3grs Citations

Refined structure of glutathione reductase at 1.54 A resolution.

J Mol Biol 195 701-29 (1987)
Cited: 297 times
EuropePMC logo PMID: 3656429

Abstract

The crystal structure of human glutathione reductase has been established at 1.54 A resolution using a restrained least-squares refinement method. Based on 77,690 independent reflections of better than 10 A resolution, a final R-factor of 18.6% was obtained with a model obeying standard geometry within 0.025 A in bond lengths and 2.4 degrees in bond angles. The final 2Fo-Fc electron density map allows for the distinction of carbon, nitrogen and oxygen atoms with temperature factors below about 25 A2. Apart from 461 amino acid residues and the prosthetic group FAD, the model contains 524 solvent molecules, about 118 of which can be considered an integral part of the enzyme. The largest solvent cluster is at the dimer interface and contains 104 interconnected solvent molecules, part of which are organized in a warped sheet-like structure. The main-chain dihedral angles are well-concentrated in the allowed regions of the Ramachandran plot. The spread of dihedral angles in beta-pleated sheets is much larger than in alpha-helices and especially in alpha-helix cores, indicating the higher plasticity of beta-structures. The analysis revealed a large amount of 3(10)-helix. The side-chain conformations cluster at the staggered positions, and show well-defined preferences. Also, a mobility gradient is observed for side-chains. Non-polar and polar side-chains show average temperature factor increases per bond of 10% and 25%, respectively. A number of alternative conformations of internal side-chains, in particular serines and methionines, have been detected. The extended FAD molecule also shows a mobility gradient between the very rigid flavin (mean value of B) = 8.7 A2) and the more mobile adenine (mean value of B = 16.2 A2). The entire active center is particularly well ordered, with temperature factors around 10 A2. The dimer interface consists of a rigid contact area, which is well conserved in the Escherichia coli enzyme, and a flexible area that is not. Altogether, the buried surfaces at the crystal contacts are half as large as at the dimer interface, but less specific. The refined structure shows clearly that there are no buried cations compensating the charge of the pyrophosphate moiety of FAD. The flavin deviates slightly from standard geometry, which is possibly caused by the polypeptide environment. In contrast to an earlier interpretation, atom N5 of the flavin can accommodate a proton, and it is conceivable that this proton proceeds to the redox-active disulfide.(ABSTRACT TRUNCATED AT 400 WORDS)

Reviews - 3grs mentioned but not cited (1)

  1. Monotopic Membrane Proteins Join the Fold. Allen KN, Entova S, Ray LC, Imperiali B. Trends Biochem Sci 44 7-20 (2019)

Articles - 3grs mentioned but not cited (45)

  1. A graph-theory algorithm for rapid protein side-chain prediction. Canutescu AA, Shelenkov AA, Dunbrack RL. Protein Sci 12 2001-2014 (2003)
  2. Side-chain flexibility in protein-ligand binding: the minimal rotation hypothesis. Zavodszky MI, Kuhn LA. Protein Sci 14 1104-1114 (2005)
  3. CODA: a combined algorithm for predicting the structurally variable regions of protein models. Deane CM, Blundell TL. Protein Sci 10 599-612 (2001)
  4. Catalytic cycle of human glutathione reductase near 1 A resolution. Berkholz DS, Faber HR, Savvides SN, Karplus PA. J Mol Biol 382 371-384 (2008)
  5. On the molecular discrimination between adenine and guanine by proteins. Nobeli I, Laskowski RA, Valdar WS, Thornton JM. Nucleic Acids Res 29 4294-4309 (2001)
  6. Side-chain conformational entropy at protein-protein interfaces. Cole C, Warwicker J. Protein Sci 11 2860-2870 (2002)
  7. Characterization of a possible amyloidogenic precursor in glutamine-repeat neurodegenerative diseases. Armen RS, Bernard BM, Day R, Alonso DO, Daggett V. Proc Natl Acad Sci U S A 102 13433-13438 (2005)
  8. A procedure for the prediction of temperature-sensitive mutants of a globular protein based solely on the amino acid sequence. Varadarajan R, Nagarajaram HA, Ramakrishnan C. Proc Natl Acad Sci U S A 93 13908-13913 (1996)
  9. RPBS: a web resource for structural bioinformatics. Alland C, Moreews F, Boens D, Carpentier M, Chiusa S, Lonquety M, Renault N, Wong Y, Cantalloube H, Chomilier J, Hochez J, Pothier J, Villoutreix BO, Zagury JF, Tufféry P. Nucleic Acids Res 33 W44-9 (2005)
  10. Improving the performance of DomainParser for structural domain partition using neural network. Guo JT, Xu D, Kim D, Xu Y. Nucleic Acids Res 31 944-952 (2003)
  11. Real-time ligand binding pocket database search using local surface descriptors. Chikhi R, Sael L, Kihara D. Proteins 78 2007-2028 (2010)
  12. Fast protein loop sampling and structure prediction using distance-guided sequential chain-growth Monte Carlo method. Tang K, Zhang J, Liang J. PLoS Comput Biol 10 e1003539 (2014)
  13. Structure and mechanism of a eukaryotic FMN adenylyltransferase. Huerta C, Borek D, Machius M, Grishin NV, Zhang H. J Mol Biol 389 388-400 (2009)
  14. Isolation and mapping of self-assembling protein domains encoded by the Saccharomyces cerevisiae genome using lambda repressor fusions. Mariño-Ramírez L, Hu JC. Yeast 19 641-650 (2002)
  15. Application of MM/PBSA colony free energy to loop decoy discrimination: toward correlation between energy and root mean square deviation. Fogolari F, Tosatto SC. Protein Sci 14 889-901 (2005)
  16. On the evolutionary conservation of hydrogen bonds made by buried polar amino acids: the hidden joists, braces and trusses of protein architecture. Worth CL, Blundell TL. BMC Evol Biol 10 161 (2010)
  17. Antiproliferative and antioxidant potentials of bioactive edible vegetable fraction of Achyranthes ferruginea Roxb. in cancer cell line. Reza ASMA, Haque MA, Sarker J, Nasrin MS, Rahman MM, Tareq AM, Khan Z, Rashid M, Sadik MG, Tsukahara T, Alam AK. Food Sci Nutr 9 3777-3805 (2021)
  18. PANDORA: keyword-based analysis of protein sets by integration of annotation sources. Kaplan N, Vaaknin A, Linial M. Nucleic Acids Res 31 5617-5626 (2003)
  19. Minimum message length inference of secondary structure from protein coordinate data. Konagurthu AS, Lesk AM, Allison L. Bioinformatics 28 i97-105 (2012)
  20. Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening. Turcano L, Torrente E, Missineo A, Andreini M, Gramiccia M, Di Muccio T, Genovese I, Fiorillo A, Harper S, Bresciani A, Colotti G, Ilari A. PLoS Negl Trop Dis 12 e0006969 (2018)
  21. Prediction of protein loop structures using a local move Monte Carlo approach and a grid-based force field. Cui M, Mezei M, Osman R. Protein Eng Des Sel 21 729-735 (2008)
  22. Isolation of phytochemical constituents from Stevia rebaudiana (Bert.) and evaluation of their anticancer, antimicrobial and antioxidant properties via in vitro and in silico approaches. Khatun MCS, Muhit MA, Hossain MJ, Al-Mansur MA, Rahman SMA. Heliyon 7 e08475 (2021)
  23. Full cyclic coordinate descent: solving the protein loop closure problem in Calpha space. Boomsma W, Hamelryck T. BMC Bioinformatics 6 159 (2005)
  24. TRILOGY: Discovery of sequence-structure patterns across diverse proteins. Bradley P, Kim PS, Berger B. Proc Natl Acad Sci U S A 99 8500-8505 (2002)
  25. Antidiarrheal, antimicrobial and antioxidant potentials of methanol extract of Colocasia gigantea Hook. f. leaves: evidenced from in vivo and in vitro studies along with computer-aided approaches. Alam S, Rashid MA, Sarker MMR, Emon NU, Arman M, Mohamed IN, Haque MR. BMC Complement Med Ther 21 119 (2021)
  26. Chemical and Pharmacological Profiling of Wrightia coccinea (Roxb. Ex Hornem.) Sims Focusing Antioxidant, Cytotoxic, Antidiarrheal, Hypoglycemic, and Analgesic Properties. Jannat T, Hossain MJ, El-Shehawi AM, Kuddus MR, Rashid MA, Albogami S, Jafri I, El-Shazly M, Haque MR. Molecules 27 4024 (2022)
