3gut Citations

Structural basis of HIV-1 activation by NF-kappaB--a higher-order complex of p50:RelA bound to the HIV-1 LTR.

J Mol Biol 393 98-112 (2009)
Cited: 62 times
EuropePMC logo PMID: 19683540

Abstract

The activation and latency of human immunodeficiency virus type 1 (HIV-1) are tightly controlled by the transcriptional activity of its long terminal repeat (LTR) region. The LTR is regulated by viral proteins as well as host factors, including the nuclear factor kappaB (NF-kappaB) that becomes activated in virus-infected cells. The two tandem NF-kappaB sites of the LTR are among the most highly conserved sequence elements of the HIV-1 genome. Puzzlingly, these sites are arranged in a manner that seems to preclude simultaneous binding of both sites by NF-kappaB, although previous biochemical work suggests otherwise. Here, we have determined the crystal structure of p50:RelA bound to the tandem kappaB element of the HIV-1 LTR as a dimeric dimer, providing direct structural evidence that NF-kappaB can occupy both sites simultaneously. The two p50:RelA dimers bind the adjacent kappaB sites and interact through a protein contact that is accommodated by DNA bending. The two dimers clamp DNA from opposite faces of the double helix and form a topological trap of the bound DNA. Consistent with these structural features, our biochemical analyses indicate that p50:RelA binds the HIV-1 LTR tandem kappaB sites with an apparent anti-cooperativity but enhanced kinetic stability. The slow on and off rates we observe may be relevant to viral latency because viral activation requires sustained NF-kappaB activation. Furthermore, our work demonstrates that the specific arrangement of the two kappaB sites on the HIV-1 LTR can modulate the assembly kinetics of the higher-order NF-kappaB complex on the viral promoter. This phenomenon is unlikely restricted to the HIV-1 LTR but probably represents a general mechanism for the function of composite DNA elements in transcription.

Articles - 3gut mentioned but not cited (18)

  1. Structural basis of HIV-1 activation by NF-kappaB--a higher-order complex of p50:RelA bound to the HIV-1 LTR. Stroud JC, Oltman A, Han A, Bates DL, Chen L. J Mol Biol 393 98-112 (2009)
  2. The structural pathway of interleukin 1 (IL-1) initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer. Acuner Ozbabacan SE, Gursoy A, Nussinov R, Keskin O. PLoS Comput Biol 10 e1003470 (2014)
  3. Anticancer compound plumbagin and its molecular targets: a structural insight into the inhibitory mechanisms using computational approaches. Jamal MS, Parveen S, Beg MA, Suhail M, Chaudhary AG, Damanhouri GA, Abuzenadah AM, Rehan M. PLoS One 9 e87309 (2014)
  4. The structure and specificity of the type III secretion system effector NleC suggest a DNA mimicry mechanism of substrate recognition. Turco MM, Sousa MC. Biochemistry 53 5131-5139 (2014)
  5. Combined cardio-protective ability of syringic acid and resveratrol against isoproterenol induced cardio-toxicity in rats via attenuating NF-kB and TNF-α pathways. S M, Shaik AH, E MP, Al Omar SY, Mohammad A, Kodidhela LD. Sci Rep 10 3426 (2020)
  6. Identification and validation of p50 as the cellular target of eriocalyxin B. Kong LM, Deng X, Zuo ZL, Sun HD, Zhao QS, Li Y. Oncotarget 5 11354-11364 (2014)
  7. Quantitative modeling of dose-response and drug combination based on pathway network. Gu J, Zhang X, Ma Y, Li N, Luo F, Cao L, Wang Z, Yuan G, Chen L, Xiao W, Xu X. J Cheminform 7 19 (2015)
  8. Anti-Osteoclastogenic and Antibacterial Effects of Chlorinated Polyketides from the Beibu Gulf Coral-Derived Fungus Aspergillus unguis GXIMD 02505. Zhang Y, Li Z, Huang B, Liu K, Peng S, Liu X, Gao C, Liu Y, Tan Y, Luo X. Mar Drugs 20 178 (2022)
  9. Compound C Inhibits Ovarian Cancer Progression via PI3K-AKT-mTOR-NFκB Pathway. Ghoneum A, Gonzalez D, Afify H, Shu J, Hegarty A, Adisa J, Kelly M, Lentz S, Salsbury F, Said N. Cancers (Basel) 14 5099 (2022)
  10. Single-molecule conformational dynamics of a transcription factor reveals a continuum of binding modes controlling association and dissociation. Chen W, Lu W, Wolynes PG, Komives EA. Nucleic Acids Res 49 11211-11223 (2021)
  11. In Vivo and In Silico Assessment of the Cardioprotective Effect of Thymus linearis Extract against Ischemic Myocardial Injury. Malik A, Khan A, Mahmood Q, Nawaz Marth MMA, Riaz M, Tabassum T, Rasool G, Rehman MFU, Batool AI, Kanwal F, Cai R. ACS Omega 7 43635-43646 (2022)
  12. Molecular Modeling and In Vitro Evaluation of Piplartine Analogs against Oral Squamous Cell Carcinoma. Silva RHN, Machado TQ, da Fonseca ACC, Tejera E, Perez-Castillo Y, Robbs BK, de Sousa DP. Molecules 28 1675 (2023)
  13. An integrated in-silico Pharmaco-BioInformatics approaches to identify synergistic effects of COVID-19 to HIV patients. Hossain MA, Rahman MH, Sultana H, Ahsan A, Rayhan SI, Hasan MI, Sohel M, Somadder PD, Moni MA. Comput Biol Med 155 106656 (2023)
  14. Arteannuin-B and (3-Chlorophenyl)-2-Spiroisoxazoline Derivative Exhibit Anti-Inflammatory Effects in LPS-Activated RAW 264.7 Macrophages and BALB/c Mice-Induced Proinflammatory Responses via Downregulation of NF-κB/P38 MAPK Signaling. Sawhney G, Rasool JU, Saroch D, Ozturk M, Brombacher F, Ahmad B, Bhagat A, Ali A, Parihar SP, Ahmed Z. Molecules 27 8068 (2022)
  15. Platelet membrane-coated alterbrassicene A nanoparticle inhibits calcification of the aortic valve by suppressing phosphorylation P65 NF-κB. Geng B, Chen X, Chi J, Li F, Yim WY, Wang K, Li C, Xie M, Zhu P, Fan Z, Shi J, Hu Z, Zhang Y, Dong N. Theranostics 13 3781-3793 (2023)
  16. Protein Expression Profiling and Virtual Drug Screening as an Approach for Individualized Therapy of Small Cell Vaginal Carcinoma. Saeed MEM, Khalid HE, Thakur SK, Efferth T. Cancer Genomics Proteomics 19 512-525 (2022)
  17. Taurine as a potential therapeutic agent interacting with multiple signaling pathways implicated in autism spectrum disorder (ASD): An in-silico analysis. Bhandari R, Varma M, Rana P, Dhingra N, Kuhad A. IBRO Neurosci Rep 15 170-177 (2023)
  18. The underlying regulatory mechanisms of colorectal carcinoma by combining Vitexin and Aspirin: based on systems biology, molecular docking, molecular dynamics simulation, and in vitro study. Chen D, Chen Y, Huang F, Zhang X, Zhou Y, Xu L. Front Endocrinol (Lausanne) 14 1147132 (2023)


