3fx5 Citations

Structure of HIV-1 protease in complex with potent inhibitor KNI-272 determined by high-resolution X-ray and neutron crystallography.

Abstract

HIV-1 protease is a dimeric aspartic protease that plays an essential role in viral replication. To further understand the catalytic mechanism and inhibitor recognition of HIV-1 protease, we need to determine the locations of key hydrogen atoms in the catalytic aspartates Asp-25 and Asp-125. The structure of HIV-1 protease in complex with transition-state analog KNI-272 was determined by combined neutron crystallography at 1.9-A resolution and X-ray crystallography at 1.4-A resolution. The resulting structural data show that the catalytic residue Asp-25 is protonated and that Asp-125 (the catalytic residue from the corresponding diad-related molecule) is deprotonated. The proton on Asp-25 makes a hydrogen bond with the carbonyl group of the allophenylnorstatine (Apns) group in KNI-272. The deprotonated Asp-125 bonds to the hydroxyl proton of Apns. The results provide direct experimental evidence for proposed aspects of the catalytic mechanism of HIV-1 protease and can therefore contribute substantially to the development of specific inhibitors for therapeutic application.

Articles - 3fx5 mentioned but not cited (4)

  1. Rapid and accurate prediction and scoring of water molecules in protein binding sites. Ross GA, Morris GM, Biggin PC. PLoS One 7 e32036 (2012)
  2. Structure of HIV-1 protease in complex with potent inhibitor KNI-272 determined by high-resolution X-ray and neutron crystallography. Adachi M, Ohhara T, Kurihara K, Tamada T, Honjo E, Okazaki N, Arai S, Shoyama Y, Kimura K, Matsumura H, Sugiyama S, Adachi H, Takano K, Mori Y, Hidaka K, Kimura T, Hayashi Y, Kiso Y, Kuroki R. Proc Natl Acad Sci U S A 106 4641-4646 (2009)
  3. X-ray structure of perdeuterated diisopropyl fluorophosphatase (DFPase): perdeuteration of proteins for neutron diffraction. Blum MM, Tomanicek SJ, John H, Hanson BL, Rüterjans H, Schoenborn BP, Langan P, Chen JC. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 379-385 (2010)
  4. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis. Prashar V, Bihani S, Das A, Ferrer JL, Hosur M. PLoS One 4 e7860 (2009)


Reviews citing this publication (11)

  1. Molecular basis of human immunodeficiency virus drug resistance: an update. Menéndez-Arias L. Antiviral Res 85 210-231 (2010)
  2. Eradication of HIV-1 from the macrophage reservoir: an uncertain goal? Abbas W, Tariq M, Iqbal M, Kumar A, Herbein G. Viruses 7 1578-1598 (2015)
  3. Neutron protein crystallography: A complementary tool for locating hydrogens in proteins. O'Dell WB, Bodenheimer AM, Meilleur F. Arch Biochem Biophys 602 48-60 (2016)
  4. The application of bioisosteres in drug design for novel drug discovery: focusing on acid protease inhibitors. Hamada Y, Kiso Y. Expert Opin Drug Discov 7 903-922 (2012)
  5. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules. Oksanen E, Chen JC, Fisher SZ. Molecules 22 E596 (2017)
  6. New directions for protease inhibitors directed drug discovery. Hamada Y, Kiso Y. Biopolymers 106 563-579 (2016)
  7. Therapeutic approaches against coronaviruses acute respiratory syndrome. Servidio C, Stellacci F. Pharmacol Res Perspect 9 e00691 (2021)
  8. Comprehending the Structure, Dynamics, and Mechanism of Action of Drug-Resistant HIV Protease. Dakshinamoorthy A, Asmita A, Senapati S. ACS Omega 8 9748-9763 (2023)
  9. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Goettig P, Koch NG, Budisa N. Int J Mol Sci 24 14035 (2023)
  10. The use of neutron scattering to determine the functional structure of glycoside hydrolase. Nakamura A, Ishida T, Samejima M, Igarashi K. Curr Opin Struct Biol 40 54-61 (2016)
  11. [Collaborative use of neutron and X-ray for determination of drug target proteins]. Kuroki R, Tamada T, Kurihara K, Ohhara T, Adachi M. Yakugaku Zasshi 130 657-664 (2010)

Articles citing this publication (35)