  27. ClusPro-DC: Dimer Classification by the Cluspro Server for Protein-Protein Docking. Yueh C, Hall DR, Xia B, Padhorny D, Kozakov D, Vajda S. J Mol Biol 429 372-381 (2017)
  28. Protein beta-sheet nucleation is driven by local modular formation. Wathen B, Jia Z. J Biol Chem 285 18376-18384 (2010)
  29. Agroinfiltration contributes to VP1 recombinant protein degradation. Pillay P, Kunert KJ, van Wyk S, Makgopa ME, Cullis CA, Vorster BJ. Bioengineered 7 459-477 (2016)
  30. Chemico-Pharmacological Screening of the Methanol Extract of Gynura nepalensis D.C. Deciphered Promising Antioxidant and Hepatoprotective Potentials: Evidenced from in vitro, in vivo, and Computer-Aided Studies. Chakrabarty N, Chung HJ, Alam R, Emon NU, Alam S, Kabir MF, Islam MM, Hong ST, Sarkar T, Sarker MMR, Rahman MM. Molecules 27 3474 (2022)
  31. Chemico-pharmacological and computational studies of Ophiorrhiza fasciculata D. Don and Psychotria silhetensis Hook. f. focusing cytotoxic, thrombolytic, anti-inflammatory, antioxidant, and antibacterial properties. Rashid PT, Hossain MJ, Zahan MS, Hasan CM, Rashid MA, Al-Mansur MA, Haque MR. Heliyon 9 e20100 (2023)
  32. PatchSurfers: Two methods for local molecular property-based binding ligand prediction. Shin WH, Bures MG, Kihara D. Methods 93 41-50 (2016)
  33. Quantitative Assessment of Chirality of Protein Secondary Structures and Phenylalanine Peptide Nanotubes. Sidorova A, Bystrov V, Lutsenko A, Shpigun D, Belova E, Likhachev I. Nanomaterials (Basel) 11 3299 (2021)
  34. Using neural networks and evolutionary information in decoy discrimination for protein tertiary structure prediction. Tan CW, Jones DT. BMC Bioinformatics 9 94 (2008)
  35. Phenolic Constituents from Wendlandia tinctoria var. grandis (Roxb.) DC. Stem Deciphering Pharmacological Potentials against Oxidation, Hyperglycemia, and Diarrhea: Phyto-Pharmacological and Computational Approaches. Farzana M, Hossain MJ, El-Shehawi AM, Sikder MAA, Rahman MS, Al-Mansur MA, Albogami S, Elseehy MM, Roy A, Uddin MA, Rashid MA. Molecules 27 5957 (2022)
  36. Antioxidative role of palm grass rhizome ameliorates anxiety and depression in experimental rodents and computer-aided model. Hoque MA, Ahmad S, Chakrabarty N, Khan MF, Hafez Kabir MS, Brishti A, Raihan MO, Alam AHMK, Haque MA, Nasrin MS, Haque MA, Reza ASMA. Heliyon 7 e08199 (2021)
  37. A Class of Valuable (Pro-)Activity-Based Protein Profiling Probes: Application to the Redox-Active Antiplasmodial Agent, Plasmodione. Cichocki BA, Khobragade V, Donzel M, Cotos L, Blandin S, Schaeffer-Reiss C, Cianférani S, Strub JM, Elhabiri M, Davioud-Charvet E. JACS Au 1 669-689 (2021)
  38. Expanded explorations into the optimization of an energy function for protein design. Huang YM, Bystroff C. IEEE/ACM Trans Comput Biol Bioinform 10 1176-1187 (2013)
  39. Tetraclinis articulata (Vahl) Mast. essential oil as a promising source of bioactive compounds with antimicrobial, antioxidant, anti-inflammatory and dermatoprotective properties: In vitro and in silico evidence. El Hachlafi N, Fikri-Benbrahim K, Al-Mijalli SH, Elbouzidi A, Jeddi M, Abdallah EM, Assaggaf H, Bouyahya A, Alnasser SM, Attar A, Goh KW, Ming LC, Ong SK, Mrabti HN, Chahdi FO. Heliyon 10 e23084 (2024)
  40. Chemical composition, antioxidant, and antimicrobial properties of Mentha subtomentella: in sight in vitro and in silico analysis. Brahmi F, Bentouhami NE, Rbah Y, Elbouzidi A, Mokhtari O, Salamatullah AM, Ibenmoussa S, Bourhia M, Addi M, Asehraou A, Legssyer B. Front Chem 11 1341704 (2023)
  41. Chemical profiling of volatile compounds of the essential oil of grey-leaved rockrose (Cistus albidus L.) and its antioxidant, anti-inflammatory, antibacterial, antifungal, and anticancer activity in vitro and in silico. Elbouzidi A, Taibi M, Laaraj S, Loukili EH, Haddou M, El Hachlafi N, Naceiri Mrabti H, Baraich A, Bellaouchi R, Asehraou A, Bourhia M, Nafidi HA, Bin Jardan YA, Chaabane K, Addi M. Front Chem 12 1334028 (2024)
  42. Phytochemical Profiling, Antioxidant Activity, and In Silico Analyses of Sterculia villosa and Vernonia patula. Lyzu C, Mitra S, Perveen K, Khan Z, Tareq AM, Bukhari NA, Husain FM, Lipy EP, Islam D, Hakim M, Emran TB, Dashti MG. Evid Based Complement Alternat Med 2022 3190496 (2022)
  43. Anti-oxidant and neuro-modulatory effects of bioactive Byttneria pilosa leaf extract in swiss albino mice using behavioral models. Jyoti MA, Shah MS, Uddin MN, Hossain MK, Han A, Geng P, Islam MN, Mamun AA. Front Chem 12 1341308 (2024)
  44. Apoptosis-inducing anti-proliferative and quantitative phytochemical profiling with in silico study of antioxidant-rich Leea aequata L. leaves. Mostofa MG, Reza ASMA, Khan Z, Munira MS, Khatoon MM, Kabir SR, Sadik MG, Ağagündüz D, Capasso R, Kazi M, Alam AK. Heliyon 10 e23400 (2024)
  45. Unveiling the molecular basis of paracetamol-induced hepatotoxicity: Interaction of N-acetyl-p-benzoquinone imine with mitochondrial succinate dehydrogenase. Hossen MS, Akter A, Azmal M, Rayhan M, Islam KS, Islam MM, Ahmed S, Abdullah-Al-Shoeb M. Biochem Biophys Rep 38 101727 (2024)


Reviews citing this publication (23)

  1. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Deponte M. Biochim Biophys Acta 1830 3217-3266 (2013)
  2. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Couto N, Wood J, Barber J. Free Radic Biol Med 95 27-42 (2016)
  3. Sequence-structure analysis of FAD-containing proteins. Dym O, Eisenberg D. Protein Sci 10 1712-1728 (2001)
  4. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Müller S. Mol Microbiol 53 1291-1305 (2004)
  5. NAD(+)-dependent formate dehydrogenase. Popov VO, Lamzin VS. Biochem J 301 ( Pt 3) 625-643 (1994)
  6. How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. van Gisbergen MW, Voets AM, Starmans MH, de Coo IF, Yadak R, Hoffmann RF, Boutros PC, Smeets HJ, Dubois L, Lambin P. Mutat Res Rev Mutat Res 764 16-30 (2015)
  7. Functional domains of assimilatory nitrate reductases and nitrite reductases. Campbell WH, Kinghorn KR. Trends Biochem Sci 15 315-319 (1990)
  8. Cation-pi bonding and amino-aromatic interactions in the biomolecular recognition of substituted ammonium ligands. Scrutton NS, Raine AR. Biochem J 319 ( Pt 1) 1-8 (1996)
  9. Redox control of protein conformation in flavoproteins. Senda T, Senda M, Kimura S, Ishida T. Antioxid Redox Signal 11 1741-1766 (2009)
  10. 1,4-naphthoquinones and other NADPH-dependent glutathione reductase-catalyzed redox cyclers as antimalarial agents. Belorgey D, Lanfranchi DA, Davioud-Charvet E. Curr Pharm Des 19 2512-2528 (2013)
  11. Aliphatic epoxide carboxylation. Ensign SA, Allen JR. Annu Rev Biochem 72 55-76 (2003)
  12. alpha/beta barrel evolution and the modular assembly of enzymes: emerging trends in the flavin oxidase/dehydrogenase family. Scrutton NS. Bioessays 16 115-122 (1994)
  13. New enzymes for old: redesigning the coenzyme and substrate specificities of glutathione reductase. Perham RN, Scrutton NS, Berry A. Bioessays 13 515-525 (1991)
  14. Flavin-linked peroxide reductases: protein-sulfenic acids and the oxidative stress response. Claiborne A, Ross RP, Parsonage D. Trends Biochem Sci 17 183-186 (1992)
  15. Water structure theory and some implications for drug design. Plumridge TH, Waigh RD. J Pharm Pharmacol 54 1155-1179 (2002)
  16. B-cell epitope peptide cancer vaccines: a new paradigm for combination immunotherapies with novel checkpoint peptide vaccine. Kaumaya PT. Future Oncol 16 1767-1791 (2020)
  17. Crosstalk between anticancer drugs and mitochondrial functions. Sahu K, Langeh U, Singh C, Singh A. Curr Res Pharmacol Drug Discov 2 100047 (2021)
