3hkb Citations

Variations in the colchicine-binding domain provide insight into the structural switch of tubulin.

Proc Natl Acad Sci U S A 106 13775-9 (2009)
Related entries: 3hkc, 3hkd, 3hke

Cited: 122 times
EuropePMC logo PMID: 19666559

Abstract

Structural changes occur in the alphabeta-tubulin heterodimer during the microtubule assembly/disassembly cycle. Their most prominent feature is a transition from a straight, microtubular structure to a curved structure. There is a broad range of small molecule compounds that disturbs the microtubule cycle, a class of which targets the colchicine-binding site and prevents microtubule assembly. This class includes compounds with very different chemical structures, and it is presently unknown whether they prevent tubulin polymerization by the same mechanism. To address this issue, we have determined the structures of tubulin complexed with a set of such ligands and show that they interfere with several of the movements of tubulin subunits structural elements upon its transition from curved to straight. We also determined the structure of tubulin unliganded at the colchicine site; this reveals that a beta-tubulin loop (termed T7) flips into this site. As with colchicine site ligands, this prevents a helix which is at the interface with alpha-tubulin from stacking onto a beta-tubulin beta sheet as in straight protofilaments. Whereas in the presence of these ligands the interference with microtubule assembly gets frozen, by flipping in and out the beta-subunit T7 loop participates in a reversible way in the resistance to straightening that opposes microtubule assembly. Our results suggest that it thereby contributes to microtubule dynamic instability.

Reviews - 3hkb mentioned but not cited (2)

  1. Molecular interactions at the colchicine binding site in tubulin: An X-ray crystallography perspective. Wang J, Miller DD, Li W. Drug Discov Today 27 759-776 (2022)
  2. Computational Approaches to the Rational Design of Tubulin-Targeting Agents. Pérez-Peña H, Abel AC, Shevelev M, Prota AE, Pieraccini S, Horvath D. Biomolecules 13 285 (2023)

Articles - 3hkb mentioned but not cited (6)

  1. Variations in the colchicine-binding domain provide insight into the structural switch of tubulin. Dorléans A, Gigant B, Ravelli RB, Mailliet P, Mikol V, Knossow M. Proc Natl Acad Sci U S A 106 13775-13779 (2009)
  2. Mechanism of microtubule stabilization by taccalonolide AJ. Wang Y, Yu Y, Li GB, Li SA, Wu C, Gigant B, Qin W, Chen H, Wu Y, Chen Q, Yang J. Nat Commun 8 15787 (2017)
  3. The free energy profile of tubulin straight-bent conformational changes, with implications for microtubule assembly and drug discovery. Peng LX, Hsu MT, Bonomi M, Agard DA, Jacobson MP. PLoS Comput Biol 10 e1003464 (2014)
  4. How to deal with low-resolution target structures: using SAR, ensemble docking, hydropathic analysis, and 3D-QSAR to definitively map the αβ-tubulin colchicine site. Da C, Mooberry SL, Gupton JT, Kellogg GE. J Med Chem 56 7382-7395 (2013)
  5. A collective motion description of tubulin βT7 loop dynamics. Chattopadhyaya S, Chakravorty D, Basu G. Biophys Physicobiol 16 264-273 (2019)
  6. Biological activity and interaction mechanism of the diketopiperazine derivatives as tubulin polymerization inhibitors. Tian Z, Chu Y, Wang H, Zhong L, Deng M, Li W. RSC Adv 8 1055-1064 (2018)


Reviews citing this publication (13)