  1. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. Forli S, Olson AJ. J Med Chem 55 623-638 (2012)
  2. Deep sequencing of small RNAs specifically associated with Arabidopsis AGO1 and AGO4 uncovers new AGO functions. Wang H, Zhang X, Liu J, Kiba T, Kiba T, Woo J, Ojo T, Hafner M, Tuschl T, Chua NH, Wang XJ. Plant J 67 292-304 (2011)
  3. Placevent: an algorithm for prediction of explicit solvent atom distribution-application to HIV-1 protease and F-ATP synthase. Sindhikara DJ, Yoshida N, Hirata F. J Comput Chem 33 1536-1543 (2012)
  4. Neutron diffraction of acetazolamide-bound human carbonic anhydrase II reveals atomic details of drug binding. Fisher SZ, Aggarwal M, Kovalevsky AY, Silverman DN, McKenna R. J Am Chem Soc 134 14726-14729 (2012)
  5. The IMAGINE instrument: first neutron protein structure and new capabilities for neutron macromolecular crystallography. Meilleur F, Munshi P, Robertson L, Stoica AD, Crow L, Kovalevsky A, Koritsanszky T, Chakoumakos BC, Blessing R, Myles DA. Acta Crystallogr D Biol Crystallogr 69 2157-2160 (2013)
  6. Dynamic and Electrostatic Effects on the Reaction Catalyzed by HIV-1 Protease. Krzemińska A, Moliner V, Świderek K. J Am Chem Soc 138 16283-16298 (2016)
  7. Joint X-ray/neutron crystallographic study of HIV-1 protease with clinical inhibitor amprenavir: insights for drug design. Weber IT, Waltman MJ, Mustyakimov M, Blakeley MP, Keen DA, Ghosh AK, Langan P, Kovalevsky AY. J Med Chem 56 5631-5635 (2013)
  8. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site. Gerlits O, Wymore T, Das A, Shen CH, Parks JM, Smith JC, Weiss KL, Keen DA, Blakeley MP, Louis JM, Langan P, Weber IT, Kovalevsky A. Angew Chem Int Ed Engl 55 4924-4927 (2016)
  9. Protonation-state determination in proteins using high-resolution X-ray crystallography: effects of resolution and completeness. Fisher SJ, Blakeley MP, Cianci M, McSweeney S, Helliwell JR. Acta Crystallogr D Biol Crystallogr 68 800-809 (2012)
  10. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking. Uehara S, Tanaka S. Molecules 21 E1604 (2016)
  11. Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir. Kar P, Knecht V. J Comput Aided Mol Des 26 215-232 (2012)
  12. A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad. Kumar P, Serpersu EH, Cuneo MJ. Sci Adv 4 eaas8667 (2018)
  13. Room Temperature Neutron Crystallography of Drug Resistant HIV-1 Protease Uncovers Limitations of X-ray Structural Analysis at 100 K. Gerlits O, Keen DA, Blakeley MP, Louis JM, Weber IT, Kovalevsky A. J Med Chem 60 2018-2025 (2017)
  14. Characterizing Protein-Ligand Binding Using Atomistic Simulation and Machine Learning: Application to Drug Resistance in HIV-1 Protease. Whitfield TW, Ragland DA, Zeldovich KB, Schiffer CA. J Chem Theory Comput 16 1284-1299 (2020)
  15. New insights into the enzymatic mechanism of human chitotriosidase (CHIT1) catalytic domain by atomic resolution X-ray diffraction and hybrid QM/MM. Fadel F, Zhao Y, Cachau R, Cousido-Siah A, Ruiz FX, Harlos K, Howard E, Mitschler A, Podjarny A. Acta Crystallogr D Biol Crystallogr 71 1455-1470 (2015)
  16. Protein-Inhibitor Interaction Studies Using NMR. Ishima R. Appl NMR Spectrosc 1 143-181 (2015)
  17. Rapid visualization of hydrogen positions in protein neutron crystallographic structures. Munshi P, Chung SL, Blakeley MP, Weiss KL, Myles DA, Meilleur F. Acta Crystallogr D Biol Crystallogr 68 35-41 (2012)
  18. Synthesis, 2D-NMR and molecular modelling studies of pentacycloundecane lactam-peptides and peptoids as potential HIV-1 wild type C-SA protease inhibitors. Makatini MM, Petzold K, Alves CN, Arvidsson PI, Honarparvar B, Govender P, Govender T, Kruger HG, Sayed Y, JerônimoLameira, Maguire GE, Soliman ME. J Enzyme Inhib Med Chem 28 78-88 (2013)