Reviews citing this publication (12)

  1. The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Karn J. Curr Opin HIV AIDS 6 4-11 (2011)
  2. Targeting NF-κB signaling with protein kinase C agonists as an emerging strategy for combating HIV latency. Jiang G, Dandekar S. AIDS Res Hum Retroviruses 31 4-12 (2015)
  3. Dynamic roles for NF-κB in HTLV-I and HIV-1 retroviral pathogenesis. Chan JK, Greene WC. Immunol Rev 246 286-310 (2012)
  4. NF-κB/Rel: agonist and antagonist roles in HIV-1 latency. Chan JK, Greene WC. Curr Opin HIV AIDS 6 12-18 (2011)
  5. HTLV-1, the Other Pathogenic Yet Neglected Human Retrovirus: From Transmission to Therapeutic Treatment. Futsch N, Mahieux R, Dutartre H. Viruses 10 E1 (2017)
  6. Genome reading by the NF-κB transcription factors. Mulero MC, Wang VY, Huxford T, Ghosh G. Nucleic Acids Res 47 9967-9989 (2019)
  7. The role of exosomal transport of viral agents in persistent HIV pathogenesis. Patters BJ, Kumar S. Retrovirology 15 79 (2018)
  8. Proteasomal Degradation Machinery: Favorite Target of HIV-1 Proteins. Lata S, Mishra R, Banerjea AC. Front Microbiol 9 2738 (2018)
  9. Intracellular Redox-Modulated Pathways as Targets for Effective Approaches in the Treatment of Viral Infection. Fraternale A, Zara C, De Angelis M, Nencioni L, Palamara AT, Retini M, Di Mambro T, Magnani M, Crinelli R. Int J Mol Sci 22 3603 (2021)
  10. Underlying mechanisms of HIV-1 latency. Romani B, Allahbakhshi E. Virus Genes 53 329-339 (2017)
  11. Bidirectional Associations among Nicotine and Tobacco Smoke, NeuroHIV, and Antiretroviral Therapy. Ghura S, Gross R, Jordan-Sciutto K, Dubroff J, Schnoll R, Collman RG, Ashare RL. J Neuroimmune Pharmacol 15 694-714 (2020)
  12. Extracellular Vesicles as a New Promising Therapy in HIV Infection. Navarrete-Muñoz MA, Llorens C, Benito JM, Rallón N. Front Immunol 12 811471 (2021)