  1. An overview of tubulin inhibitors that interact with the colchicine binding site. Lu Y, Chen J, Xiao M, Li W, Miller DD. Pharm Res 29 2943-2971 (2012)
  2. Drugs that target dynamic microtubules: a new molecular perspective. Stanton RA, Gernert KM, Nettles JH, Aneja R. Med Res Rev 31 443-481 (2011)
  3. Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function. Field JJ, Kanakkanthara A, Miller JH. Bioorg Med Chem 22 5050-5059 (2014)
  4. The tubulin colchicine domain: a molecular modeling perspective. Massarotti A, Coluccia A, Silvestri R, Sorba G, Brancale A. ChemMedChem 7 33-42 (2012)
  5. Drug resistance in liver flukes. Fairweather I, Brennan GP, Hanna REB, Robinson MW, Skuce PJ. Int J Parasitol Drugs Drug Resist 12 39-59 (2020)
  6. Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Li W, Sun H, Xu S, Zhu Z, Xu J. Future Med Chem 9 1765-1794 (2017)
  7. What tubulin drugs tell us about microtubule structure and dynamics. Amos LA. Semin Cell Dev Biol 22 916-926 (2011)
  8. The Mechanism of Tubulin Assembly into Microtubules: Insights from Structural Studies. Knossow M, Campanacci V, Khodja LA, Gigant B. iScience 23 101511 (2020)
  9. Intrinsic and Extrinsic Factors Affecting Microtubule Dynamics in Normal and Cancer Cells. Borys F, Joachimiak E, Krawczyk H, Fabczak H. Molecules 25 E3705 (2020)
  10. Lessons from bacterial homolog of tubulin, FtsZ for microtubule dynamics. Battaje RR, Panda D. Endocr Relat Cancer 24 T1-T21 (2017)
  11. Antitubulin sulfonamides: The successful combination of an established drug class and a multifaceted target. Vicente-Blázquez A, González M, Álvarez R, Del Mazo S, Medarde M, Peláez R. Med Res Rev 39 775-830 (2019)
  12. The Role of Microtubules in Pancreatic Cancer: Therapeutic Progress. Albahde MAH, Abdrakhimov B, Li GQ, Zhou X, Zhou D, Xu H, Qian H, Wang W. Front Oncol 11 640863 (2021)
  13. The microtubule cytoskeleton: An old validated target for novel therapeutic drugs. Lafanechère L. Front Pharmacol 13 969183 (2022)

Articles citing this publication (101)

