK, Jones SM, Solomon EI, Sandgren M. J Biol Chem 292 19099-19109 (2017)
  92. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase. O'Dell WB, Agarwal PK, Meilleur F. Angew Chem Int Ed Engl 56 767-770 (2017)
  93. The H2O2-dependent activity of a fungal lytic polysaccharide monooxygenase investigated with a turbidimetric assay. Filandr F, Man P, Halada P, Chang H, Ludwig R, Kracher D. Biotechnol Biofuels 13 37 (2020)
  94. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action. Várnai A, Umezawa K, Yoshida M, Eijsink VGH. Appl Environ Microbiol 84 e00156-18 (2018)
  95. Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases. Bissaro B, Kommedal E, Røhr ÅK, Eijsink VGH. Nat Commun 11 890 (2020)
  96. Magnaporthe oryzae Auxiliary Activity Protein MoAa91 Functions as Chitin-Binding Protein To Induce Appressorium Formation on Artificial Inductive Surfaces and Suppress Plant Immunity. Li Y, Liu X, Liu M, Wang Y, Zou Y, You Y, Yang L, Hu J, Zhang H, Zheng X, Wang P, Zhang Z. mBio 11 e03304-19 (2020)
  97. Quantification of the catalytic performance of C1-cellulose-specific lytic polysaccharide monooxygenases. Frommhagen M, Westphal AH, Hilgers R, Koetsier MJ, Hinz SWA, Visser J, Gruppen H, van Berkel WJH, Kabel MA. Appl Microbiol Biotechnol 102 1281-1295 (2018)
  98. Structural Features on the Substrate-Binding Surface of Fungal Lytic Polysaccharide Monooxygenases Determine Their Oxidative Regioselectivity. Danneels B, Tanghe M, Desmet T. Biotechnol J 14 e1800211 (2019)
  99. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Mhuantong W, Charoensawan V, Kanokratana P, Tangphatsornruang S, Champreda V. Biotechnol Biofuels 8 16 (2015)
  100. Following the terrestrial tracks of Caulobacter - redefining the ecology of a reputed aquatic oligotroph. Wilhelm RC. ISME J 12 3025-3037 (2018)
  101. Rational engineering of the Trichoderma reesei RUT-C30 strain into an industrially relevant platform for cellulase production. Fonseca LM, Parreiras LS, Murakami MT. Biotechnol Biofuels 13 93 (2020)
  102. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Sun FF, Hong J, Hu J, Saddler JN, Fang X, Zhang Z, Shen S. Enzyme Microb Technol 79-80 42-48 (2015)
  103. Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs. Chylenski P, Petrović DM, Müller G, Dahlström M, Bengtsson O, Lersch M, Siika-Aho M, Horn SJ, Eijsink VGH. Biotechnol Biofuels 10 177 (2017)
  104. Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase. Hu J, Tian D, Renneckar S, Saddler JN. Sci Rep 8 3195 (2018)
  105. The Podospora anserina lytic polysaccharide monooxygenase PaLPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans. Fanuel M, Garajova S, Ropartz D, McGregor N, Brumer H, Rogniaux H, Berrin JG. Biotechnol Biofuels 10 63 (2017)
  106. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses. Larroque M, Barriot R, Bottin A, Barre A, Rougé P, Dumas B, Gaulin E. BMC Genomics 13 605 (2012)
  107. Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and α-L-arabinofuranosidase. Delabona Pda S, Cota J, Hoffmam ZB, Paixão DA, Farinas CS, Cairo JP, Lima DJ, Squina FM, Ruller R, Ruller R, Pradella JG. Bioresour Technol 131 500-507 (2013)
  108. A thermostable GH45 endoglucanase from yeast: impact of its atypical multimodularity on activity. Couturier M, Feliu J, Haon M, Navarro D, Lesage-Meessen L, Coutinho PM, Berrin JG. Microb Cell Fact 10 103 (2011)
  109. Biogas production and saccharification of Salix pretreated at different steam explosion conditions. Horn SJ, Estevez MM, Nielsen HK, Linjordet R, Eijsink VG. Bioresour Technol 102 7932-7936 (2011)
  110. Metatranscriptomics Reveals the Functions and Enzyme Profiles of the Microbial Community in Chinese Nong-Flavor Liquor Starter. Huang Y, Yi Z, Jin Y, Huang M, He K, Liu D, Luo H, Zhao D, He H, Fang Y, Zhao H. Front Microbiol 8 1747 (2017)
  111. Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases. Chaplin AK, Wilson MT, Hough MA, Svistunenko DA, Hemsworth GR, Walton PH, Vijgenboom E, Worrall JAR. J Biol Chem 291 12838-12850 (2016)
  112. A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan. Jagadeeswaran G, Gainey L, Prade R, Mort AJ. Appl Microbiol Biotechnol 100 4535-4547 (2016)
  113. Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels. Wu W, Davis RW, Tran-Gyamfi MB, Kuo A, LaButti K, Mihaltcheva S, Hundley H, Chovatia M, Lindquist E, Barry K, Grigoriev IV, Henrissat B, Gladden JM. Appl Microbiol Biotechnol 101 2603-2618 (2017)
  114. Draft Genome Sequence of the Grapevine Dieback Fungus Eutypa lata UCR-EL1. Blanco-Ulate B, Rolshausen PE, Cantu D. Genome Announc 1 e00228-13 (2013)
  115. Functional analysis of the degradation of cellulosic substrates by a Chaetomium globosum endophytic isolate. Longoni P, Rodolfi M, Pantaleoni L, Doria E, Concia L, Picco AM, Cella R. Appl Environ Microbiol 78 3693-3705 (2012)
  116. Real-time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility. Song B, Li B, Wang X, Shen W, Park S, Collings C, Feng A, Smith SJ, Walton JD, Ding SY. Biotechnol Biofuels 11 41 (2018)
  117. Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus Malbranchea cinnamomea by Functional Characterization. Hüttner S, Várnai A, Petrović DM, Bach CX, Kim Anh DT, Thanh VN, Eijsink VGH, Larsbrink J, Olsson L. Appl Environ Microbiol 85 e01408-19 (2019)