Articles citing this publication (32)

  1. Control of HIV latency by epigenetic and non-epigenetic mechanisms. Mbonye U, Karn J. Curr HIV Res 9 554-567 (2011)
  2. Regulation of Mycobacterium tuberculosis-dependent HIV-1 transcription reveals a new role for NFAT5 in the toll-like receptor pathway. Ranjbar S, Jasenosky LD, Chow N, Goldfeld AE. PLoS Pathog 8 e1002620 (2012)
  3. Genetic associations of variants in genes encoding HIV-dependency factors required for HIV-1 infection. Chinn LW, Tang M, Kessing BD, Lautenberger JA, Troyer JL, Malasky MJ, McIntosh C, Kirk GD, Wolinsky SM, Buchbinder SP, Gomperts ED, Goedert JJ, O'Brien SJ. J Infect Dis 202 1836-1845 (2010)
  4. Tumor suppressor cylindromatosis (CYLD) controls HIV transcription in an NF-κB-dependent manner. Manganaro L, Pache L, Herrmann T, Marlett J, Hwang Y, Murry J, Miorin L, Ting AT, König R, García-Sastre A, Bushman FD, Chanda SK, Young JA, Fernandez-Sesma A, Simon V. J Virol 88 7528-7540 (2014)
  5. Benzo(a)pyrene in Cigarette Smoke Enhances HIV-1 Replication through NF-κB Activation via CYP-Mediated Oxidative Stress Pathway. Ranjit S, Sinha N, Kodidela S, Kumar S. Sci Rep 8 10394 (2018)
  6. Chemokine CXCL8 promotes HIV-1 replication in human monocyte-derived macrophages and primary microglia via nuclear factor-κB pathway. Mamik MK, Ghorpade A. PLoS One 9 e92145 (2014)
  7. DNA-binding affinity and transcriptional activity of the RelA homodimer of nuclear factor κB are not correlated. Mulero MC, Huang DB, Nguyen HT, Wang VY, Li Y, Biswas T, Ghosh G. J Biol Chem 292 18821-18830 (2017)
  8. DYRK1A Controls HIV-1 Replication at a Transcriptional Level in an NFAT Dependent Manner. Booiman T, Loukachov VV, van Dort KA, van 't Wout AB, Kootstra NA. PLoS One 10 e0144229 (2015)
  9. In vivo anti-HIV activity of the heparin-activated serine protease inhibitor antithrombin III encapsulated in lymph-targeting immunoliposomes. Asmal M, Whitney JB, Luedemann C, Carville A, Steen R, Letvin NL, Geiben-Lynn R. PLoS One 7 e48234 (2012)
  10. NF-κB-Interacting Long Noncoding RNA Regulates HIV-1 Replication and Latency by Repressing NF-κB Signaling. Wang H, Liu Y, Huan C, Yang J, Li Z, Zheng B, Wang Y, Zhang W. J Virol 94 e01057-20 (2020)
  11. Trade-off between synergy and efficacy in combinations of HIV-1 latency-reversing agents. Gupta V, Dixit NM. PLoS Comput Biol 14 e1006004 (2018)
  12. Experimental and computational studies on newly synthesized resveratrol derivative: a new method for cancer chemoprevention and therapeutics? Banaganapalli B, Mulakayala C, Pulaganti M, Mulakayala N, Anuradha CM, Suresh Kumar C, Shaik NA, Yousuf Al-Aama J, Gudla D. OMICS 17 568-583 (2013)
  13. First Responders Shape a Prompt and Sharp NF-κB-Mediated Transcriptional Response to TNF-α. Zambrano S, Loffreda A, Carelli E, Stefanelli G, Colombo F, Bertrand E, Tacchetti C, Agresti A, Bianchi ME, Molina N, Mazza D. iScience 23 101529 (2020)
  14. xCT/SLC7A11 antiporter function inhibits HIV-1 infection. Rabinowitz J, Sharifi HJ, Martin H, Marchese A, Robek M, Shi B, Mongin AA, de Noronha CMC. Virology 556 149-160 (2021)
  15. A strong NF-κB p65 responsive cis-regulatory sequence from Arabidopsis thaliana interacts with WRKY40. Kanofsky K, Riggers J, Staar M, Strauch CJ, Arndt LC, Hehl R. Plant Cell Rep 38 1139-1150 (2019)
  16. HIV-1 Infection Transcriptomics: Meta-Analysis of CD4+ T Cells Gene Expression Profiles. Coelho AVC, Gratton R, Melo JPB, Andrade-Santos JL, Guimarães RL, Crovella S, Tricarico PM, Brandão LAC. Viruses 13 244 (2021)
  17. Mycobacterial and HIV infections up-regulated human zinc finger protein 134, a novel positive regulator of HIV-1 LTR activity and viral propagation. Benjamin R, Banerjee A, Balakrishnan K, Sivangala R, Gaddam S, Banerjee S. PLoS One 9 e104908 (2014)