  1. The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization. Prota AE, Danel F, Bachmann F, Bargsten K, Buey RM, Pohlmann J, Reinelt S, Lane H, Steinmetz MO. J Mol Biol 426 1848-1860 (2014)
  2. Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Jost M, Chen Y, Gilbert LA, Horlbeck MA, Krenning L, Menchon G, Rai A, Cho MY, Stern JJ, Prota AE, Kampmann M, Akhmanova A, Steinmetz MO, Tanenbaum ME, Weissman JS. Mol Cell 68 210-223.e6 (2017)
  3. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. Wang Y, Zhang H, Gigant B, Yu Y, Wu Y, Chen X, Lai Q, Yang Z, Chen Q, Yang J. FEBS J 283 102-111 (2016)
  4. Template-free 13-protofilament microtubule-MAP assembly visualized at 8 A resolution. Fourniol FJ, Sindelar CV, Amigues B, Clare DK, Thomas G, Perderiset M, Francis F, Houdusse A, Moores CA. J Cell Biol 191 463-470 (2010)
  5. End-binding proteins sensitize microtubules to the action of microtubule-targeting agents. Mohan R, Katrukha EA, Doodhi H, Smal I, Meijering E, Kapitein LC, Steinmetz MO, Akhmanova A. Proc Natl Acad Sci U S A 110 8900-8905 (2013)
  6. Structural Basis of Microtubule Destabilization by Potent Auristatin Anti-Mitotics. Waight AB, Bargsten K, Doronina S, Steinmetz MO, Sussman D, Prota AE. PLoS One 11 e0160890 (2016)
  7. Stathmin and interfacial microtubule inhibitors recognize a naturally curved conformation of tubulin dimers. Barbier P, Dorléans A, Devred F, Sanz L, Allegro D, Alfonso C, Knossow M, Peyrot V, Andreu JM. J Biol Chem 285 31672-31681 (2010)
  8. Discovery of novel 2-aryl-4-benzoyl-imidazoles targeting the colchicines binding site in tubulin as potential anticancer agents. Chen J, Wang Z, Li CM, Lu Y, Vaddady PK, Meibohm B, Dalton JT, Miller DD, Li W. J Med Chem 53 7414-7427 (2010)
  9. Discovery of novel 2-aryl-4-benzoyl-imidazole (ABI-III) analogues targeting tubulin polymerization as antiproliferative agents. Chen J, Ahn S, Wang J, Lu Y, Dalton JT, Miller DD, Li W. J Med Chem 55 7285-7289 (2012)
  10. Structural plasticity of tubulin assembly probed by vinca-domain ligands. Ranaivoson FM, Gigant B, Berritt S, Joullié M, Knossow M. Acta Crystallogr D Biol Crystallogr 68 927-934 (2012)
  11. A Novel Resveratrol Based Tubulin Inhibitor Induces Mitotic Arrest and Activates Apoptosis in Cancer Cells. Thomas E, Gopalakrishnan V, Hegde M, Kumar S, Karki SS, Raghavan SC, Choudhary B. Sci Rep 6 34653 (2016)
  12. Development of a novel class of tubulin inhibitor from desmosdumotin B with a hydroxylated bicyclic B-ring. Nakagawa-Goto K, Oda A, Hamel E, Ohkoshi E, Lee KH, Goto M. J Med Chem 58 2378-2389 (2015)
  13. Mapping flexibility and the assembly switch of cell division protein FtsZ by computational and mutational approaches. Martín-Galiano AJ, Buey RM, Cabezas M, Andreu JM. J Biol Chem 285 22554-22565 (2010)
  14. Interactions of halichondrin B and eribulin with tubulin. Bai R, Nguyen TL, Burnett JC, Atasoylu O, Munro MH, Pettit GR, Smith AB, Gussio R, Hamel E. J Chem Inf Model 51 1393-1404 (2011)
  15. Synthesis and antiproliferative activity of novel 2-aryl-4-benzoyl-imidazole derivatives targeting tubulin polymerization. Chen J, Li CM, Wang J, Ahn S, Wang Z, Lu Y, Dalton JT, Miller DD, Li W. Bioorg Med Chem 19 4782-4795 (2011)
  16. Mechanisms of kinetic stabilization by the drugs paclitaxel and vinblastine. Castle BT, McCubbin S, Prahl LS, Bernens JN, Sept D, Odde DJ. Mol Biol Cell 28 1238-1257 (2017)
  17. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer. La Regina G, Bai R, Coluccia A, Famiglini V, Pelliccia S, Passacantilli S, Mazzoccoli C, Ruggieri V, Sisinni L, Bolognesi A, Rensen WM, Miele A, Nalli M, Alfonsi R, Di Marcotullio L, Gulino A, Brancale A, Novellino E, Dondio G, Vultaggio S, Varasi M, Mercurio C, Hamel E, Lavia P, Silvestri R. J Med Chem 57 6531-6552 (2014)