  118. Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Gourlay K, Arantes V, Saddler JN. Biotechnol Biofuels 5 51 (2012)
  119. CAZyme content of Pochonia chlamydosporia reflects that chitin and chitosan modification are involved in nematode parasitism. Aranda-Martinez A, Lenfant N, Escudero N, Zavala-Gonzalez EA, Henrissat B, Lopez-Llorca LV. Environ Microbiol 18 4200-4215 (2016)
  120. Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes. Poidevin L, Berrin JG, Bennati-Granier C, Levasseur A, Herpoël-Gimbert I, Chevret D, Coutinho PM, Henrissat B, Heiss-Blanquet S, Record E. Appl Microbiol Biotechnol 98 7457-7469 (2014)
  121. Influence of Lytic Polysaccharide Monooxygenase Active Site Segments on Activity and Affinity. Laurent CVFP, Sun P, Scheiblbrandner S, Csarman F, Cannazza P, Frommhagen M, van Berkel WJH, Oostenbrink C, Kabel MA, Ludwig R. Int J Mol Sci 20 E6219 (2019)
  122. Mechanism of hydrogen peroxide formation by lytic polysaccharide monooxygenase. Caldararu O, Oksanen E, Ryde U, Hedegård ED. Chem Sci 10 576-586 (2019)
  123. Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6. Patel I, Kracher D, Ma S, Garajova S, Haon M, Faulds CB, Berrin JG, Ludwig R, Record E. Biotechnol Biofuels 9 108 (2016)
  124. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature. Busk PK, Lange M, Pilgaard B, Lange L. PLoS One 9 e114138 (2014)
  125. Binding characteristics of a bacterial expansin (BsEXLX1) for various types of pretreated lignocellulose. Kim IJ, Ko HJ, Kim TW, Nam KH, Choi IG, Kim KH. Appl Microbiol Biotechnol 97 5381-5388 (2013)
  126. Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. Qin X, Su X, Luo H, Ma R, Yao B, Ma F. Biotechnol Biofuels 11 58 (2018)
  127. Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation. Attia M, Stepper J, Davies GJ, Brumer H. FEBS J 283 1701-1719 (2016)
  128. Recombinant expression of thermostable processive MtEG5 endoglucanase and its synergism with MtLPMO from Myceliophthora thermophila during the hydrolysis of lignocellulosic substrates. Karnaouri A, Muraleedharan MN, Dimarogona M, Topakas E, Rova U, Sandgren M, Christakopoulos P. Biotechnol Biofuels 10 126 (2017)
  129. Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. Chylenski P, Forsberg Z, Ståhlberg J, Várnai A, Lersch M, Bengtsson O, Sæbø S, Horn SJ, Eijsink VGH. J Biotechnol 246 16-23 (2017)
  130. Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues. Kruer-Zerhusen N, Alahuhta M, Lunin VV, Himmel ME, Bomble YJ, Wilson DB. Biotechnol Biofuels 10 243 (2017)
  131. The impact of a single-nucleotide mutation of bgl2 on cellulase induction in a Trichoderma reesei mutant. Shida Y, Yamaguchi K, Nitta M, Nakamura A, Takahashi M, Kidokoro S, Mori K, Tashiro K, Kuhara S, Matsuzawa T, Yaoi K, Sakamoto Y, Tanaka N, Morikawa Y, Ogasawara W. Biotechnol Biofuels 8 230 (2015)
  132. Transcriptional analysis of selected cellulose-acting enzymes encoding genes of the white-rot fungus Dichomitus squalens on spruce wood and microcrystalline cellulose. Rytioja J, Hildén K, Hatakka A, Mäkelä MR. Fungal Genet Biol 72 91-98 (2014)
  133. De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster. Kumar A, Henrissat B, Arvas M, Syed MF, Thieme N, Benz JP, Sørensen JL, Record E, Pöggeler S, Kempken F. PLoS One 10 e0140398 (2015)
  134. De novo genome assembly of the soil-borne fungus and tomato pathogen Pyrenochaeta lycopersici. Aragona M, Minio A, Ferrarini A, Valente MT, Bagnaresi P, Orrù L, Tononi P, Zamperin G, Infantino A, Valè G, Cattivelli L, Delledonne M. BMC Genomics 15 313 (2014)
  135. Fast and Specific Peroxygenase Reactions Catalyzed by Fungal Mono-Copper Enzymes. Rieder L, Stepnov AA, Sørlie M, Eijsink VGH. Biochemistry 60 3633-3643 (2021)
  136. Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers. Shrestha P, Ibáñez AB, Bauer S, Glassman SI, Szaro TM, Bruns TD, Taylor JW. Biotechnol Biofuels 8 38 (2015)
  137. Influence of Populus genotype on gene expression by the wood decay fungus Phanerochaete chrysosporium. Gaskell J, Marty A, Mozuch M, Kersten PJ, Splinter BonDurant S, Sabat G, Azarpira A, Ralph J, Skyba O, Mansfield SD, Blanchette RA, Cullen D. Appl Environ Microbiol 80 5828-5835 (2014)
  138. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity. Wei H, Tucker MP, Baker JO, Harris M, Luo Y, Xu Q, Himmel ME, Ding SY. Biotechnol Biofuels 5 20 (2012)
  139. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation. Piao H, Froula J, Du C, Kim TW, Hawley ER, Bauer S, Wang Z, Ivanova N, Clark DS, Klenk HP, Hess M. Biotechnol Bioeng 111 1550-1565 (2014)
  140. A novel transcription factor specifically regulates GH11 xylanase genes in Trichoderma reesei. Liu R, Chen L, Jiang Y, Zou G, Zhou Z. Biotechnol Biofuels 10 194 (2017)
  141. Linking hydrolysis performance to Trichoderma reesei cellulolytic enzyme profile. Lehmann L, Rønnest NP, Jørgensen CI, Olsson L, Stocks SM, Jørgensen HS, Hobley T. Biotechnol Bioeng 113 1001-1010 (2016)
  142. Optimization of synergism of a recombinant auxiliary activity 9 from Chaetomium globosum with cellulase in cellulose hydrolysis. Kim IJ, Nam KH, Yun EJ, Kim S, Youn HJ, Lee HJ, Choi IG, Kim KH. Appl Microbiol Biotechnol 99 8537-8547 (2015)