  18. An evolutionary approach to the design of glutathione-linked enzymes. Mannervik B, Cameron AD, Fernandez E, Gustafsson A, Hansson LO, Jemth P, Jiang F, Jones TA, Larsson AK, Nilsson LO, Olin B, Pettersson PL, Ridderström M, Stenberg G, Widersten M. Chem Biol Interact 111-112 15-21 (1998)
  19. Biomedical science and the third world. Under the volcano. Trypanothione reductase. Murgolo NJ, Cerami A, Henderson GB. Ann N Y Acad Sci 569 193-200 (1989)
  20. Conserving energy with sulfate around 100 °C--structure and mechanism of key metal enzymes in hyperthermophilic Archaeoglobus fulgidus. Parey K, Fritz G, Ermler U, Kroneck PM. Metallomics 5 302-317 (2013)
  21. Preliminary crystallographic analysis of trypanothione reductase from Crithidia fasciculata. Kuriyan J, Wong L, Guenther BD, Murgolo NJ, Cerami A, Henderson GB. J Mol Biol 215 335-337 (1990)
  22. Molecular views of redox regulation: three-dimensional structures of redox regulatory proteins and protein complexes. Qin J, Yang Y, Velyvis A, Gronenborn A. Antioxid Redox Signal 2 827-840 (2000)
  23. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Maia LB, Maiti BK, Moura I, Moura JJG. Molecules 29 120 (2023)

Articles citing this publication (228)

  1. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Scrutton NS, Berry A, Perham RN. Nature 343 38-43 (1990)
  2. Improvements in protein secondary structure prediction by an enhanced neural network. Kneller DG, Cohen FE, Langridge R. J Mol Biol 214 171-182 (1990)
  3. Domain swapping: entangling alliances between proteins. Bennett MJ, Choe S, Eisenberg D. Proc Natl Acad Sci U S A 91 3127-3131 (1994)
  4. Accurate modeling of protein conformation by automatic segment matching. Levitt M. J Mol Biol 226 507-533 (1992)
  5. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 A resolution. A model for a catalytic transition state. Müller CW, Schulz GE. J Mol Biol 224 159-177 (1992)
  6. Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Zhong L, Arnér ES, Holmgren A. Proc Natl Acad Sci U S A 97 5854-5859 (2000)
  7. Hydrogen bonding in globular proteins. Stickle DF, Presta LG, Dill KA, Rose GD. J Mol Biol 226 1143-1159 (1992)
  8. Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I. Lima CD, Wang JC, Mondragón A. Nature 367 138-146 (1994)
  9. Structure of porin refined at 1.8 A resolution. Weiss MS, Schulz GE. J Mol Biol 227 493-509 (1992)
  10. High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. Louie GV, Brayer GD. J Mol Biol 214 527-555 (1990)
  11. Molecular structure of flavocytochrome b2 at 2.4 A resolution. Xia ZX, Mathews FS. J Mol Biol 212 837-863 (1990)
  12. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. Argos P. J Mol Biol 211 943-958 (1990)
  13. Identification of side-chain clusters in protein structures by a graph spectral method. Kannan N, Vishveshwara S. J Mol Biol 292 441-464 (1999)
  14. Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 A resolution. Karplus PA, Schulz GE. J Mol Biol 210 163-180 (1989)
  15. Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. Eggink G, Engel H, Vriend G, Terpstra P, Witholt B. J Mol Biol 212 135-142 (1990)
  16. Hydrogen bond stereochemistry in protein structure and function. Ippolito JA, Alexander RS, Christianson DW. J Mol Biol 215 457-471 (1990)
  17. Analysis of the steric strain in the polypeptide backbone of protein molecules. Herzberg O, Moult J. Proteins 11 223-229 (1991)
  18. Experimentally observed conformation-dependent geometry and hidden strain in proteins. Karplus PA. Protein Sci 5 1406-1420 (1996)
  19. Refined structure of porcine cytosolic adenylate kinase at 2.1 A resolution. Dreusicke D, Karplus PA, Schulz GE. J Mol Biol 199 359-371 (1988)
  20. Crystal structure of a Baeyer-Villiger monooxygenase. Malito E, Alfieri A, Fraaije MW, Mattevi A. Proc Natl Acad Sci U S A 101 13157-13162 (2004)
  21. Old yellow enzyme at 2 A resolution: overall structure, ligand binding, and comparison with related flavoproteins. Fox KM, Karplus PA. Structure 2 1089-1105 (1994)
  22. cDNA sequence of adrenodoxin reductase. Identification of NADP-binding sites in oxidoreductases. Hanukoglu I, Gutfinger T. Eur J Biochem 180 479-484 (1989)
  23. Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold. Implications for nucleotide specificity. Baker PJ, Britton KL, Rice DW, Rob A, Stillman TJ. J Mol Biol 228 662-671 (1992)
  24. Convergent evolution of similar function in two structurally divergent enzymes. Kuriyan J, Krishna TS, Wong L, Guenther B, Pahler A, Williams CH, Model P. Nature 352 172-174 (1991)
  25. Crystal structure of the p-hydroxybenzoate hydroxylase-substrate complex refined at 1.9 A resolution. Analysis of the enzyme-substrate and enzyme-product complexes. Schreuder HA, Prick PA, Wierenga RK, Vriend G, Wilson KS, Hol WG, Drenth J. J Mol Biol 208 679-696 (1989)
  26. Structure of cyclodextrin glycosyltransferase refined at 2.0 A resolution. Klein C, Schulz GE. J Mol Biol 217 737-750 (1991)
  27. Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Zhou P, Tian F, Lv F, Shang Z. Proteins 76 151-163 (2009)
  28. Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers. Becker K, Savvides SN, Keese M, Schirmer RH, Karplus PA. Nat Struct Biol 5 267-271 (1998)
  29. Structure of the thiamine- and flavin-dependent enzyme pyruvate oxidase. Muller YA, Schulz GE. Science 259 965-967 (1993)
  30. Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 A resolution. Vrielink A, Lloyd LF, Blow DM. J Mol Biol 219 533-554 (1991)
  31. The cytotoxic mechanism of glyoxal involves oxidative stress. Shangari N, O'Brien PJ. Biochem Pharmacol 68 1433-1442 (2004)
  32. High-resolution structures of adenylate kinase from yeast ligated with inhibitor Ap5A, showing the pathway of phosphoryl transfer. Abele U, Schulz GE. Protein Sci 4 1262-1271 (1995)
  33. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Schiering N, Kabsch W, Moore MJ, Distefano MD, Walsh CT, Pai EF. Nature 352 168-172 (1991)
  34. Rationally designed selective inhibitors of trypanothione reductase. Phenothiazines and related tricyclics as lead structures. Benson TJ, McKie JH, Garforth J, Borges A, Fairlamb AH, Douglas KT. Biochem J 286 ( Pt 1) 9-11 (1992)
  35. Monomeric sarcosine oxidase: structure of a covalently flavinylated amine oxidizing enzyme. Trickey P, Wagner MA, Jorns MS, Mathews FS. Structure 7 331-345 (1999)
  36. Refined crystal structure of lipoamide dehydrogenase from Azotobacter vinelandii at 2.2 A resolution. A comparison with the structure of glutathione reductase. Mattevi A, Schierbeek AJ, Hol WG. J Mol Biol 220 975-994 (1991)
  37. A structurally conserved water molecule in Rossmann dinucleotide-binding domains. Bottoms CA, Smith PE, Tanner JJ. Protein Sci 11 2125-2137 (2002)
  38. Use of techniques derived from graph theory to compare secondary structure motifs in proteins. Mitchell EM, Artymiuk PJ, Rice DW, Willett P. J Mol Biol 212 151-166 (1990)
  39. Protein-protein interactions in the pyruvate dehydrogenase multienzyme complex: dihydrolipoamide dehydrogenase complexed with the binding domain of dihydrolipoamide acetyltransferase. Mande SS, Sarfaty S, Allen MD, Perham RN, Hol WG. Structure 4 277-286 (1996)
  40. Conformations of disulfide bridges in proteins. Srinivasan N, Sowdhamini R, Ramakrishnan C, Balaram P. Int J Pept Protein Res 36 147-155 (1990)
  41. Glycation (non-enzymic glycosylation) inactivates glutathione reductase. Blakytny R, Harding JJ. Biochem J 288 ( Pt 1) 303-307 (1992)
  42. Taxonomy and conformational analysis of loops in proteins. Ring CS, Kneller DG, Langridge R, Cohen FE. J Mol Biol 224 685-699 (1992)
  43. The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 A resolution. Ingelman M, Bianchi V, Eklund H. J Mol Biol 268 147-157 (1997)
  44. A crystallographic study of the glutathione binding site of glutathione reductase at 0.3-nm resolution. Karplus PA, Pai EF, Schulz GE. Eur J Biochem 178 693-703 (1989)