  18. Synthesis, evaluation and structural studies of antiproliferative tubulin-targeting azetidin-2-ones. O'Boyle NM, Greene LM, Bergin O, Fichet JB, McCabe T, Lloyd DG, Zisterer DM, Meegan MJ. Bioorg Med Chem 19 2306-2325 (2011)
  19. Towards the identification of the binding site of benzimidazoles to β-tubulin of Trichinella spiralis: insights from computational and experimental data. Aguayo-Ortiz R, Méndez-Lucio O, Medina-Franco JL, Castillo R, Yépez-Mulia L, Hernández-Luis F, Hernández-Campos A. J Mol Graph Model 41 12-19 (2013)
  20. CXI-benzo-84 reversibly binds to tubulin at colchicine site and induces apoptosis in cancer cells. Rai A, Gupta TK, Kini S, Kunwar A, Surolia A, Panda D. Biochem Pharmacol 86 378-391 (2013)
  21. Discovery of 4-Aryl-2-benzoyl-imidazoles as tubulin polymerization inhibitor with potent antiproliferative properties. Xiao M, Ahn S, Wang J, Chen J, Miller DD, Dalton JT, Li W. J Med Chem 56 3318-3329 (2013)
  22. Heterocyclic-Fused Pyrimidines as Novel Tubulin Polymerization Inhibitors Targeting the Colchicine Binding Site: Structural Basis and Antitumor Efficacy. Banerjee S, Arnst KE, Wang Y, Kumar G, Deng S, Yang L, Li GB, Yang J, White SW, Li W, Miller DD. J Med Chem 61 1704-1718 (2018)
  23. Structural Insights into the Pharmacophore of Vinca Domain Inhibitors of Microtubules. Wang Y, Benz FW, Wu Y, Wang Q, Chen Y, Chen X, Li H, Zhang Y, Zhang R, Yang J. Mol Pharmacol 89 233-242 (2016)
  24. Optimization of 4-(N-cycloamino)phenylquinazolines as a novel class of tubulin-polymerization inhibitors targeting the colchicine site. Wang XF, Guan F, Ohkoshi E, Guo W, Wang L, Zhu DQ, Wang SB, Wang LT, Hamel E, Yang D, Li L, Qian K, Morris-Natschke SL, Yuan S, Lee KH, Xie L. J Med Chem 57 1390-1402 (2014)
  25. Antivascular and antitumor properties of the tubulin-binding chalcone TUB091. Canela MD, Noppen S, Bueno O, Prota AE, Bargsten K, Sáez-Calvo G, Jimeno ML, Benkheil M, Ribatti D, Velázquez S, Camarasa MJ, Díaz JF, Steinmetz MO, Priego EM, Pérez-Pérez MJ, Liekens S. Oncotarget 8 14325-14342 (2017)
  26. Direct modulation of microtubule stability contributes to anthracene general anesthesia. Emerson DJ, Weiser BP, Psonis J, Liao Z, Taratula O, Fiamengo A, Wang X, Sugasawa K, Smith AB, Eckenhoff RG, Dmochowski IJ. J Am Chem Soc 135 5389-5398 (2013)
  27. Concise synthesis and biological evaluation of 2-Aroyl-5-amino benzo[b]thiophene derivatives as a novel class of potent antimitotic agents. Romagnoli R, Baraldi PG, Lopez-Cara C, Preti D, Aghazadeh Tabrizi M, Balzarini J, Bassetto M, Brancale A, Fu XH, Gao Y, Li J, Zhang SZ, Hamel E, Bortolozzi R, Basso G, Viola G. J Med Chem 56 9296-9309 (2013)
  28. Design, synthesis, in vitro, and in vivo anticancer and antiangiogenic activity of novel 3-arylaminobenzofuran derivatives targeting the colchicine site on tubulin. Romagnoli R, Baraldi PG, Salvador MK, Prencipe F, Lopez-Cara C, Schiaffino Ortega S, Brancale A, Hamel E, Castagliuolo I, Mitola S, Ronca R, Bortolozzi R, Porcù E, Basso G, Viola G. J Med Chem 58 3209-3222 (2015)
  29. N-aryl-6-methoxy-1,2,3,4-tetrahydroquinolines: a novel class of antitumor agents targeting the colchicine site on tubulin. Wang XF, Wang SB, Ohkoshi E, Wang LT, Hamel E, Qian K, Morris-Natschke SL, Lee KH, Xie L. Eur J Med Chem 67 196-207 (2013)
  30. Structure-based virtual screening of novel tubulin inhibitors and their characterization as anti-mitotic agents. Kim ND, Park ES, Kim YH, Moon SK, Lee SS, Ahn SK, Yu DY, No KT, Kim KH. Bioorg Med Chem 18 7092-7100 (2010)
  31. Synthesis and biological evaluation of novel 3,4-diaryl-1,2,5-selenadiazol analogues of combretastatin A-4. Guan Q, Yang F, Guo D, Xu J, Jiang M, Liu C, Bao K, Wu Y, Zhang W. Eur J Med Chem 87 1-9 (2014)