  143. Phanerochaete chrysosporium produces a diverse array of extracellular enzymes when grown on sorghum. Ray A, Saykhedkar S, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ. Appl Microbiol Biotechnol 93 2075-2089 (2012)
  144. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Kumar D, Murthy GS. Biotechnol Biofuels 6 63 (2013)
  145. Characteristics of enzyme hydrolysis of cellulose under static condition. Taneda D, Ueno Y, Ikeo M, Okino S. Bioresour Technol 121 154-160 (2012)
  146. Kinetic Characterization of a Putatively Chitin-Active LPMO Reveals a Preference for Soluble Substrates and Absence of Monooxygenase Activity. Rieder L, Petrović D, Väljamäe P, Eijsink VGH, Sørlie M. ACS Catal 11 11685-11695 (2021)
  147. Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Pedersen M, Johansen KS, Meyer AS. Biotechnol Biofuels 4 11 (2011)
  148. Proteomic Dissection of the Cellulolytic Machineries Used by Soil-Dwelling Bacteroidetes. Taillefer M, Arntzen MØ, Henrissat B, Pope PB, Larsbrink J. mSystems 3 e00240-18 (2018)
  149. Structural and molecular dynamics studies of a C1-oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition. Liu B, Kognole AA, Wu M, Westereng B, Crowley MF, Kim S, Dimarogona M, Payne CM, Sandgren M. FEBS J 285 2225-2242 (2018)
  150. Unliganded and substrate bound structures of the cellooligosaccharide active lytic polysaccharide monooxygenase LsAA9A at low pH. Frandsen KEH, Poulsen JN, Tandrup T, Lo Leggio L. Carbohydr Res 448 187-190 (2017)
  151. A mechanistic model for rational design of optimal cellulase mixtures. Levine SE, Fox JM, Clark DS, Blanch HW. Biotechnol Bioeng 108 2561-2570 (2011)
  152. An expansin from the marine bacterium Hahella chejuensis acts synergistically with xylanase and enhances xylan hydrolysis. Lee HJ, Kim IJ, Kim JF, Choi IG, Kim KH. Bioresour Technol 149 516-519 (2013)
  153. Gene Expression Patterns of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium Are Influenced by Wood Substrate Composition during Degradation. Skyba O, Cullen D, Douglas CJ, Mansfield SD. Appl Environ Microbiol 82 4387-4400 (2016)
  154. Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation. Sitarz AK, Mikkelsen JD, Højrup P, Meyer AS. Enzyme Microb Technol 53 378-385 (2013)
  155. Investigating lytic polysaccharide monooxygenase-assisted wood cell wall degradation with microsensors. Chang H, Gacias Amengual N, Botz A, Schwaiger L, Kracher D, Scheiblbrandner S, Csarman F, Ludwig R. Nat Commun 13 6258 (2022)
  156. The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H2O2 co-substrate. Kont R, Pihlajaniemi V, Borisova AS, Aro N, Marjamaa K, Loogen J, Büchs J, Eijsink VGH, Kruus K, Väljamäe P. Biotechnol Biofuels 12 235 (2019)
  157. The yeast Geotrichum candidum encodes functional lytic polysaccharide monooxygenases. Ladevèze S, Haon M, Villares A, Cathala B, Grisel S, Herpoël-Gimbert I, Henrissat B, Berrin JG. Biotechnol Biofuels 10 215 (2017)
  158. A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin. Mekasha S, Tuveng TR, Askarian F, Choudhary S, Schmidt-Dannert C, Niebisch A, Modregger J, Vaaje-Kolstad G, Eijsink VGH. J Biol Chem 295 9134-9146 (2020)
  159. Characterization of a novel endo-β-1,4-glucanase from Armillaria gemina and its application in biomass hydrolysis. Jagtap SS, Dhiman SS, Kim TS, Kim IW, Lee JK. Appl Microbiol Biotechnol 98 661-669 (2014)
  160. Discovery, activity and characterisation of an AA10 lytic polysaccharide oxygenase from the shipworm symbiont Teredinibacter turnerae. Fowler CA, Sabbadin F, Ciano L, Hemsworth GR, Elias L, Bruce N, McQueen-Mason S, Davies GJ, Walton PH. Biotechnol Biofuels 12 232 (2019)
  161. Disulfide bridges as essential elements for the thermostability of lytic polysaccharide monooxygenase LPMO10C from Streptomyces coelicolor. Tanghe M, Danneels B, Last M, Beerens K, Stals I, Desmet T. Protein Eng Des Sel 30 401-408 (2017)
  162. Redox processes acidify and decarboxylate steam-pretreated lignocellulosic biomass and are modulated by LPMO and catalase. Peciulyte A, Samuelsson L, Olsson L, McFarland KC, Frickmann J, Østergård L, Halvorsen R, Scott BR, Johansen KS. Biotechnol Biofuels 11 165 (2018)
  163. A quantitative indicator diagram for lytic polysaccharide monooxygenases reveals the role of aromatic surface residues in HjLPMO9A regioselectivity. Danneels B, Tanghe M, Joosten HJ, Gundinger T, Spadiut O, Stals I, Desmet T. PLoS One 12 e0178446 (2017)
  164. Capture of activated dioxygen intermediates at the copper-active site of a lytic polysaccharide monooxygenase. Schröder GC, O'Dell WB, Webb SP, Agarwal PK, Meilleur F. Chem Sci 13 13303-13320 (2022)
  165. Cellulolytic potential of thermophilic species from four fungal orders. Busk PK, Lange L. AMB Express 3 47 (2013)
  166. Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity. Monclaro AV, Petrović DM, Alves GSC, Costa MMC, Midorikawa GEO, Miller RNG, Filho EXF, Eijsink VGH, Várnai A. PLoS One 15 e0235642 (2020)
  167. Constructing a yeast to express the largest cellulosome complex on the cell surface. Anandharaj M, Lin YJ, Rani RP, Nadendla EK, Ho MC, Huang CC, Cheng JF, Chang JJ, Li WH. Proc Natl Acad Sci U S A 117 2385-2394 (2020)