  45. Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue. Färber PM, Arscott LD, Williams CH, Becker K, Schirmer RH. FEBS Lett 422 311-314 (1998)
  46. The structure of aconitase. Robbins AH, Stout CD. Proteins 5 289-312 (1989)
  47. Glutathione reductase of the malarial parasite Plasmodium falciparum: crystal structure and inhibitor development. Sarma GN, Savvides SN, Becker K, Schirmer M, Schirmer RH, Karplus PA. J Mol Biol 328 893-907 (2003)
  48. Rigid protein motion as a model for crystallographic temperature factors. Kuriyan J, Weis WI. Proc Natl Acad Sci U S A 88 2773-2777 (1991)
  49. Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75 A resolution. Leslie AG. J Mol Biol 213 167-186 (1990)
  50. Refined structure of the complex between guanylate kinase and its substrate GMP at 2.0 A resolution. Stehle T, Schulz GE. J Mol Biol 224 1127-1141 (1992)
  51. Manganese superoxide dismutase from Thermus thermophilus. A structural model refined at 1.8 A resolution. Ludwig ML, Metzger AL, Pattridge KA, Stallings WC. J Mol Biol 219 335-358 (1991)
  52. Novel method for the rapid evaluation of packing in protein structures. Gregoret LM, Cohen FE. J Mol Biol 211 959-974 (1990)
  53. Undressing of phosphine gold(I) complexes as irreversible inhibitors of human disulfide reductases. Urig S, Fritz-Wolf K, Réau R, Herold-Mende C, Tóth K, Davioud-Charvet E, Becker K. Angew Chem Int Ed Engl 45 1881-1886 (2006)
  54. Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato. Dry I, Smith A, Edwards A, Bhattacharyya M, Dunn P, Martin C. Plant J 2 193-202 (1992)
  55. Active site of trypanothione reductase. A target for rational drug design. Hunter WN, Bailey S, Habash J, Harrop SJ, Helliwell JR, Aboagye-Kwarteng T, Smith K, Fairlamb AH. J Mol Biol 227 322-333 (1992)
  56. A H2O-producing NADH oxidase from the protozoan parasite Giardia duodenalis. Brown DM, Upcroft JA, Upcroft P. Eur J Biochem 241 155-161 (1996)
  57. Structure of quinoprotein methylamine dehydrogenase at 2.25 A resolution. Vellieux FM, Huitema F, Groendijk H, Kalk KH, Jzn JF, Jongejan JA, Duine JA, Petratos K, Drenth J, Hol WG. EMBO J 8 2171-2178 (1989)
  58. Substrate interactions between trypanothione reductase and N1-glutathionylspermidine disulphide at 0.28-nm resolution. Bailey S, Smith K, Fairlamb AH, Hunter WN. Eur J Biochem 213 67-75 (1993)
  59. Crystal structure of the human thioredoxin reductase-thioredoxin complex. Fritz-Wolf K, Kehr S, Stumpf M, Rahlfs S, Becker K. Nat Commun 2 383 (2011)
  60. The refined structure of the complex between adenylate kinase from beef heart mitochondrial matrix and its substrate AMP at 1.85 A resolution. Diederichs K, Schulz GE. J Mol Biol 217 541-549 (1991)
  61. Crystal structures of oxidized and reduced mitochondrial thioredoxin reductase provide molecular details of the reaction mechanism. Biterova EI, Turanov AA, Gladyshev VN, Barycki JJ. Proc Natl Acad Sci U S A 102 15018-15023 (2005)
  62. A natural grouping of motifs with an aspartate or asparagine residue forming two hydrogen bonds to residues ahead in sequence: their occurrence at alpha-helical N termini and in other situations. Wan WY, Milner-White EJ. J Mol Biol 286 1633-1649 (1999)
  63. Distribution and complementarity of hydropathy in multisubunit proteins. Korn AP, Burnett RM. Proteins 9 37-55 (1991)
  64. The refined crystal structure of Pseudomonas putida lipoamide dehydrogenase complexed with NAD+ at 2.45 A resolution. Mattevi A, Obmolova G, Sokatch JR, Betzel C, Hol WG. Proteins 13 336-351 (1992)
  65. Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. Sarma GN, Nickel C, Rahlfs S, Fischer M, Becker K, Karplus PA. J Mol Biol 346 1021-1034 (2005)
  66. Proteopedia: Rossmann fold: A beta-alpha-beta fold at dinucleotide binding sites. Hanukoglu I. Biochem Mol Biol Educ 43 206-209 (2015)
  67. Structure of the complex of yeast adenylate kinase with the inhibitor P1,P5-di(adenosine-5'-)pentaphosphate at 2.6 A resolution. Egner U, Tomasselli AG, Schulz GE. J Mol Biol 195 649-658 (1987)
  68. Structure of L-aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family. Mattevi A, Tedeschi G, Bacchella L, Coda A, Negri A, Ronchi S. Structure 7 745-756 (1999)
  69. The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 A resolution. Zhang Y, Bond CS, Bailey S, Cunningham ML, Fairlamb AH, Hunter WN. Protein Sci 5 52-61 (1996)
  70. An automatic method involving cluster analysis of secondary structures for the identification of domains in proteins. Sowdhamini R, Blundell TL. Protein Sci 4 506-520 (1995)
  71. The structure of human thioredoxin reductase 1 provides insights into C-terminal rearrangements during catalysis. Fritz-Wolf K, Urig S, Becker K. J Mol Biol 370 116-127 (2007)
  72. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2.4-A resolution. Kuriyan J, Kong XP, Krishna TS, Sweet RM, Murgolo NJ, Field H, Cerami A, Henderson GB. Proc Natl Acad Sci U S A 88 8764-8768 (1991)
  73. Crystal structure of Arabidopsis thaliana NADPH dependent thioredoxin reductase at 2.5 A resolution. Dai S, Saarinen M, Ramaswamy S, Meyer Y, Jacquot JP, Eklund H. J Mol Biol 264 1044-1057 (1996)
  74. Mechanism of inhibition of trypanothione reductase and glutathione reductase by trivalent organic arsenicals. Cunningham ML, Zvelebil MJ, Fairlamb AH. Eur J Biochem 221 285-295 (1994)
  75. X-ray structure of lipoamide dehydrogenase from Azotobacter vinelandii determined by a combination of molecular and isomorphous replacement techniques. Schierbeek AJ, Swarte MB, Dijkstra BW, Vriend G, Read RJ, Hol WG, Drenth J, Betzel C. J Mol Biol 206 365-379 (1989)
  76. Purification of glutathione reductase from bovine brain, generation of an antiserum, and immunocytochemical localization of the enzyme in neural cells. Gutterer JM, Dringen R, Hirrlinger J, Hamprecht B. J Neurochem 73 1422-1430 (1999)
  77. Structure of glutathione reductase from Escherichia coli at 1.86 A resolution: comparison with the enzyme from human erythrocytes. Mittl PR, Schulz GE. Protein Sci 3 799-809 (1994)
  78. Structure of oxidized bacteriophage T4 glutaredoxin (thioredoxin). Refinement of native and mutant proteins. Eklund H, Ingelman M, Söderberg BO, Uhlin T, Nordlund P, Nikkola M, Sonnerstam U, Joelson T, Petratos K. J Mol Biol 228 596-618 (1992)
  79. The ultrahigh resolution crystal structure of ribonuclease A containing an isoaspartyl residue: hydration and sterochemical analysis. Esposito L, Vitagliano L, Sica F, Sorrentino G, Zagari A, Mazzarella L. J Mol Biol 297 713-732 (2000)
  80. X-ray analyses of aspartic proteinases. The three-dimensional structure at 2.1 A resolution of endothiapepsin. Blundell TL, Jenkins JA, Sewell BT, Pearl LH, Cooper JB, Tickle IJ, Veerapandian B, Wood SP. J Mol Biol 211 919-941 (1990)
  81. How dihydrolipoamide dehydrogenase-binding protein binds dihydrolipoamide dehydrogenase in the human pyruvate dehydrogenase complex. Ciszak EM, Makal A, Hong YS, Vettaikkorumakankauv AK, Korotchkina LG, Patel MS. J Biol Chem 281 648-655 (2006)
  82. Kinetics and crystallographic analysis of human glutathione reductase in complex with a xanthene inhibitor. Savvides SN, Karplus PA. J Biol Chem 271 8101-8107 (1996)
  83. Refined crystal structure of ferredoxin II from Desulfovibrio gigas at 1.7 A. Kissinger CR, Sieker LC, Adman ET, Jensen LH. J Mol Biol 219 693-715 (1991)
  84. The subunit interfaces of oligomeric enzymes are conserved to a similar extent to the overall protein sequences. Grishin NV, Phillips MA. Protein Sci 3 2455-2458 (1994)
  85. Cloning and sequencing of mammalian glutathione reductase cDNA. Tutic M, Lu XA, Schirmer RH, Werner D. Eur J Biochem 188 523-528 (1990)
  86. Dominant role of local dipoles in stabilizing uncompensated charges on a sulfate sequestered in a periplasmic active transport protein. He JJ, Quiocho FA. Protein Sci 2 1643-1647 (1993)