  32. Discovery and optimization of a series of 2-aryl-4-amino-5-(3',4',5'-trimethoxybenzoyl)thiazoles as novel anticancer agents. Romagnoli R, Baraldi PG, Salvador MK, Preti D, Aghazadeh Tabrizi M, Brancale A, Fu XH, Li J, Zhang SZ, Hamel E, Bortolozzi R, Porcù E, Basso G, Viola G. J Med Chem 55 5433-5445 (2012)
  33. High-affinity ligands of the colchicine domain in tubulin based on a structure-guided design. Bueno O, Estévez Gallego J, Martins S, Prota AE, Gago F, Gómez-SanJuan A, Camarasa MJ, Barasoain I, Steinmetz MO, Díaz JF, Pérez-Pérez MJ, Liekens S, Priego EM. Sci Rep 8 4242 (2018)
  34. N-(1'-naphthyl)-3,4,5-trimethoxybenzohydrazide as microtubule destabilizer: Synthesis, cytotoxicity, inhibition of cell migration and in vivo activity against acute lymphoblastic leukemia. Salum LB, Mascarello A, Canevarolo RR, Altei WF, Laranjeira AB, Neuenfeldt PD, Stumpf TR, Chiaradia-Delatorre LD, Vollmer LL, Daghestani HN, de Souza Melo CP, Silveira AB, Leal PC, Frederico MJ, do Nascimento LF, Santos AR, Andricopulo AD, Day BW, Yunes RA, Vogt A, Yunes JA, Nunes RJ. Eur J Med Chem 96 504-518 (2015)
  35. Transcription factor NF-κB associates with microtubules and stimulates apoptosis in response to suppression of microtubule dynamics in MCF-7 cells. Rai A, Kapoor S, Singh S, Chatterji BP, Panda D. Biochem Pharmacol 93 277-289 (2015)
  36. Novel chemotypes targeting tubulin at the colchicine binding site and unbiasing P-glycoprotein. Mangiatordi GF, Trisciuzzi D, Alberga D, Denora N, Iacobazzi RM, Gadaleta D, Catto M, Nicolotti O. Eur J Med Chem 139 792-803 (2017)
  37. Structural Modification of the 3,4,5-Trimethoxyphenyl Moiety in the Tubulin Inhibitor VERU-111 Leads to Improved Antiproliferative Activities. Wang Q, Arnst KE, Wang Y, Kumar G, Ma D, Chen H, Wu Z, Yang J, White SW, Miller DD, Li W. J Med Chem 61 7877-7891 (2018)
  38. The compound millepachine and its derivatives inhibit tubulin polymerization by irreversibly binding to the colchicine-binding site in β-tubulin. Yang J, Yan W, Yu Y, Wang Y, Yang T, Xue L, Yuan X, Long C, Liu Z, Chen X, Hu M, Zheng L, Qiu Q, Pei H, Li D, Wang F, Bai P, Wen J, Ye H, Chen L. J Biol Chem 293 9461-9472 (2018)
  39. (E)-4-aryl-4-oxo-2-butenoic acid amides, chalcone-aroylacrylic acid chimeras: design, antiproliferative activity and inhibition of tubulin polymerization. Vitorović-Todorović MD, Erić-Nikolić A, Kolundžija B, Hamel E, Ristić S, Juranić IO, Drakulić BJ. Eur J Med Chem 62 40-50 (2013)
  40. Azides derived from colchicine and their use in library synthesis: A practical entry to new bioactive derivatives of an old natural drug. Nicolaus N, Zapke J, Riesterer P, Neudörfl JM, Prokop A, Oschkinat H, Schmalz HG. ChemMedChem 5 661-665 (2010)
  41. Design, synthesis and biological evaluation of 3,5-disubstituted 2-amino thiophene derivatives as a novel class of antitumor agents. Romagnoli R, Baraldi PG, Lopez-Cara C, Salvador MK, Preti D, Tabrizi MA, Balzarini J, Nussbaumer P, Bassetto M, Brancale A, Fu XH, Yang-Gao, Li J, Zhang SZ, Hamel E, Bortolozzi R, Basso G, Viola G. Bioorg Med Chem 22 5097-5109 (2014)
  42. Pyrrole-Based Antitubulin Agents: Two Distinct Binding Modalities are Predicted for C-2 Analogs in the Colchicine Site. Da C, Telang N, Barelli P, Jia X, Gupton JT, Mooberry SL, Kellogg GE. ACS Med Chem Lett 3 53-57 (2012)
  43. A concise synthesis of pyrazole analogues of combretastatin A1 as potent anti-tubulin agents. Zaninetti R, Cortese SV, Aprile S, Massarotti A, Canonico PL, Sorba G, Grosa G, Genazzani AA, Pirali T. ChemMedChem 8 633-643 (2013)