  168. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes. Nam YW, Nihira T, Arakawa T, Saito Y, Kitaoka M, Nakai H, Fushinobu S. J Biol Chem 290 18281-18292 (2015)
  169. Genomic and transcriptomic analysis of the thermophilic lignocellulose-degrading fungus Thielavia terrestris LPH172. Tõlgo M, Hüttner S, Rugbjerg P, Thuy NT, Thanh VN, Larsbrink J, Olsson L. Biotechnol Biofuels 14 131 (2021)
  170. Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs). Frandsen KEH, Haon M, Grisel S, Henrissat B, Lo Leggio L, Berrin JG. J Biol Chem 296 100086 (2021)
  171. Metalloproteins: A new face for biomass breakdown. Fushinobu S. Nat Chem Biol 10 88-89 (2014)
  172. Multiscale Modelling of Lytic Polysaccharide Monooxygenases. Hedegård ED, Ryde U. ACS Omega 2 536-545 (2017)
  173. Transcriptomic profiles of Heterobasidion annosum under abiotic stresses and during saprotrophic growth in bark, sapwood and heartwood. Raffaello T, Chen H, Kohler A, Asiegbu FO. Environ Microbiol 16 1654-1667 (2014)
  174. Two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion. Kostylev M, Wilson D. Biochemistry 52 5656-5664 (2013)
  175. Comparison of Six Lytic Polysaccharide Monooxygenases from Thermothielavioides terrestris Shows That Functional Variation Underlies the Multiplicity of LPMO Genes in Filamentous Fungi. Tõlgo M, Hegnar OA, Østby H, Várnai A, Vilaplana F, Eijsink VGH, Olsson L. Appl Environ Microbiol 88 e0009622 (2022)
  176. Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity. Jensen MS, Klinkenberg G, Bissaro B, Chylenski P, Vaaje-Kolstad G, Kvitvang HF, Nærdal GK, Sletta H, Forsberg Z, Eijsink VGH. J Biol Chem 294 19349-19364 (2019)
  177. Interaction between Cellobiose Dehydrogenase and Lytic Polysaccharide Monooxygenase. Laurent CVFP, Breslmayr E, Tunega D, Ludwig R, Oostenbrink C. Biochemistry 58 1226-1235 (2019)
  178. Molecular and functional characterization of an endoglucanase in the phytopathogenic fungus Pyrenochaeta lycopersici. Valente MT, Infantino A, Aragona M. Curr Genet 57 241-251 (2011)
  179. Regioselectivity of oxidation by a polysaccharide monooxygenase from Chaetomium thermophilum. Chen C, Chen J, Geng Z, Wang M, Liu N, Li D. Biotechnol Biofuels 11 155 (2018)
  180. The discovery of novel LPMO families with a new Hidden Markov model. Voshol GP, Vijgenboom E, Punt PJ. BMC Res Notes 10 105 (2017)
  181. CHEMISTRY. How to break down crystalline cellulose. Martínez AT. Science 352 1050-1051 (2016)
  182. Catalysis with Cu(II) (bpy) improves alkaline hydrogen peroxide pretreatment. Li Z, Chen CH, Liu T, Mathrubootham V, Hegg EL, Hodge DB. Biotechnol Bioeng 110 1078-1086 (2013)
  183. Functional characterization of a lytic polysaccharide monooxygenase from the thermophilic fungus Myceliophthora thermophila. Kadowaki MAS, Várnai A, Jameson JK, T Leite AE, Costa-Filho AJ, Kumagai PS, Prade RA, Polikarpov I, Eijsink VGH. PLoS One 13 e0202148 (2018)
  184. Genome-wide annotation, comparison and functional genomics of carbohydrate-active enzymes in legumes infecting Fusarium oxysporum formae speciales. Roy A, Jayaprakash A, Rajeswary T R, Annamalai A, Lakshmi P. Mycology 11 56-70 (2020)
  185. Lytic polysaccharide monooxygenases: enzymes for controlled and site-specific Fenton-like chemistry. Bissaro B, Eijsink VGH. Essays Biochem 67 575-584 (2023)
  186. Recombinant expression, activity screening and functional characterization identifies three novel endo-1,4-β-glucanases that efficiently hydrolyse cellulosic substrates. Tambor JH, Ren H, Ushinsky S, Zheng Y, Riemens A, St-Francois C, Tsang A, Powlowski J, Storms R. Appl Microbiol Biotechnol 93 203-214 (2012)
  187. The role of the active site tyrosine in the mechanism of lytic polysaccharide monooxygenase. McEvoy A, Creutzberg J, Singh RK, Bjerrum MJ, Hedegård ED. Chem Sci 12 352-362 (2020)
  188. Type-dependent action modes of TtAA9E and TaAA9A acting on cellulose and differently pretreated lignocellulosic substrates. Kim IJ, Seo N, An HJ, Kim JH, Harris PV, Kim KH. Biotechnol Biofuels 10 46 (2017)
  189. A cellular automaton model of crystalline cellulose hydrolysis by cellulases. Warden AC, Little BA, Haritos VS. Biotechnol Biofuels 4 39 (2011)
  190. A distinct model of synergism between a processive endocellulase (TfCel9A) and an exocellulase (TfCel48A) from Thermobifida fusca. Kostylev M, Wilson D. Appl Environ Microbiol 80 339-344 (2014)
  191. A moonlighting function of a chitin polysaccharide monooxygenase, CWR-1, in Neurospora crassa allorecognition. Detomasi TC, Rico-Ramírez AM, Sayler RI, Gonçalves AP, Marletta MA, Glass NL. Elife 11 e80459 (2022)
  192. An AA9-LPMO containing a CBM1 domain in Aspergillus nidulans is active on cellulose and cleaves cello-oligosaccharides. Jagadeeswaran G, Gainey L, Mort AJ. AMB Express 8 171 (2018)
  193. Chimeric Cellobiose Dehydrogenases Reveal the Function of Cytochrome Domain Mobility for the Electron Transfer to Lytic Polysaccharide Monooxygenase. Felice AKG, Schuster C, Kadek A, Filandr F, Laurent CVFP, Scheiblbrandner S, Schwaiger L, Schachinger F, Kracher D, Sygmund C, Man P, Halada P, Oostenbrink C, Ludwig R. ACS Catal 11 517-532 (2021)