  18. A Stronger Transcription Regulatory Circuit of HIV-1C Drives the Rapid Establishment of Latency with Implications for the Direct Involvement of Tat. Chakraborty S, Kabi M, Ranga U. J Virol 94 e00503-20 (2020)
  19. Epigenetics, N-myrystoyltransferase-1 and casein kinase-2-alpha modulates the increased replication of HIV-1 CRF02_AG, compared to subtype-B viruses. Bhargavan B, Kanmogne GD. Sci Rep 9 10689 (2019)
  20. Synthesis and evaluation of resveratrol derivatives as new chemical entities for cancer. Mulakayala C, Babajan B, Madhusudana P, Anuradha CM, Rao RM, Nune RP, Manna SK, Mulakayala N, Kumar CS. J Mol Graph Model 41 43-54 (2013)
  21. Antiapoptotic Clone 11-Derived Peptides Induce In Vitro Death of CD4+ T Cells Susceptible to HIV-1 Infection. Mikhailova A, Valle-Casuso JC, David A, Monceaux V, Volant S, Passaes C, Elfidha A, Müller-Trutwin M, Poyet JL, Sáez-Cirión A. J Virol 94 e00611-20 (2020)
  22. An intrinsically disordered transcription activation domain increases the DNA binding affinity and reduces the specificity of NFκB p50/RelA. Baughman HER, Narang D, Chen W, Villagrán Suárez AC, Lee J, Bachochin MJ, Gunther TR, Wolynes PG, Komives EA. J Biol Chem 298 102349 (2022)
  23. Irreversible Loss of HIV-1 Proviral Competence in Myeloid Cells upon Suppression of NF-κB Activity. Peters RJ, Stevenson M. J Virol 96 e0048422 (2022)
  24. Possible Interaction of Nonsteroidal Anti-inflammatory Drugs Against NF-κB- and COX-2-Mediated Inflammation: In Silico Probe. Vardhini SP, Sadiya H, Beigh S, Pandurangan AK, Srinivasan H, Anwer MK, Waseem M. Appl Biochem Biotechnol 194 54-70 (2022)
  25. Repression of HIV-1 reactivation mediated by CRISPR/dCas9-KRAB in lymphoid and myeloid cell models. da Costa LC, Bomfim LM, Dittz UVT, Velozo CA, da Cunha RD, Tanuri A. Retrovirology 19 12 (2022)
  26. The HIV-Tat protein interacts with Sp3 transcription factor and inhibits its binding to a distal site of the sod2 promoter in human pulmonary artery endothelial cells. Manes TL, Simenauer A, Geohring JL, Flemming J, Brehm M, Cota-Gomez A. Free Radic Biol Med 147 102-113 (2020)
  27. Helicobacter pylori Reactivates Human Immunodeficiency Virus-1 in Latently Infected Monocytes with Increased Expression of IL-1β and CXCL8. Natarajan V, Moar P, Kaur US, Venkatesh V, Kumar A, Chaturvedi R, Himanshu D, Tandon R. Curr Genomics 20 556-568 (2019)
  28. Computational evaluation of bioactive compounds in Curcuma zanthorrhiza targeting SIRT1 and NFκB. Prasetyawan S, Safitri A, Atho'illah MF, Rahayu S. BioTechnologia (Pozn) 104 171-182 (2023)
  29. DING Protein Inhibits Transcription of HIV-1 Gene through Suppression of Phosphorylation of NF-κB p65. Darbinian N, Darbinyan A, Merabova N, Gomberg R, Chabriere E, Simm M, Selzer ME, Amini S. J HIV AIDS 6 175 (2020)
  30. Development trends of immune activation during HIV infection in recent three decades: a bibliometric analysis based on CiteSpace. Gong K, Lai Y. Arch Microbiol 205 283 (2023)
  31. Enhanced Transcriptional Strength of HIV-1 Subtype C Minimizes Gene Expression Noise and Confers Stability to the Viral Latent State. Pal S, Jaiswal V, Nala N, Ranga U. J Virol 97 e0137622 (2023)
  32. HIV- 1 lentivirus tethering to the genome is associated with transcription factor binding sites found in genes that favour virus survival. Suleman S, Payne A, Bowden J, Haque SA, Zahn M, Fawaz S, Khalifa MS, Jobling S, Hay D, Franco M, Fronza R, Wang W, Strobel-Freidekind O, Deichmann A, Takeuchi Y, Waddington SN, Gil-Farina I, Schmidt M, Themis M. Gene Ther 29 720-729 (2022)