  44. Exploring the size adaptability of the B ring binding zone of the colchicine site of tubulin with para-nitrogen substituted isocombretastatins. Jiménez C, Ellahioui Y, Álvarez R, Aramburu L, Riesco A, González M, Vicente A, Dahdouh A, Ibn Mansour A, Jiménez C, Martín D, Sarmiento RG, Medarde M, Caballero E, Peláez R. Eur J Med Chem 100 210-222 (2015)
  45. Molecular modelling studies on Arylthioindoles as potent inhibitors of tubulin polymerization. Coluccia A, Sabbadin D, Brancale A. Eur J Med Chem 46 3519-3525 (2011)
  46. Nanoparticulate delivery of potent microtubule inhibitor for metastatic melanoma treatment. Bariwal J, Kumar V, Chen H, Bhattarai RS, Peng Y, Li W, Mahato RI. J Control Release 309 231-243 (2019)
  47. Relating nucleotide-dependent conformational changes in free tubulin dimers to tubulin assembly. Natarajan K, Mohan J, Senapati S. Biopolymers 99 282-291 (2013)
  48. Structures of potent anticancer compounds bound to tubulin. McNamara DE, Senese S, Yeates TO, Torres JZ. Protein Sci 24 1164-1172 (2015)
  49. Synthesis and biological evaluation of N-alkyl-N-(4-methoxyphenyl)pyridin-2-amines as a new class of tubulin polymerization inhibitors. Wang XF, Ohkoshi E, Wang SB, Hamel E, Bastow KF, Morris-Natschke SL, Lee KH, Xie L. Bioorg Med Chem 21 632-642 (2013)
  50. Identification of selective tubulin inhibitors as potential anti-trypanosomal agents. Lama R, Sandhu R, Zhong B, Li B, Su B. Bioorg Med Chem Lett 22 5508-5516 (2012)
  51. Optimization of N-aryl-6-methoxy-1,2,3,4-tetrahydroquinolines as tubulin polymerization inhibitors. Wang SB, Wang XF, Qin B, Ohkoshi E, Hsieh KY, Hamel E, Cui MT, Zhu DQ, Goto M, Morris-Natschke SL, Lee KH, Xie L. Bioorg Med Chem 23 5740-5747 (2015)
  52. Styryl-N-phenyl-N'-(2-chloroethyl)ureas and styrylphenylimidazolidin-2-ones as new potent microtubule-disrupting agents using combretastatin A-4 as model. Gagné-Boulet M, Fortin S, Lacroix J, Lefebvre CA, Côté MF, C-Gaudreault R. Eur J Med Chem 100 34-43 (2015)
  53. Sustainable Syntheses of (-)-Jerantinines A & E and Structural Characterisation of the Jerantinine-Tubulin Complex at the Colchicine Binding Site. Smedley CJ, Stanley PA, Qazzaz ME, Prota AE, Olieric N, Collins H, Eastman H, Barrow AS, Lim KH, Kam TS, Smith BJ, Duivenvoorden HM, Parker BS, Bradshaw TD, Steinmetz MO, Moses JE. Sci Rep 8 10617 (2018)
  54. Combined Molecular Docking, 3D-QSAR, and Pharmacophore Model: Design of Novel Tubulin Polymerization Inhibitors by Binding to Colchicine-binding Site. Li DD, Qin YJ, Zhang X, Yin Y, Zhu HL, Zhao LG. Chem Biol Drug Des 86 731-745 (2015)
  55. Effects of the Protonation State of Titratable Residues and the Presence of Water Molecules on Nocodazole Binding to β-Tubulin. Guzmán-Ocampo DC, Aguayo-Ortiz R, Cano-González L, Castillo R, Hernández-Campos A, Dominguez L. ChemMedChem 13 20-24 (2018)
  56. Biological Characterization of an Improved Pyrrole-Based Colchicine Site Agent Identified through Structure-Based Design. Rohena CC, Telang NS, Da C, Risinger AL, Sikorski JA, Kellogg GE, Gupton JT, Mooberry SL. Mol Pharmacol 89 287-296 (2016)
  57. Developing novel C-4 analogues of pyrrole-based antitubulin agents: weak but critical hydrogen bonding in the colchicine site. Da C, Telang N, Hall K, Kluball E, Barelli P, Finzel K, Jia X, Gupton JT, Mooberry SL, Kellogg GE. Medchemcomm 4 417-421 (2013)
  58. Predicting Molecular Targets for Small-Molecule Drugs with a Ligand-Based Interaction Fingerprint Approach. Cao R, Wang Y. ChemMedChem 11 1352-1361 (2016)
  59. Structure-Based Pharmacophore Design and Virtual Screening for Novel Tubulin Inhibitors with Potential Anticancer Activity. Zhou Y, Di B, Niu MM. Molecules 24 E3181 (2019)
  60. Structure-based approaches for the design of benzimidazole-2-carbamate derivatives as tubulin polymerization inhibitors. Aguayo-Ortiz R, Cano-González L, Castillo R, Hernández-Campos A, Dominguez L. Chem Biol Drug Des 90 40-51 (2017)