  19. Capturing the reaction pathway in near-atomic-resolution crystal structures of HIV-1 protease. Shen CH, Tie Y, Yu X, Wang YF, Kovalevsky AY, Harrison RW, Weber IT. Biochemistry 51 7726-7732 (2012)
  20. The use of knowledge management tools in viroinformatics. Example study of a highly conserved sequence motif in Nsp3 of SARS-CoV-2 as a therapeutic target. Robson B. Comput Biol Med 125 103963 (2020)
  21. Atomic resolution crystal structure of Sapp2p, a secreted aspartic protease from Candida parapsilosis. Dostál J, Pecina A, Hrušková-Heidingsfeldová O, Marečková L, Pichová I, Řezáčová P, Lepšík M, Brynda J. Acta Crystallogr D Biol Crystallogr 71 2494-2504 (2015)
  22. Historical Article Elucidation of the structure of retroviral proteases: a reminiscence. Jaskolski M, Miller M, Mohana Rao JK, Gustchina A, Wlodawer A. FEBS J 282 4059-4066 (2015)
  23. Neutron crystallography of copper amine oxidase reveals keto/enolate interconversion of the quinone cofactor and unusual proton sharing. Murakawa T, Kurihara K, Shoji M, Shibazaki C, Sunami T, Tamada T, Yano N, Yamada T, Kusaka K, Suzuki M, Shigeta Y, Kuroki R, Hayashi H, Yano T, Tanizawa K, Adachi M, Okajima T. Proc Natl Acad Sci U S A 117 10818-10824 (2020)
  24. Seeing the chemistry in biology with neutron crystallography. Langan P, Chen JC. Phys Chem Chem Phys 15 13705-13712 (2013)
  25. An in silico pharmacological approach toward the discovery of potent inhibitors to combat drug resistance HIV-1 protease variants. Nayak C, Chandra I, Singh SK. J Cell Biochem 120 9063-9081 (2019)
  26. Combining Molecular Dynamic Information and an Aspherical-Atom Data Bank in the Evaluation of the Electrostatic Interaction Energy in Multimeric Protein-Ligand Complex: A Case Study for HIV-1 Protease. Kumar P, Dominiak PM. Molecules 26 3872 (2021)
  27. Neutron scattering techniques and applications in structural biology. Ankner JF, Heller WT, Herwig KW, Meilleur F, Myles DA. Curr Protoc Protein Sci Chapter 17 Unit17.16 (2013)
  28. Investigation of Structural Dynamics of Enzymes and Protonation States of Substrates Using Computational Tools. Chang CA, Huang YM, Mueller LJ, You W. Catalysts 6 82 (2016)
  29. Decoding the Structure of Non-Proteinogenic Amino Acids: The Rotational Spectrum of Jet-Cooled Laser-Ablated Thioproline. López JC, Macario A, Verde A, Pérez-Encabo A, Blanco S. Molecules 26 7585 (2021)
  30. Determination of the protonation state of the Asp dyad: conventional molecular dynamics versus thermodynamic integration. Huang J, Zhu Y, Sun B, Yao Y, Liu J. J Mol Model 22 58 (2016)
  31. Preliminary joint neutron time-of-flight and X-ray crystallographic study of human ABO(H) blood group A glycosyltransferase. Schuman B, Fisher SZ, Kovalevsky A, Borisova SN, Palcic MM, Coates L, Langan P, Evans SV. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 258-262 (2011)
  32. Developing HIV-1 Protease Inhibitors through Stereospecific Reactions in Protein Crystals. Olajuyigbe FM, Demitri N, De Zorzi R, Geremia S. Molecules 21 E1458 (2016)
  33. Evaluation of novel protease inhibitors against darunavir-resistant variants of HIV type 1. Inoue M, Oyama D, Hidaka K, Kameoka M. FEBS Open Bio 7 88-95 (2017)
  34. Time-of-flight neutron diffraction study of bovine γ-chymotrypsin at the Protein Crystallography Station. Lazar LM, Fisher SZ, Moulin AG, Kovalevsky A, Novak WR, Langan P, Petsko GA, Ringe D. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 587-590 (2011)
  35. WaterKit: Thermodynamic Profiling of Protein Hydration Sites. Eberhardt J, Forli S. J Chem Theory Comput 19 2535-2556 (2023)