  194. Ethanol production from high cellulose concentration by the basidiomycete fungus Flammulina velutipes. Maehara T, Ichinose H, Furukawa T, Ogasawara W, Takabatake K, Kaneko S. Fungal Biol 117 220-226 (2013)
  195. Genome-wide characterization of cellulases from the hemi-biotrophic plant pathogen, Bipolaris sorokiniana, reveals the presence of a highly stable GH7 endoglucanase. Aich S, Singh RK, Kundu P, Pandey SP, Datta S. Biotechnol Biofuels 10 135 (2017)
  196. The combination of plant-expressed cellobiohydrolase and low dosages of cellulases for the hydrolysis of sugar cane bagasse. Harrison MD, Zhang Z, Shand K, Chong BF, Nichols J, Oeller P, O'Hara IM, Doherty WO, Dale JL. Biotechnol Biofuels 7 131 (2014)
  197. The enzymatic hydrolysis of pretreated pulp fibers predominantly involves "peeling/erosion" modes of action. Arantes V, Gourlay K, Saddler JN. Biotechnol Biofuels 7 87 (2014)
  198. A new synergistic relationship between xylan-active LPMO and xylobiohydrolase to tackle recalcitrant xylan. Zerva A, Pentari C, Grisel S, Berrin JG, Topakas E. Biotechnol Biofuels 13 142 (2020)
  199. Ameliorating the Metabolic Burden of the Co-expression of Secreted Fungal Cellulases in a High Lipid-Accumulating Yarrowia lipolytica Strain by Medium C/N Ratio and a Chemical Chaperone. Wei H, Wang W, Alper HS, Xu Q, Knoshaug EP, Van Wychen S, Lin CY, Luo Y, Decker SR, Himmel ME, Zhang M. Front Microbiol 9 3276 (2018)
  200. Changes in active-site geometry on X-ray photoreduction of a lytic polysaccharide monooxygenase active-site copper and saccharide binding. Tandrup T, Muderspach SJ, Banerjee S, Santoni G, Ipsen JØ, Hernández-Rollán C, Nørholm MHH, Johansen KS, Meilleur F, Lo Leggio L. IUCrJ 9 666-681 (2022)
  201. Colorimetric LPMO assay with direct implication for cellulolytic activity. Brander S, Lausten S, Ipsen JØ, Falkenberg KB, Bertelsen AB, Nørholm MHH, Østergaard LH, Johansen KS. Biotechnol Biofuels 14 51 (2021)
  202. Comparative Transcriptomics and Gene Knockout Reveal Virulence Factors of Arthrinium phaeospermum in Bambusa pervariabilis × Dendrocalamopsis grandis. Fang X, Yan P, Guan M, Han S, Qiao T, Lin T, Zhu T, Li S. J Fungi (Basel) 7 1001 (2021)
  203. Genome expansion by allopolyploidization in the fungal strain Coniochaeta 2T2.1 and its exceptional lignocellulolytic machinery. Mondo SJ, Jiménez DJ, Hector RE, Lipzen A, Yan M, LaButti K, Barry K, van Elsas JD, Grigoriev IV, Nichols NN. Biotechnol Biofuels 12 229 (2019)
  204. A copper-controlled RNA interference system for reversible silencing of target genes in Trichoderma reesei. Wang L, Zheng F, Zhang W, Zhong Y, Chen G, Meng X, Liu W. Biotechnol Biofuels 11 33 (2018)
  205. Differential reinforcement of enzymatic hydrolysis by adding chemicals and accessory proteins to high solid loading substrates with different pretreatments. Du J, Song W, Zhang X, Zhao J, Liu G, Qu Y. Bioprocess Biosyst Eng 41 1153-1163 (2018)
  206. Histidine oxidation in lytic polysaccharide monooxygenase. Torbjörnsson M, Hagemann MM, Ryde U, Hedegård ED. J Biol Inorg Chem 28 317-328 (2023)
  207. Polysaccharide monooxygenase-catalyzed oxidation of cellulose to glucuronic acid-containing cello-oligosaccharides. Chen J, Guo X, Zhu M, Chen C, Li D. Biotechnol Biofuels 12 42 (2019)
  208. Protonation State of an Important Histidine from High Resolution Structures of Lytic Polysaccharide Monooxygenases. Banerjee S, Muderspach SJ, Tandrup T, Frandsen KEH, Singh RK, Ipsen JØ, Hernández-Rollán C, Nørholm MHH, Bjerrum MJ, Johansen KS, Lo Leggio L. Biomolecules 12 194 (2022)
  209. Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa. Hegnar OA, Østby H, Petrović DM, Olsson L, Várnai A, Eijsink VGH. Appl Environ Microbiol 87 e0165221 (2021)
  210. Structure and function of the Clostridium thermocellum cellobiohydrolase A X1-module repeat: enhancement through stabilization of the CbhA complex. Brunecky R, Alahuhta M, Bomble YJ, Xu Q, Baker JO, Ding SY, Himmel ME, Lunin VV. Acta Crystallogr D Biol Crystallogr 68 292-299 (2012)
  211. (1)H, (13)C, (15)N resonance assignment of the chitin-active lytic polysaccharide monooxygenase BlLPMO10A from Bacillus licheniformis. Courtade G, Balzer S, Forsberg Z, Vaaje-Kolstad G, Eijsink VG, Aachmann FL. Biomol NMR Assign 9 207-210 (2015)
  212. A fungal lytic polysaccharide monooxygenase is required for cell wall integrity, thermotolerance, and virulence of the fungal human pathogen Cryptococcus neoformans. Probst C, Hallas-Møller M, Ipsen JØ, Brooks JT, Andersen K, Haon M, Berrin JG, Martens HJ, Nichols CB, Johansen KS, Alspaugh JA. PLoS Pathog 19 e1010946 (2023)
  213. Drought increases the frequencies of fungal functional genes related to carbon and nitrogen acquisition. Treseder KK, Berlemont R, Allison SD, Martiny AC. PLoS One 13 e0206441 (2018)
  214. Ethanol and anaerobic conditions reversibly inhibit commercial cellulase activity in thermophilic simultaneous saccharification and fermentation (tSSF). Podkaminer KK, Kenealy WR, Herring CD, Hogsett DA, Lynd LR. Biotechnol Biofuels 5 43 (2012)
  215. Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium. Russo DA, Zedler JAZ, Wittmann DN, Möllers B, Singh RK, Batth TS, van Oort B, Olsen JV, Bjerrum MJ, Jensen PE. Biotechnol Biofuels 12 74 (2019)