  87. Molecular cloning and analysis of the gene encoding the NADH oxidase from Streptococcus faecalis 10C1. Comparison with NADH peroxidase and the flavoprotein disulfide reductases. Ross RP, Claiborne A. J Mol Biol 227 658-671 (1992)
  88. Sulfide : quinone oxidoreductase (SQR) from the lugworm Arenicola marina shows cyanide- and thioredoxin-dependent activity. Theissen U, Martin W. FEBS J 275 1131-1139 (2008)
  89. Inhibition of human glutathione reductase by the nitrosourea drugs 1,3-bis(2-chloroethyl)-1-nitrosourea and 1-(2-chloroethyl)-3-(2-hydroxyethyl)-1-nitrosourea. A crystallographic analysis. Karplus PA, Krauth-Siegel RL, Schirmer RH, Schulz GE. Eur J Biochem 171 193-198 (1988)
  90. Beta VI turns in peptides and proteins: a model peptide mimicry. Müller G, Gurrath M, Kurz M, Kessler H. Proteins 15 235-251 (1993)
  91. Charge is the major discriminating factor for glutathione reductase versus trypanothione reductase inhibitors. Faerman CH, Savvides SN, Strickland C, Breidenbach MA, Ponasik JA, Ganem B, Ripoll D, Krauth-Siegel RL, Karplus PA. Bioorg Med Chem 4 1247-1253 (1996)
  92. Common features of the conformations of antigen-binding loops in immunoglobulins and application to modeling loop conformations. Tramontano A, Lesk AM. Proteins 13 231-245 (1992)
  93. Evidence for gene duplication forming similar binding folds for NAD(P)H and FAD in pyridine nucleotide-dependent flavoenzymes. McKie JH, Douglas KT. FEBS Lett 279 5-8 (1991)
  94. Glutathione reductase and glutamate dehydrogenase of Plasmodium falciparum, the causative agent of tropical malaria. Krauth-Siegel RL, Müller JG, Lottspeich F, Schirmer RH. Eur J Biochem 235 345-350 (1996)
  95. Kukoamine A and other hydrophobic acylpolyamines: potent and selective inhibitors of Crithidia fasciculata trypanothione reductase. Ponasik JA, Strickland C, Faerman C, Savvides S, Karplus PA, Ganem B. Biochem J 311 ( Pt 2) 371-375 (1995)
  96. Glutathione reductase inhibitors as potential antimalarial drugs. Effects of nitrosoureas on Plasmodium falciparum in vitro. Zhang YA, Hempelmann E, Schirmer RH. Biochem Pharmacol 37 855-860 (1988)
  97. Cloning, sequencing, and regulation of the glutathione reductase gene from the cyanobacterium Anabaena PCC 7120. Jiang F, Hellman U, Sroga GE, Bergman B, Mannervik B. J Biol Chem 270 22882-22889 (1995)
  98. Crystal structure of the electron transfer complex rubredoxin rubredoxin reductase of Pseudomonas aeruginosa. Hagelueken G, Wiehlmann L, Adams TM, Kolmar H, Heinz DW, Tümmler B, Schubert WD. Proc Natl Acad Sci U S A 104 12276-12281 (2007)
  99. Molecular cloning and characterization of a putative glutathione reductase gene, the PfGR2 gene, from Plasmodium falciparum. Färber PM, Becker K, Müller S, Schirmer RH, Franklin RM. Eur J Biochem 239 655-661 (1996)
  100. Structural and sequence characteristics of long alpha helices in globular proteins. Kumar S, Bansal M. Biophys J 71 1574-1586 (1996)
  101. Structure of NADH peroxidase from Streptococcus faecalis 10C1 refined at 2.16 A resolution. Stehle T, Ahmed SA, Claiborne A, Schulz GE. J Mol Biol 221 1325-1344 (1991)
  102. The structure of Trypanosoma cruzi trypanothione reductase in the oxidized and NADPH reduced state. Lantwin CB, Schlichting I, Kabsch W, Pai EF, Krauth-Siegel RL. Proteins 18 161-173 (1994)
  103. Cloning and sequence analysis of the genes encoding the dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase components of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Borges A, Hawkins CF, Packman LC, Perham RN. Eur J Biochem 194 95-102 (1990)
  104. Structure-function correlation in glycine oxidase from Bacillus subtilis. Mörtl M, Diederichs K, Welte W, Molla G, Motteran L, Andriolo G, Pilone MS, Pollegioni L. J Biol Chem 279 29718-29727 (2004)
  105. Anatomy of an engineered NAD-binding site. Mittl PR, Berry A, Scrutton NS, Perham RN, Schulz GE. Protein Sci 3 1504-1514 (1994)
  106. Occurrence of bifurcated three-center hydrogen bonds in proteins. Preissner R, Egner U, Saenger W. FEBS Lett 288 192-196 (1991)
  107. Substrate specificity of rat liver glutathione S-transferase isoenzymes for a series of glutathione analogues, modified at the gamma-glutamyl moiety. Adang AE, Brussee J, Meyer DJ, Coles B, Ketterer B, van der Gen A, Mulder GJ. Biochem J 255 721-724 (1988)
  108. Sulfide-quinone reductase from Rhodobacter capsulatus. Purification, cloning, and expression. Schütz M, Shahak Y, Padan E, Hauska G. J Biol Chem 272 9890-9894 (1997)
  109. The structure of Escherichia coli heat-stable enterotoxin b by nuclear magnetic resonance and circular dichroism. Sukumar M, Rizo J, Wall M, Dreyfus LA, Kupersztoch YM, Gierasch LM. Protein Sci 4 1718-1729 (1995)
  110. Cloning, sequence and overexpression of NADH peroxidase from Streptococcus faecalis 10C1. Structural relationship with the flavoprotein disulfide reductases. Ross RP, Claiborne A. J Mol Biol 221 857-871 (1991)
  111. Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system. Jönsson TJ, Ellis HR, Poole LB. Biochemistry 46 5709-5721 (2007)
  112. Flavin fluorescence dynamics and photoinduced electron transfer in Escherichia coli glutathione reductase. van den Berg PA, van Hoek A, Walentas CD, Perham RN, Visser AJ. Biophys J 74 2046-2058 (1998)
  113. Molecular characterization of the trypanothione reductase gene from Crithidia fasciculata and Trypanosoma brucei: comparison with other flavoprotein disulphide oxidoreductases with respect to substrate specificity and catalytic mechanism. Aboagye-Kwarteng T, Smith K, Fairlamb AH. Mol Microbiol 6 3089-3099 (1992)
  114. Molecular structure of the lipoamide dehydrogenase domain of a surface antigen from Neisseria meningitidis. Li de la Sierra I, Pernot L, Prangé T, Saludjian P, Schiltz M, Fourme R, Padrón G. J Mol Biol 269 129-141 (1997)
  115. Engineering the substrate specificity of glutathione reductase toward that of trypanothione reduction. Henderson GB, Murgolo NJ, Kuriyan J, Osapay K, Kominos D, Berry A, Scrutton NS, Hinchliffe NW, Perham RN, Cerami A. Proc Natl Acad Sci U S A 88 8769-8773 (1991)
  116. Structure of coenzyme A-disulfide reductase from Staphylococcus aureus at 1.54 A resolution. Mallett TC, Wallen JR, Karplus PA, Sakai H, Tsukihara T, Claiborne A. Biochemistry 45 11278-11289 (2006)
  117. Evidence for the rapid conversion of stephacidin B into the electrophilic monomer avrainvillamide in cell culture. Wulff JE, Herzon SB, Siegrist R, Myers AG. J Am Chem Soc 129 4898-4899 (2007)
  118. In vitro inhibition of human erythrocyte glutathione reductase by some new organic nitrates. Sentürk M, Talaz O, Ekinci D, Cavdar H, Küfrevioğlu OI. Bioorg Med Chem Lett 19 3661-3663 (2009)
  119. Molecular characterization of the gor gene encoding glutathione reductase from Pseudomonas aeruginosa: determinants of substrate specificity among pyridine nucleotide-disulphide oxidoreductases. Perry AC, Ni Bhriain N, Brown NL, Rouch DA. Mol Microbiol 5 163-171 (1991)
  120. Purification and characterization of lipoamide dehydrogenase from Trypanosoma cruzi. Lohrer H, Krauth-Siegel RL. Eur J Biochem 194 863-869 (1990)
  121. Selenoglutaredoxin as a glutathione peroxidase mimic. Casi G, Roelfes G, Hilvert D. Chembiochem 9 1623-1631 (2008)
  122. NADH binding site and catalysis of NADH peroxidase. Stehle T, Claiborne A, Schulz GE. Eur J Biochem 211 221-226 (1993)
  123. Structure of rubredoxin from Desulfovibrio vulgaris at 1.5 A resolution. Adman ET, Sieker LC, Jensen LH. J Mol Biol 217 337-352 (1991)
  124. Rational design of selective ligands for trypanothione reductase from Trypanosoma cruzi. Structural effects on the inhibition by dibenzazepines based on imipramine. Garforth J, Yin H, McKie JH, Douglas KT, Fairlamb AH. J Enzyme Inhib 12 161-173 (1997)
