3f64 Citations

Structural Sampling of Glycan Interaction Profiles Reveals Mucosal Receptors for Fimbrial Adhesins of Enterotoxigenic Escherichia coli.

OpenAccess logo Biology (Basel) 2 894-917 (2013)
Related entries: 3f6j, 3ffo, 4bwo, 4k0o

Cited: 16 times
EuropePMC logo PMID: 24833052

Abstract

Fimbriae are long, proteinaceous adhesion organelles expressed on the bacterial envelope, evolutionarily adapted by Escherichia coli strains for the colonization of epithelial linings. Using glycan arrays of the Consortium for Functional Glycomics (CFG), the lectin domains were screened of the fimbrial adhesins F17G and FedF from enterotoxigenic E. coli (ETEC) and of the FimH adhesin from uropathogenic E. coli. This has led to the discovery of a more specific receptor for F17G, GlcNAcb1,3Gal. No significant differences emerged from the glycan binding profiles of the F17G lectin domains from five different E. coli strains. However, strain-dependent amino acid variations, predominantly towards the positively charged arginine, were indicated by sulfate binding in FedF and F17G crystal structures. For FedF, no significant binders could be observed on the CFG glycan array. Hence, a shotgun array was generated from microvilli scrapings of the distal jejunum of a 3-week old piglet about to be weaned. On this array, the blood group A type 1 hexasaccharide emerged as a receptor for the FedF lectin domain and remarkably also for F18-fimbriated E. coli. F17G was found to selectively recognize glycan species with a terminal GlcNAc, typifying intestinal mucins. In conclusion, F17G and FedF recognize long glycan sequences that could only be identified using the shotgun approach. Interestingly, ETEC strains display a large capacity to adapt their fimbrial adhesins to ecological niches via charge-driven interactions, congruent with binding to thick mucosal surfaces displaying an acidic gradient along the intestinal tract.

Articles - 3f64 mentioned but not cited (1)

  1. Structural Sampling of Glycan Interaction Profiles Reveals Mucosal Receptors for Fimbrial Adhesins of Enterotoxigenic Escherichia coli. Lonardi E, Moonens K, Buts L, de Boer AR, Olsson JD, Weiss MS, Fabre E, Guérardel Y, Deelder AM, Oscarson S, Wuhrer M, Bouckaert J. Biology (Basel) 2 894-917 (2013)


Reviews citing this publication (5)

  1. Animal Enterotoxigenic Escherichia coli. Dubreuil JD, Isaacson RE, Schifferli DM. EcoSal Plus 7 (2016)
  2. How do they stick together? Bacterial adhesins implicated in the binding of bacteria to the human gastrointestinal mucins. Ringot-Destrez B, Kalach N, Mihalache A, Gosset P, Michalski JC, Léonard R, Robbe-Masselot C. Biochem Soc Trans 45 389-399 (2017)
  3. Assessing Bacterial Interactions Using Carbohydrate-Based Microarrays. Flannery A, Gerlach JQ, Joshi L, Kilcoyne M. Microarrays (Basel) 4 690-713 (2015)
  4. Targeting Dynamical Binding Processes in the Design of Non-Antibiotic Anti-Adhesives by Molecular Simulation-The Example of FimH. Krammer EM, de Ruyck J, Roos G, Bouckaert J, Lensink MF. Molecules 23 E1641 (2018)
  5. Tools for generating and analyzing glycan microarray data. Mehta AY, Heimburg-Molinaro J, Cummings RD. Beilstein J Org Chem 16 2260-2271 (2020)

Articles citing this publication (10)

  1. A recombinant fungal lectin for labeling truncated glycans on human cancer cells. Audfray A, Beldjoudi M, Breiman A, Hurbin A, Boos I, Unverzagt C, Bouras M, Lantuejoul S, Coll JL, Varrot A, Le Pendu J, Busser B, Imberty A. PLoS One 10 e0128190 (2015)
  2. Porcine intestinal glycosphingolipids recognized by F6-fimbriated enterotoxigenic Escherichia coli. Madar Johansson M, Coddens A, Benktander J, Cox E, Teneberg S. Microb Pathog 76 51-60 (2014)
  3. Surface Plasmon Resonance (SPR) for the Evaluation of Shear-Force-Dependent Bacterial Adhesion. Zagorodko O, Bouckaert J, Dumych T, Bilyy R, Larroulet I, Yanguas Serrano A, Alvarez Dorta D, Gouin SG, Dima SO, Oancea F, Boukherroub R, Szunerits S. Biosensors (Basel) 5 276-287 (2015)
  4. A Novel Integrated Way for Deciphering the Glycan Code for the FimH Lectin. Dumych T, Bridot C, Gouin SG, Lensink MF, Paryzhak S, Szunerits S, Blossey R, Bilyy R, Bouckaert J, Krammer EM. Molecules 23 E2794 (2018)
  5. Differentiation of Crohn's Disease-Associated Isolates from Other Pathogenic Escherichia coli by Fimbrial Adhesion under Shear Force. Szunerits S, Zagorodko O, Cogez V, Dumych T, Chalopin T, Alvarez Dorta D, Sivignon A, Barnich N, Harduin-Lepers A, Larroulet I, Yanguas Serrano A, Siriwardena A, Pesquera A, Zurutuza A, Gouin SG, Boukherroub R, Bouckaert J. Biology (Basel) 5 E14 (2016)
  6. Expression of key glycosphingolipid biosynthesis-globo series pathway genes in Escherichia coli F18-resistant and Escherichia coli F18-sensitive piglets. Dong WH, Dai CH, Sun L, Wang J, Sun SY, Zhu GQ, Wu SL, Bao WB. Anim Genet 47 428-435 (2016)
  7. Molecular Cloning, Carbohydrate Specificity and the Crystal Structure of Two Sclerotium rolfsii Lectin Variants. Peppa VI, Venkat H, Kantsadi AL, Inamdar SR, Bhat GG, Eligar S, Shivanand A, Chachadi VB, Satisha GJ, Swamy BM, Skamnaki VT, Zographos SE, Leonidas DD. Molecules 20 10848-10865 (2015)
  8. Colonization factor CS30 from enterotoxigenic Escherichia coli binds to sulfatide in human and porcine small intestine. Von Mentzer A, Zalem D, Chrienova Z, Teneberg S. Virulence 11 381-390 (2020)
  9. DNA Methylation of Pig FUT3 Promoter Alters mRNA Expression to Regulate E. coli F18 Susceptibility. Wu Z, Shi D, Jin J, Fan H, Bao W, Wu S. Genes (Basel) 12 1586 (2021)
  10. Norovirus devours human milk oligosaccharides rich in α-fucose. Krammer EM, Bouckaert JMJ. J Biol Chem 293 11966-11967 (2018)