  216. Insight into the functional roles of Glu175 in the hyperthermostable xylanase XYL10C-ΔN through structural analysis and site-saturation mutagenesis. You S, Chen CC, Tu T, Wang X, Ma R, Cai HY, Guo RT, Luo HY, Yao B. Biotechnol Biofuels 11 159 (2018)
  217. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase. Pierce BC, Agger JW, Wichmann J, Meyer AS. Enzyme Microb Technol 98 58-66 (2017)
  218. Oxidized Product Profiles of AA9 Lytic Polysaccharide Monooxygenases Depend on the Type of Cellulose. Sun P, Valenzuela SV, Chunkrua P, Javier Pastor FI, Laurent CVFP, Ludwig R, van Berkel WJH, Kabel MA, Kabel MA. ACS Sustain Chem Eng 9 14124-14133 (2021)
  219. Probing the Effect of Glucose on the Activity and Stability of β-Glucosidase: An All-Atom Molecular Dynamics Simulation Investigation. Konar S, Sinha SK, Datta S, Ghorai PK. ACS Omega 4 11189-11196 (2019)
  220. An aldonolactonase AltA from Penicillium oxalicum mitigates the inhibition of β-glucosidase during lignocellulose biodegradation. Peng S, Cao Q, Qin Y, Li X, Liu G, Qu Y. Appl Microbiol Biotechnol 101 3627-3636 (2017)
  221. C-type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases. Branch J, Rajagopal BS, Paradisi A, Yates N, Lindley PJ, Smith J, Hollingsworth K, Turnbull WB, Henrissat B, Parkin A, Berry A, Hemsworth GR. Biochem J 478 2927-2944 (2021)
  222. Do cultural conditions induce differential protein expression: Profiling of extracellular proteome of Aspergillus terreus CM20. M S, Singh S, Tiwari R, Goel R, Nain L. Microbiol Res 192 73-83 (2016)
  223. Enzyme biotechnology in degradation and modification of plant cell wall polymers. Marjamaa K, Kruus K. Physiol Plant 164 106-118 (2018)
  224. Estimating the accuracy of calculated electron paramagnetic resonance hyperfine couplings for a lytic polysaccharide monooxygenase. Theibich YA, Sauer SPA, Leggio LL, Hedegård ED. Comput Struct Biotechnol J 19 555-567 (2021)
  225. Lignocellulose depolymerization occurs via an environmentally adapted metabolic cascades in the wood-rotting basidiomycete Phanerochaete chrysosporium. Bak JS. Microbiologyopen 4 151-166 (2015)
  226. Metagenomics Investigation of Agarlytic Genes and Genomes in Mangrove Sediments in China: A Potential Repertory for Carbohydrate-Active Enzymes. Qu W, Lin D, Zhang Z, Di W, Gao B, Zeng R. Front Microbiol 9 1864 (2018)
  227. Microbiology. No barriers to cellulose breakdown. Berlin A. Science 342 1454-1456 (2013)
  228. Multifunctional cellulolytic auxiliary activity protein HcAA10-2 from Hahella chejuensis enhances enzymatic hydrolysis of crystalline cellulose. Ghatge SS, Telke AA, Waghmode TR, Lee Y, Lee KW, Oh DB, Shin HD, Kim SW. Appl Microbiol Biotechnol 99 3041-3055 (2015)
  229. Novel molecular biological tools for the efficient expression of fungal lytic polysaccharide monooxygenases in Pichia pastoris. Rieder L, Ebner K, Glieder A, Sørlie M. Biotechnol Biofuels 14 122 (2021)
  230. Structural studies of a glycoside hydrolase family 3 β-glucosidase from the model fungus Neurospora crassa. Karkehabadi S, Hansson H, Mikkelsen NE, Kim S, Kaper T, Sandgren M, Gudmundsson M. Acta Crystallogr F Struct Biol Commun 74 787-796 (2018)
  231. The crystal structure of CbpD clarifies substrate-specificity motifs in chitin-active lytic polysaccharide monooxygenases. Dade CM, Douzi B, Cambillau C, Ball G, Voulhoux R, Forest KT. Acta Crystallogr D Struct Biol 78 1064-1078 (2022)
  232. Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance. Bulakhov AG, Volkov PV, Rozhkova AM, Gusakov AV, Nemashkalov VA, Satrutdinov AD, Sinitsyn AP. PLoS One 12 e0170404 (2017)
  233. 1H, 13C, 15N resonance assignment of the chitin-binding protein CBP21 from Serratia marcescens. Aachmann FL, Eijsink VG, Vaaje-Kolstad G. Biomol NMR Assign 5 117-119 (2011)
  234. A Conserved Second Sphere Residue Tunes Copper Site Reactivity in Lytic Polysaccharide Monooxygenases. Hall KR, Joseph C, Ayuso-Fernández I, Tamhankar A, Rieder L, Skaali R, Golten O, Neese F, Røhr ÅK, Jannuzzi SAV, DeBeer S, Eijsink VGH, Sørlie M. J Am Chem Soc 145 18888-18903 (2023)
  235. Four cellulose-active lytic polysaccharide monooxygenases from Cellulomonas species. Li J, Solhi L, Goddard-Borger ED, Mathieu Y, Wakarchuk WW, Withers SG, Brumer H. Biotechnol Biofuels 14 29 (2021)
  236. Interaction of carbohydrate binding module 20 with starch substrates. Ngo ST, Tran-Le PD, Ho GT, Le LQ, Bui LM, Vu BK, Thu Phung HT, Nguyen HD, Vo TS, Vu VV. RSC Adv 9 24833-24842 (2019)
  237. Learning from oligosaccharide soaks of crystals of an AA13 lytic polysaccharide monooxygenase: crystal packing, ligand binding and active-site disorder. Frandsen KE, Poulsen JC, Tovborg M, Johansen KS, Lo Leggio L. Acta Crystallogr D Struct Biol 73 64-76 (2017)
  238. Profile Comparer Extended: phylogeny of lytic polysaccharide monooxygenase families using profile hidden Markov model alignments. Voshol GP, Punt PJ, Vijgenboom E. F1000Res 8 1834 (2019)
  239. Regioselective C4 and C6 Double Oxidation of Cellulose by Lytic Polysaccharide Monooxygenases. Sun P, Laurent CVFP, Boerkamp VJP, van Erven G, Ludwig R, van Berkel WJH, Kabel MA. ChemSusChem 15 e202102203 (2022)
  240. Structural Dynamics of Lytic Polysaccharide Monooxygenase during Catalysis. Filandr F, Kavan D, Kracher D, Laurent CVFP, Ludwig R, Man P, Halada P. Biomolecules 10 E242 (2020)