  125. Truncated mutants of human thioredoxin reductase 1 do not exhibit glutathione reductase activity. Urig S, Lieske J, Fritz-Wolf K, Irmler A, Becker K. FEBS Lett 580 3595-3600 (2006)
  126. Structural models of ribonuclease H domains in reverse transcriptases from retroviruses. Nakamura H, Katayanagi K, Morikawa K, Ikehara M. Nucleic Acids Res 19 1817-1823 (1991)
  127. Engineering of an intersubunit disulphide bridge in glutathione reductase from Escherichia coli. Scrutton NS, Berry A, Perham RN. FEBS Lett 241 46-50 (1988)
  128. A helix-turn-strand structural motif common in alpha-beta proteins. Rice PA, Goldman A, Steitz TA. Proteins 8 334-340 (1990)
  129. Classification of doubly wound nucleotide binding topologies using automated loop searches. Swindells MB. Protein Sci 2 2146-2153 (1993)
  130. Denaturation and reactivation of dimeric human glutathione reductase--an assay for folding inhibitors. Nordhoff A, Tziatzios C, van den Broek JA, Schott MK, Kalbitzer HR, Becker K, Schubert D, Schirmer RH. Eur J Biochem 245 273-282 (1997)
  131. Formation and properties of mixed disulfides between thioredoxin reductase from Escherichia coli and thioredoxin: evidence that cysteine-138 functions to initiate dithiol-disulfide interchange and to accept the reducing equivalent from reduced flavin. Veine DM, Mulrooney SB, Wang PF, Williams CH. Protein Sci 7 1441-1450 (1998)
  132. Immunogenicity and antitumor efficacy of a novel human PD-1 B-cell vaccine (PD1-Vaxx) and combination immunotherapy with dual trastuzumab/pertuzumab-like HER-2 B-cell epitope vaccines (B-Vaxx) in a syngeneic mouse model. Kaumaya PTP, Guo L, Overholser J, Penichet ML, Bekaii-Saab T. Oncoimmunology 9 1818437 (2020)
  133. Cloning, sequence and transcriptional analysis of the structural gene for LPD-3, the third lipoamide dehydrogenase of Pseudomonas putida. Palmer JA, Madhusudhan KT, Hatter K, Sokatch JR. Eur J Biochem 202 231-240 (1991)
  134. Crystallization and preliminary crystallographic analysis of trypanothione reductase from Trypanosoma cruzi, the causative agent of Chagas' disease. Krauth-Siegel RL, Sticherling C, Jöst I, Walsh CT, Pai EF, Kabsch W, Lantwin CB. FEBS Lett 317 105-108 (1993)
  135. Flavoenzyme-catalyzed formation of disulfide bonds in natural products. Scharf DH, Groll M, Habel A, Heinekamp T, Hertweck C, Brakhage AA, Huber EM. Angew Chem Int Ed Engl 53 2221-2224 (2014)
  136. Probing the affinity and specificity of yeast alcohol dehydrogenase I for coenzymes. Fan F, Plapp BV. Arch Biochem Biophys 367 240-249 (1999)
  137. Active site water molecules revealed in the 2.1 A resolution structure of a site-directed mutant of isocitrate dehydrogenase. Cherbavaz DB, Lee ME, Stroud RM, Koshland DE. J Mol Biol 295 377-385 (2000)
  138. Analysis of interaction between the Arthrobacter sarcosine oxidase and the coenzyme flavin adenine dinucleotide by site-directed mutagenesis. Nishiya Y, Imanaka T. Appl Environ Microbiol 62 2405-2410 (1996)
  139. Crystal structure analysis of Bacillus subtilis ferredoxin-NADP(+) oxidoreductase and the structural basis for its substrate selectivity. Komori H, Seo D, Sakurai T, Higuchi Y. Protein Sci 19 2279-2290 (2010)
  140. Crystal structures of subtilisin BPN' variants containing disulfide bonds and cavities: concerted structural rearrangements induced by mutagenesis. Katz B, Kossiakoff AA. Proteins 7 343-357 (1990)
  141. Exploration of glutathione reductase for abiotic stress response in bread wheat (Triticum aestivum L.). Madhu, Kaur A, Tyagi S, Shumayla, Singh K, Upadhyay SK. Plant Cell Rep 41 639-654 (2022)
  142. Orthogonal beta beta motifs in proteins. Sowdhamini R, Srinivasan N, Ramakrishnan C, Balaram P. J Mol Biol 223 845-851 (1992)
  143. Purification and characterization of glutathione reductase isozymes specific for the state of cold hardiness of red spruce. Hausladen A, Alscher RG. Plant Physiol 105 205-213 (1994)
  144. Conserved supersecondary structural motif in NAD-dependent dehydrogenases. Kutzenko AS, Lamzin VS, Popov VO. FEBS Lett 423 105-109 (1998)
  145. Crystal structure of a flavoprotein related to the subunits of bacterial luciferase. Moore SA, James MN, O'Kane DJ, Lee J. EMBO J 12 1767-1774 (1993)
  146. Evidence for two conformational states of thioredoxin reductase from Escherichia coli: use of intrinsic and extrinsic quenchers of flavin fluorescence as probes to observe domain rotation. Mulrooney SB, Williams CH. Protein Sci 6 2188-2195 (1997)
  147. Plasmodium falciparum glutathione reductase exhibits sequence similarities with the human host enzyme in the core structure but differs at the ligand-binding sites. Müller S, Becker K, Bergmann B, Schirmer RH, Walter RD. Mol Biochem Parasitol 74 11-18 (1995)
  148. Thioredoxin-thioredoxin reductase system of Streptomyces clavuligerus: sequences, expression, and organization of the genes. Cohen G, Yanko M, Mislovati M, Argaman A, Schreiber R, Av-Gay Y, Aharonowitz Y. J Bacteriol 175 5159-5167 (1993)
  149. High-throughput protein analysis integrating bioinformatics and experimental assays. del Val C, Mehrle A, Falkenhahn M, Seiler M, Glatting KH, Poustka A, Suhai S, Wiemann S. Nucleic Acids Res 32 742-748 (2004)
  150. Horse-liver glutathione reductase: purification and characterization. García-Alfonso C, Martínez-Galisteo E, Llobell A, Bárcena JA, López-Barea J. Int J Biochem 25 61-68 (1993)
  151. Molecular organization of the glutathione reductase gene in Drosophila melanogaster. Candas M, Sohal RS, Radyuk SN, Klichko VI, Orr WC. Arch Biochem Biophys 339 323-334 (1997)
  152. Nitrofuran inhibition of yeast and rat tissue glutathione reductases. Structure-activity relationships. Grinblat L, Sreider CM, Stoppani AO. Biochem Pharmacol 38 767-772 (1989)
  153. Random silent mutagenesis in the initial triplets of the coding region: a technique for adapting human glutathione reductase-encoding cDNA to expression in Escherichia coli. Bücheler US, Werner D, Schirmer RH. Gene 96 271-276 (1990)
  154. Comparative modeling of thioredoxin glutathione reductase from Schistosoma mansoni: a multifunctional target for antischistosomal therapy. Sharma M, Khanna S, Bulusu G, Mitra A. J Mol Graph Model 27 665-675 (2009)
  155. Cloning and sequencing of cDNA encoding 4-aminobenzoate hydroxylase from Agaricus bisporus. Tsuji H, Oka T, Kimoto M, Hong YM, Natori Y, Ogawa T. Biochim Biophys Acta 1309 31-36 (1996)
  156. Evidence for a novel mechanism of time-resolved flavin fluorescence depolarization in glutathione reductase. van den Berg PA, van Hoek A, Visser AJ. Biophys J 87 2577-2586 (2004)
  157. Flavin reductase: sequence of cDNA from bovine liver and tissue distribution. Quandt KS, Hultquist DE. Proc Natl Acad Sci U S A 91 9322-9326 (1994)
  158. Initiating a crystallographic study of trypanothione reductase. Hunter WN, Smith K, Derewenda Z, Harrop SJ, Habash J, Islam MS, Helliwell JR, Fairlamb AH. J Mol Biol 216 235-237 (1990)
  159. Interaction of lipoamide dehydrogenase with the dihydrolipoyl transacetylase component of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Schulze E, Benen JA, Westphal AH, de Kok A. Eur J Biochem 200 29-34 (1991)
  160. Predissociated dimers and molten globule monomers in the equilibrium unfolding of yeast glutathione reductase. Louzada PR, Sebollela A, Scaramello ME, Ferreira ST. Biophys J 85 3255-3261 (2003)
  161. Thioredoxin reductase from Escherichia coli: evidence of restriction to a single conformation upon formation of a crosslink between engineered cysteines. Veine DM, Ohnishi K, Williams CH. Protein Sci 7 369-375 (1998)
  162. Microinjected glutathione reductase crystals as indicators of the redox status in living cells. Keese MA, Saffrich R, Dandekar T, Becker K, Schirmer RH. FEBS Lett 447 135-138 (1999)
  163. Regulation of horse-liver glutathione reductase. García-Alfonso C, Martínez-Galisteo E, Llobell A, Bárcena JA, López-Barea J. Int J Biochem 25 513-520 (1993)