  241. The identification of and relief from Fe3+ inhibition for both cellulose and cellulase in cellulose saccharification catalyzed by cellulases from Penicillium decumbens. Wang M, Mu Z, Wang J, Hou S, Han L, Dong Y, Xiao L, Xia R, Fang X. Bioresour Technol 133 507-512 (2013)
  242. Enzymatic Synthesis of 1,5-Anhydro-4-O-β-D-glucopyranosyl-D-fructose Using Cellobiose Phosphorylase and Its Spontaneous Decomposition via β-Elimination. Kajiki T, Yoshinaga K, Komba S, Kitaoka M. J Appl Glycosci (1999) 64 91-97 (2017)
  243. Enzymatic degradation of cellulose in soil: A review. Datta R. Heliyon 10 e24022 (2024)
  244. Lignin-modifying processes in the rhizosphere of arid land grasses. Hudson CM, Kirton E, Hutchinson MI, Redfern JL, Simmons B, Ackerman E, Singh S, Williams KP, Natvig DO, Powell AJ. Environ Microbiol 17 4965-4978 (2015)
  245. Natural photoredox catalysts promote light-driven lytic polysaccharide monooxygenase reactions and enzymatic turnover of biomass. Kommedal EG, Sæther F, Hahn T, Eijsink VGH. Proc Natl Acad Sci U S A 119 e2204510119 (2022)
  246. A comparative biochemical investigation of the impeding effect of C1-oxidizing LPMOs on cellobiohydrolases. Keller MB, Badino SF, Røjel N, Sørensen TH, Kari J, McBrayer B, Borch K, Blossom BM, Westh P. J Biol Chem 296 100504 (2021)
  247. A sensitive, accurate, and high-throughput gluco-oligosaccharide oxidase-based HRP colorimetric method for assaying lytic polysaccharide monooxygenase activity. Wu S, Tian J, Xie N, Adnan M, Wang J, Liu G. Biotechnol Biofuels Bioprod 15 15 (2022)
  248. From simple and specific zymographic detections to the annotation of a fungus Daldinia caldariorum D263 that encodes a wide range of highly bioactive cellulolytic enzymes. Lin MC, Kuo HW, Kao MR, Lin WD, Li CW, Hung KS, Yang SC, Yu SM, Ho TD. Biotechnol Biofuels 14 120 (2021)
  249. RNAi-Mediated Gene Silencing of Trcot1 Induces a Hyperbranching Phenotype in Trichoderma reesei. Gao F, Li M, Liu W, Bai Y, Tu T, Wang Y, Zhang J, Luo H, Yao B, Huang H, Su X. J Microbiol Biotechnol 30 206-215 (2020)
  250. Recombinant expression of Thermobifida fusca E7 LPMO in Pichia pastoris and Escherichia coli and their functional characterization. Rodrigues KB, Macêdo JKA, Teixeira T, Barros JS, Araújo ACB, Santos FP, Quirino BF, Brasil BSAF, Salum TFC, Abdelnur PV, Fávaro LCL. Carbohydr Res 448 175-181 (2017)
  251. Amino Acid Residues Controlling Domain Interaction and Interdomain Electron Transfer in Cellobiose Dehydrogenase. Motycka B, Csarman F, Rupp M, Schnabel K, Nagy G, Karnpakdee K, Scheiblbrandner S, Tscheliessnig R, Oostenbrink C, Hammel M, Ludwig R. Chembiochem 24 e202300431 (2023)
  252. Characterization of a lytic polysaccharide monooxygenase from Aspergillus fumigatus shows functional variation among family AA11 fungal LPMOs. Støpamo FG, Røhr ÅK, Mekasha S, Petrović DM, Várnai A, Eijsink VGH. J Biol Chem 297 101421 (2021)
  253. Chitin Biodegradation by Lytic Polysaccharide Monooxygenases from Streptomyces coelicolor In Vitro and In Vivo. Li F, Zhao H, Liu Y, Zhang J, Yu H. Int J Mol Sci 24 275 (2022)
  254. Effect of adding cofactors to exogenous fibrolytic enzymes on preingestive hydrolysis, in vitro digestibility, and fermentation of bermudagrass haylage. Romero JJ, Ma ZX, Gonzalez CF, Adesogan AT. J Dairy Sci 98 4659-4672 (2015)
  255. Oxidative cleavage of cellulose in the horse gut. Liu N, Yu W, Guo X, Chen J, Xia D, Yu J, Li D. Microb Cell Fact 21 38 (2022)
  256. Oxygen-radical pretreatment promotes cellulose degradation by cellulolytic enzymes. Sakai K, Kojiya S, Kamijo J, Tanaka Y, Tanaka K, Maebayashi M, Oh JS, Ito M, Hori M, Shimizu M, Kato M. Biotechnol Biofuels 10 290 (2017)
  257. Quantitative iTRAQ-based secretome analysis reveals species-specific and temporal shifts in carbon utilization strategies among manganese(II)-oxidizing Ascomycete fungi. Zeiner CA, Purvine SO, Zink EM, Paša-Tolić L, Chaput DL, Wu S, Santelli CM, Hansel CM. Fungal Genet Biol 106 61-75 (2017)
  258. Side-by-side biochemical comparison of two lytic polysaccharide monooxygenases from the white-rot fungus Heterobasidion irregulare on their activity against crystalline cellulose and glucomannan. Liu B, Krishnaswamyreddy S, Muraleedharan MN, Olson Å, Broberg A, Ståhlberg J, Sandgren M. PLoS One 13 e0203430 (2018)
  259. Systematic identification of CAZymes and transcription factors in the hypercellulolytic fungus Penicillium funiculosum NCIM1228 involved in lignocellulosic biomass degradation. Pasari N, Gupta M, Sinha T, Ogunmolu FE, Yazdani SS. Biotechnol Biofuels Bioprod 16 150 (2023)
  260. A Need for Improved Cellulase Identification from Metagenomic Sequence Data. Co R, Hug LA. Appl Environ Microbiol 87 e01928-20 (2020)
  261. Benchmarking hydrolytic potential of cellulase cocktail obtained from mutant strain of Talaromyces verruculosus IIPC 324 with commercial biofuel enzymes. Jain L, Kurmi AK, Agrawal D. 3 Biotech 9 23 (2019)
  262. Characterisation of the Effect of the Spatial Organisation of Hemicellulases on the Hydrolysis of Plant Biomass Polymer. Enjalbert T, De La Mare M, Roblin P, Badruna L, Vernet T, Dumon C, Montanier CY. Int J Mol Sci 21 E4360 (2020)