  164. Specific arrangement of three amino acid residues for flavin-binding barrel structures in NADH-cytochrome b5 reductase and the other flavin-dependent reductases. Nishida H, Inaka K, Miki K. FEBS Lett 361 97-100 (1995)
  165. Structural stabilization of protein 4.1R FERM domain upon binding to apo-calmodulin: novel insights into the biological significance of the calcium-independent binding of calmodulin to protein 4.1R. Nunomura W, Sasakura D, Shiba K, Nakamura S, Kidokoro S, Takakuwa Y. Biochem J 440 367-374 (2011)
  166. The cis-Pro touch-turn: a rare motif preferred at functional sites. Videau LL, Arendall WB, Richardson JS. Proteins 56 298-309 (2004)
  167. The three-dimensional structure of glutathione reductase from Escherichia coli at 3.0 A resolution. Ermler U, Schulz GE. Proteins 9 174-179 (1991)
  168. Rational design of peptide-based inhibitors of trypanothione reductase as potential antitrypanosomal drugs. Garforth J, McKie JH, Jaouhari R, Benson TJ, Fairlamb AH, Douglas KT. Amino Acids 6 295-299 (1994)
  169. Comment Enzyme evolution. Déjà vu all over again. Petsko GA. Nature 352 104-105 (1991)
  170. Estimation and extraction of B-cell linear epitopes predicted by mathematical morphology approaches. Chang HT, Liu CH, Pai TW. J Mol Recognit 21 431-441 (2008)
  171. Human interleukin-5 expressed in Escherichia coli: assignment of the disulfide bridges of the purified unglycosylated protein. Proudfoot AE, Davies JG, Turcatti G, Wingfield PT. FEBS Lett 283 61-64 (1991)
  172. Inhibitors of glutathione reductase as potential antimalarial drugs. Kinetic cooperativity and effect of dimethyl sulphoxide on inhibition kinetics. Lüönd RM, McKie JH, Douglas KT, Dascombe MJ, Vale J. J Enzyme Inhib 13 327-345 (1998)
  173. Primary structure of an invertebrate dihydrolipoamide dehydrogenase with phylogenetic relationship to vertebrate and bacterial disulfide oxidoreductases. Pullikuth AK, Gill SS. Gene 200 163-172 (1997)
  174. Purification and characterization of glutathione reductase from Rhodospirillum rubrum. Libreros-Minotta CA, Pardo JP, Mendoza-Hernández G, Rendón JL. Arch Biochem Biophys 298 247-253 (1992)
  175. Structural characterization of l-aspartate oxidase and identification of an interdomain loop by limited proteolysis. Tedeschi G, Negri A, Ceciliani F, Mattevi A, Ronchi S. Eur J Biochem 260 896-903 (1999)
  176. The Drosophila ankyrin repeat protein cactus has a predominantly alpha-helical secondary structure. Gay NJ, Ntwasa M. FEBS Lett 335 155-160 (1993)
  177. Association of hyperglycemia mediated increased advanced glycation and erythrocyte antioxidant enzyme activity in different stages of diabetic retinopathy. Choudhuri S, Dutta D, Chowdhury IH, Mitra B, Sen A, Mandal LK, Mukhopadhyay S, Bhattacharya B. Diabetes Res Clin Pract 100 376-384 (2013)
  178. Characterization of a small molecule inhibitor of disulfide reductases that induces oxidative stress and lethality in lung cancer cells. Johnson FD, Ferrarone J, Liu A, Brandstädter C, Munuganti R, Farnsworth DA, Lu D, Luu J, Sihota T, Jansen S, Nagelberg A, Shi R, Forcina GC, Zhang X, Cheng GSW, Spencer Miko SE, de Rappard-Yuswack G, Sorensen PH, Dixon SJ, Guha U, Becker K, Djaballah H, Somwar R, Varmus H, Morin GB, Lockwood WW. Cell Rep 38 110343 (2022)
  179. Differential susceptibility of filarial and human erythrocyte glutathione reductase to inhibition by the trivalent organic arsenical melarsen oxide. Müller S, Walter RD, Fairlamb AH. Mol Biochem Parasitol 71 211-219 (1995)
  180. Frequency and Markov chain analysis of amino-acid sequences of human glutathione reductase. Wu G. Biochem Biophys Res Commun 268 823-826 (2000)
  181. Involvement of conserved glycine residues, 229 and 234, of Vibrio harveyi aldehyde dehydrogenase in activity and nucleotide binding. Vedadi M, Vrielink A, Meighen E. Biochem Biophys Res Commun 238 448-451 (1997)
  182. Profiling patterns of glutathione reductase inhibition by the natural product illudin S and its acylfulvene analogues. Liu X, Sturla SJ. Mol Biosyst 5 1013-1024 (2009)
  183. Flavinylation in wild-type trimethylamine dehydrogenase and differentially charged mutant enzymes: a study of the protein environment around the N1 of the flavin isoalloxazine. Mewies M, Packman LC, Mathews FS, Scrutton NS. Biochem J 317 ( Pt 1) 267-272 (1996)
  184. Generating compatible translation initiation regions for heterologous gene expression in Escherichia coli by exhaustive periShine-Dalgarno mutagenesis. Human glutathione reductase cDNA as a model. Bücheler US, Werner D, Schirmer RH. Nucleic Acids Res 20 3127-3133 (1992)
  185. Glutathione reductase from Saccharomyces cerevisiae undergoes redox interconversion in situ and in vivo. Peinado J, Florindo J, López-Barea J. Mol Cell Biochem 110 135-143 (1992)
  186. Inhibition of glutathione reductase by oncomodulin. Palmer EJ, MacManus JP, Mutus B. Arch Biochem Biophys 277 149-154 (1990)
  187. Metals are directly involved in the redox interconversion of Saccharomyces cerevisiae glutathione reductase. Peinado J, Florindo J, García-Alfonso C, Martínez-Galisteo E, Llobell A, López-Barea J. Mol Cell Biochem 101 175-187 (1991)
  188. Overexpression of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli. Yoon HS, Lee IA, Lee H, Lee BH, Jo J. Biochem Biophys Res Commun 326 618-623 (2005)
  189. Receptor site and stereospecifity of dihydrolipoamide dehydrogenase for R- and S-lipoamide: a molecular modeling study. Raddatz G, Bisswanger H. J Biotechnol 58 89-100 (1997)
  190. Targeting the intersubunit cavity of Plasmodium falciparum glutathione reductase by a novel natural inhibitor: computational and experimental evidence. Tyagi C, Bathke J, Goyal S, Fischer M, Dahse HM, Chacko S, Becker K, Grover A. Int J Biochem Cell Biol 61 72-80 (2015)
  191. The role of local tight packing of hydrophobic groups in beta-structure. Vtyurin N. Proteins 15 62-70 (1993)
  192. Assembly and functional expression of murine glutathione reductase cDNA: a sequence missing in expressed sequence tag libraries. Iozef R, Becker K, Boehme CC, Schirmer RH, Werner D. Biochim Biophys Acta 1500 137-141 (2000)
  193. Conformational studies on beta-bend containing a cis peptide unit. Nagarajaram HA, Paul PK, Ramanarayanan K, Soman KV, Ramakrishnan C. Int J Pept Protein Res 40 383-394 (1992)
  194. Covalent structure of the flavoprotein subunit of the flavocytochrome c: sulfide dehydrogenase from the purple phototrophic bacterium Chromatium vinosum. Van Driessche G, Koh M, Chen ZW, Mathews FS, Meyer TE, Bartsch RG, Cusanovich MA, Van Beeumen JJ. Protein Sci 5 1753-1764 (1996)
  195. Directed mutagenesis of the redox-active disulphide bridge in glutathione reductase from Escherichia coli. Deonarain MP, Scrutton NS, Berry A, Perham RN. Proc Biol Sci 241 179-186 (1990)
  196. Understanding nicotinamide dinucleotide cofactor and substrate specificity in class I flavoprotein disulfide oxidoreductases: crystallographic analysis of a glutathione amide reductase. Van Petegem F, De Vos D, Savvides S, Vergauwen B, Van Beeumen J. J Mol Biol 374 883-889 (2007)
  197. Active site complementation in engineered heterodimers of Escherichia coli glutathione reductase created in vivo. Scrutton NS, Berry A, Deonarain MP, Perham RN. Proc Biol Sci 242 217-224 (1990)
  198. Consensus preferred hydration sites in six FKBP12-drug complexes. Faerman CH, Karplus PA. Proteins 23 1-11 (1995)
  199. Homology analysis of the protein sequences of fatty acid synthases from chicken liver, rat mammary gland, and yeast. Chang SI, Hammes GG. Proc Natl Acad Sci U S A 86 8373-8376 (1989)
  200. Lysine 219 participates in NADPH specificity in a flavin-containing monooxygenase from Saccharomyces cerevisiae. Suh JK, Poulsen LL, Ziegler DM, Robertus JD. Arch Biochem Biophys 372 360-366 (1999)