  263. Efficient Constitutive Expression of Cellulolytic Enzymes in Penicillium oxalicum for Improved Efficiency of Lignocellulose Degradation. Waghmare PR, Waghmare PP, Gao L, Sun W, Qin Y, Liu G, Qu Y. J Microbiol Biotechnol 31 740-746 (2021)
  264. Functional characterization of fungal lytic polysaccharide monooxygenases for cellulose surface oxidation. Mathieu Y, Raji O, Bellemare A, Di Falco M, Nguyen TTM, Viborg AH, Tsang A, Master E, Brumer H. Biotechnol Biofuels Bioprod 16 132 (2023)
  265. GENPLAT: an automated platform for biomass enzyme discovery and cocktail optimization. Walton J, Banerjee G, Car S. J Vis Exp 3314 (2011)
  266. Improving the Enzymatic Activity and Stability of a Lytic Polysaccharide Monooxygenase. Berhe MH, Song X, Yao L. Int J Mol Sci 24 8963 (2023)
  267. Inhibition of LPMOs by Fermented Persimmon Juice. Tokin R, Ipsen JØ, Poojary MM, Jensen PE, Olsson L, Johansen KS. Biomolecules 11 1890 (2021)
  268. Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates. Ju X, Bowden M, Engelhard M, Zhang X. Appl Microbiol Biotechnol 98 4409-4420 (2014)
  269. Investigating the role of AA9 LPMOs in enzymatic hydrolysis of differentially steam-pretreated spruce. Caputo F, Tõlgo M, Naidjonoka P, Krogh KBRM, Novy V, Olsson L. Biotechnol Biofuels Bioprod 16 68 (2023)
  270. Methionine oxidation of carbohydrate-active enzymes during white-rot wood decay. Molinelli L, Drula E, Gaillard J-C, Navarro D, Armengaud J, Berrin J-G, Tron T, Tarrago L. Appl Environ Microbiol 90 e0193123 (2024)
  271. Polysaccharide monoxygenases: giving a boost to biofuel production. Wilmot CM. Structure 20 938-940 (2012)
  272. Retraction of Publication RETRACTED ARTICLE: The effects of each beta-glucosidase gene deletion on cellulase gene regulation in Neurospora crassa (online publication: DOI 10.1007/s10482-013- 9972-7). Antonie Van Leeuwenhoek 105 269 (2014)
  273. Resolving domain positions of cellobiose dehydrogenase by small angle X-ray scattering. Motycka B, Csarman F, Tscheliessnig R, Hammel M, Ludwig R. FEBS J 290 4726-4743 (2023)
  274. Structure of a C1/C4-oxidizing AA9 lytic polysaccharide monooxygenase from the thermophilic fungus Malbranchea cinnamomea. Mazurkewich S, Seveso A, Hüttner S, Brändén G, Larsbrink J. Acta Crystallogr D Struct Biol 77 1019-1026 (2021)
  275. The use of lytic polysaccharide monooxygenases in anaerobic digestion of lignocellulosic materials. Costa THF, Eijsink VGH, Horn SJ. Biotechnol Biofuels 12 270 (2019)
  276. Understanding the initial events of the oxidative damage and protection mechanisms of the AA9 lytic polysaccharide monooxygenase family. Hagemann MM, Wieduwilt EK, Hedegård ED. Chem Sci 15 2558-2570 (2024)
  277. A Combination of Transcriptome and Enzyme Activity Analysis Unveils Key Genes and Patterns of Corncob Lignocellulose Degradation by Auricularia heimuer under Cultivation Conditions. Fang M, Sun X, Yao F, Lu L, Ma X, Shao K, Kaimoyo E. J Fungi (Basel) 10 545 (2024)
  278. Assessing the role of redox partners in TthLPMO9G and its mutants: focus on H2O2 production and interaction with cellulose. Chorozian K, Karnaouri A, Georgaki-Kondyli N, Karantonis A, Topakas E. Biotechnol Biofuels Bioprod 17 19 (2024)
  279. Comparative genomic analysis of pleurotus species reveals insights into the evolution and coniferous utilization of Pleurotus placentodes. Sun L, Yin X, Sossah FL, Han X, Li Y. Front Mol Biosci 10 1292556 (2023)
  280. Enhancing enzymatic saccharification yields of cellulose at high solid loadings by combining different LPMO activities. Angeltveit CF, Várnai A, Eijsink VGH, Horn SJ. Biotechnol Biofuels Bioprod 17 39 (2024)
  281. Expression of cellobiose dehydrogenase gene in Aspergillus niger C112 and its effect on lignocellulose degrading enzymes. Zhong Y, Guo Z, Li M, Jia X, Zeng B. Front Microbiol 15 1330079 (2024)
  282. Insights into peculiar fungal LPMO family members holding a short C-terminal sequence reminiscent of phosphate binding motifs. Reyre JL, Grisel S, Haon M, Xiang R, Gaillard JC, Armengaud J, Guallar V, Margeot A, Arragain S, Berrin JG, Bissaro B. Sci Rep 13 11586 (2023)
  283. Structural dissection of two redox proteins from the shipworm symbiont Teredinibacter turnerae. Rajagopal BS, Yates N, Smith J, Paradisi A, Tétard-Jones C, Willats WGT, Marcus S, Knox JP, Firdaus-Raih M, Henrissat B, Davies GJ, Walton PH, Parkin A, Hemsworth GR. IUCrJ 11 260-274 (2024)
  284. The Role of the Residue at Position 2 in the Catalytic Activity of AA9 Lytic Polysaccharide Monooxygenases. Liu Y, Ma W, Fang X. Int J Mol Sci 24 8300 (2023)
  285. The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent. Isaksen I, Jana S, Payne CM, Bissaro B, Røhr ÅK. Biophys J 123 1139-1151 (2024)
  286. Tobacco Plastid Transformation as Production Platform of Lytic Polysaccharide MonoOxygenase Auxiliary Enzymes. Tamburino R, Castiglia D, Marcolongo L, Sannino L, Ionata E, Scotti N. Int J Mol Sci 24 309 (2022)
  287. Transcriptional and secretome analysis of Rasamsonia emersonii lytic polysaccharide mono-oxygenases. Raheja Y, Singh V, Kumar N, Agrawal D, Sharma G, Di Falco M, Tsang A, Chadha BS. Appl Microbiol Biotechnol 108 444 (2024)