  201. NADPH and oxidized thioredoxin mediate redox interconversion of calf-liver and Escherichia coli thioredoxin reductase. Martínez-Galisteo E, García-Alfonso C, Alicia Padilla C, Antonio Bárcena J, López-Barea J. Mol Cell Biochem 109 61-69 (1992)
  202. Properties of lipoamide dehydrogenase and thioredoxin reductase from Escherichia coli altered by site-directed mutagenesis. Williams CH, Allison N, Russell GC, Prongay AJ, Arscott LD, Datta S, Sahlman L, Guest JR. Ann N Y Acad Sci 573 55-65 (1989)
  203. Letter Substitution of a conserved catalytic dyad into 2-KPCC causes loss of carboxylation activity. Prussia GA, Gauss GH, Mus F, Conner L, DuBois JL, Peters JW. FEBS Lett 590 2991-2996 (2016)
  204. The conserved histidine 106 of large thioredoxin reductases is likely to have a structural role but not a base catalyst function. Jacob J, Schirmer RH, Gromer S. FEBS Lett 579 745-748 (2005)
  205. The role of electrostatics in TrxR electron transfer mechanism: A computational approach. Teixeira VH, Capacho AS, Machuqueiro M. Proteins 84 1836-1843 (2016)
  206. A novel enzyme of type VI sulfide:quinone oxidoreductases in purple sulfur photosynthetic bacteria. Duzs Á, Tóth A, Németh B, Balogh T, Kós PB, Rákhely G. Appl Microbiol Biotechnol 102 5133-5147 (2018)
  207. An Examination by Site-Directed Mutagenesis of Putative Key Residues in the Determination of Coenzyme Specificity in Clostridial NAD-Dependent Glutamate Dehydrogenase. Griffin J, Engel PC. Enzyme Res 2011 595793 (2011)
  208. Crystallization and preliminary X-ray analysis of flavocytochrome c(3), the fumarate reductase from Shewanella frigidimarina. Pealing SL, Lysek DA, Taylor P, Alexeev D, Reid GA, Chapman SK, Walkinshaw MD. J Struct Biol 127 76-78 (1999)
  209. Stereochemical constraints in peptide design: analysis of the influence of a disulfide bridge and an alpha-aminoisobutyryl residue on the conformation of a hexapeptide. Uma K, Kishore R, Balaram P. Biopolymers 33 865-871 (1993)
  210. Stereospecificity of hydride removal from NADH by reductases of multicomponent nonheme iron oxygenase systems. Schläfli HR, Baker DP, Leisinger T, Cook AM. J Bacteriol 177 831-834 (1995)
  211. The structure of NADH peroxidase from Streptococcus faecalis at 3.3 A resolution. Stehle T, Ahmed SA, Claiborne A, Schulz GE. FEBS Lett 267 186-188 (1990)
  212. Use of transferred nuclear-Overhauser-effect spectroscopy to measure the bound conformation of a disulphide-replaced analogue of glutathione disulphide as an inhibitor of yeast glutathione reductase. Embrey KJ, Mehta A, Carrington SJ, Jaouhari R, McKie JH, Douglas KT. Eur J Biochem 221 793-799 (1994)
  213. Structural, spectroscopic and catalytic activity studies on glutathione reductase reconstituted with FAD analogues. Ermler U, Ghisla S, Massey V, Schulz GE. Eur J Biochem 199 133-138 (1991)
  214. Treatment of human peripheral lymphocytes with concanavalin A activates expression of glutathione reductase. Arnold HH, Heinze H. FEBS Lett 267 189-192 (1990)
  215. Unfolding kinetics of glutathione reductase from cyanobacterium Spirulina maxima. Rendón JL, Mendoza-Hernández G. Arch Biochem Biophys 387 265-272 (2001)
  216. Acid- and pressure-induced (un)folding of yeast glutathione reductase: competition between protein oligomerization and aggregation. Morais AC, Chapeaurouge A, Ferreira ST. Int J Biochem Cell Biol 37 1890-1899 (2005)
  217. Purification and characterization of glutathione reductase (E.C. 1.8.1.7) from bovine filarial worms Setaria cervi. Arora K, Ahmad R, Srivastava AK. J Parasit Dis 37 94-104 (2013)
  218. The Relevance of Glutathione Reductase Inhibition by Fluoxetine to Human Health and Disease: Insights Derived from a Combined Kinetic and Docking Study. Dalmizrak O, Teralı K, Asuquo EB, Ogus IH, Ozer N. Protein J 38 515-524 (2019)
  219. Three-dimensional model of the alpha-subunit of bacterial luciferase. Sandalova T, Lindqvist Y. Proteins 23 241-255 (1995)
  220. Feed-forward neural networks for secondary structure prediction. Barlow TW. J Mol Graph 13 175-183 (1995)
  221. Modulation of the flavin-protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study. Keirsse-Haquin J, Picaud T, Bordes L, de Gracia AG, Desbois A. Eur Biophys J 47 205-223 (2018)
  222. Role of reducing co-factors in catalytic reactions of 6-hydroxymellein synthase, a multifunctional polyketide biosynthetic enzyme in carrot cells. Kurosaki F, Togashi K, Arisawa M. Plant Sci 160 113-120 (2000)
  223. Structural and Kinetic Characterization of Hyperthermophilic NADH-Dependent Persulfide Reductase from Archaeoglobus fulgidus. Shabdar S, Anaclet B, Castineiras AG, Desir N, Choe N, Crane EJ, Sazinsky MH. Archaea 2021 8817136 (2021)
  224. Structural aspects of biomolecular recognition and self-assembly. Perham RN. Biosens Bioelectron 9 753-760 (1994)
  225. Assigning function to active site residues of Schistosoma mansoni thioredoxin/glutathione reductase from analysis of transient state reductive half-reactions with variant forms of the enzyme. Smith MM, Moran GR. Front Mol Biosci 10 1258333 (2023)
  226. From PDB files to protein features: a comparative analysis of PDB bind and STCRDAB datasets. Ali S, Chourasia P, Patterson M. Med Biol Eng Comput (2024)
  227. Mechanistic and structural insights into the in vitro inhibitory action of hypericin on glutathione reductase purified from baker's yeast. Dalmizrak O, Teralı K, Abdullah RK, Ozer N. J Biochem Mol Toxicol 32 e22051 (2018)
  228. The crystal structure of mycothiol disulfide reductase (Mtr) provides mechanistic insight into the specific low-molecular-weight thiol reductase activity of Actinobacteria. Gutiérrez-Fernández J, Hersleth HP, Hammerstad M. Acta Crystallogr D Struct Biol 80 181-193 (2024)


Related citations provided by authors (12)

  1. Inhibition of Human Glutathione Reductase by the Nitrosourea Drugs 1,3-Bis(2-Chloroethyl)-1-Nitrosurea and 1-(2-Chloroethyl)-3-(2-Hydroxyethyl)-1-Nitrosourea. Karplus PA, Krauth-Siegel RL, Schirmer RH, Schulz GE Eur. J. Biochem. 171 193- (1988)
  2. Interaction of a Glutathione S-Conjugate with Glutathione Reductase. Kinetic and X-Ray Crystallographic Studies. Bilzer M, Krauth-Siegel RL, Schirmer RH, Akerboom TPM, Sies H, Schulz GE Eur. J. Biochem. 138 373- (1984)
  3. Comparison of the Three-Dimensional Protein and Nucleotide Structure of the Fad-Binding Domain of P-Hydroxybenzoate Hydroxylase with the Fad-as Well as Nadph-Binding Domains of Glutathione Reductase. Wierenga RK, Drenth J, Schulz GE J. Mol. Biol. 167 725- (1983)
  4. The Catalytic Mechanism of Glutathione Reductase as Derived from X-Ray Diffraction Analyses of Reaction Intermediates. Pai EF, Schulz GE J. Biol. Chem. 258 1752- (1983)
  5. Fad-Binding Site of Glutathione Reductase. Schulz GE, Schirmer RH, Pai EF J. Mol. Biol. 160 287- (1982)
  6. Glutathione Reductase from Human Erythrocytes. The Sequences of the Nadph Domain and of the Interface Domain. Krauth-Siegel RL, Blatterspiel R, Saleh M, Schiltz E, Schirmer RH, Untucht-Grau R Eur. J. Biochem. 121 259- (1982)
  7. Three-Dimensional Structure of Glutathione Reductase at 2 Angstroms Resolution. Thieme R, Pai EF, Schirmer RH, Schulz GE J. Mol. Biol. 152 763- (1981)
  8. Gene Duplication in Glutathione Reductase. Schulz GE J. Mol. Biol. 138 335- (1980)
  9. The C-Terminal Fragment of Human Glutathione Reductase Contains the Postulated Catalytic Histidine. Untucht-Grau R, Schulz GE, Schirmer RH FEBS Lett. 105 244- (1979)
  10. The Structure of the Flavoenzyme Glutathione Reductase. Schulz GE, Schirmer RH, Sachsenheimer W, Pai EF Nature 273 120- (1978)
  11. Low Resolution Structure of Human Erythrocyte Glutathione Reductase. Zappe HA, Krohne-Ehrich G, Schulz GE J. Mol. Biol. 113 141- (1977)
  12. Crystals of Human Erythrocyte Glutathione Reductase. Schulz GE, Zappe H, Worthington DJ, Rosemeyer MA FEBS Lett. 54 86- (1975)