  61. Colchicine Binding Site Agent DJ95 Overcomes Drug Resistance and Exhibits Antitumor Efficacy. Arnst KE, Wang Y, Lei ZN, Hwang DJ, Kumar G, Ma D, Parke DN, Chen Q, Yang J, White SW, Seagroves TN, Chen ZS, Miller DD, Li W. Mol Pharmacol 96 73-89 (2019)
  62. New Estrone Oxime Derivatives: Synthesis, Cytotoxic Evaluation and Docking Studies. Canário C, Matias M, Brito V, Santos AO, Falcão A, Silvestre S, Alves G. Molecules 26 2687 (2021)
  63. Semisynthetic aurones inhibit tubulin polymerization at the colchicine-binding site and repress PC-3 tumor xenografts in nude mice and myc-induced T-ALL in zebrafish. Xie Y, Kril LM, Yu T, Zhang W, Frasinyuk MS, Bondarenko SP, Kondratyuk KM, Hausman E, Martin ZM, Wyrebek PP, Liu X, Deaciuc A, Dwoskin LP, Chen J, Zhu H, Zhan CG, Sviripa VM, Blackburn J, Watt DS, Liu C. Sci Rep 9 6439 (2019)
  64. X-ray Crystallography-Guided Design, Antitumor Efficacy, and QSAR Analysis of Metabolically Stable Cyclopenta-Pyrimidinyl Dihydroquinoxalinone as a Potent Tubulin Polymerization Inhibitor. Banerjee S, Mahmud F, Deng S, Ma L, Yun MK, Fakayode SO, Arnst KE, Yang L, Chen H, Wu Z, Lukka PB, Parmar K, Meibohm B, White SW, Wang Y, Li W, Miller DD. J Med Chem 64 13072-13095 (2021)
  65. A Rationale for Drug Design Provided by Co-Crystal Structure of IC261 in Complex with Tubulin. Xian J, Bu F, Wang Y, Long F, Zhang Z, Wu C, Tao Y, Wang T, Wang G. Molecules 26 946 (2021)
  66. Discovery, biological evaluation, structure-activity relationships and mechanism of action of pyrazolo[3,4-b]pyridin-6-one derivatives as a new class of anticancer agents. Guo Q, Luo Y, Zhai S, Jiang Z, Zhao C, Xu J, Wang L. Org Biomol Chem 17 6201-6214 (2019)
  67. Identification of novel antitubulin agents by using a virtual screening approach based on a 7-point pharmacophore model of the tubulin colchi-site. Massarotti A, Theeramunkong S, Mesenzani O, Caldarelli A, Genazzani AA, Tron GC. Chem Biol Drug Des 78 913-922 (2011)
  68. Novel CIL-102 derivatives as potential therapeutic agents for docetaxel-resistant prostate cancer. Miller DR, Tzeng CC, Farmer T, Keller ET, Caplan S, Chen YS, Chen YL, Lin MF. Cancer Lett 436 96-108 (2018)
  69. Quinolin-6-Yloxyacetamides Are Microtubule Destabilizing Agents That Bind to the Colchicine Site of Tubulin. Sharma A, Sáez-Calvo G, Olieric N, de Asís Balaguer F, Barasoain I, Lamberth C, Díaz JF, Steinmetz MO. Int J Mol Sci 18 E1336 (2017)
  70. Structure-activity relationships of retro-dihydrochalcones isolated from Tacca sp. Peng J, Risinger AL, Da C, Fest GA, Kellogg GE, Mooberry SL. J Nat Prod 76 2189-2194 (2013)
  71. Synthesis and cytotoxic activity of certain trisubstituted azetidin-2-one derivatives as a cis-restricted combretastatin A-4 analogues. Elmeligie S, Taher AT, Khalil NA, El-Said AH. Arch Pharm Res 40 13-24 (2017)
  72. Synthesis of the new ring system bispyrido[4',3':4,5]pyrrolo [1,2-a:1',2'-d]pyrazine and its deaza analogue. Parrino B, Spanò V, Carbone A, Barraja P, Diana P, Cirrincione G, Montalbano A. Molecules 19 13342-13357 (2014)
  73. N-alkylisatin-based microtubule destabilizers bind to the colchicine site on tubulin and retain efficacy in drug resistant acute lymphoblastic leukemia cell lines with less in vitro neurotoxicity. Keenan B, Finol-Urdaneta RK, Hope A, Bremner JB, Kavallaris M, Lucena-Agell D, Oliva MÁ, Díaz JF, Vine KL. Cancer Cell Int 20 170 (2020)
  74. Characterization of Microtubule Destabilizing Drugs: A Quantitative Cell-Based Assay That Bridges the Gap between Tubulin Based- and Cytotoxicity Assays. Laisne MC, Michallet S, Lafanechère L. Cancers (Basel) 13 5226 (2021)
  75. Scaffold Hopping-Driven Optimization of 4-(Quinazolin-4-yl)-3,4-dihydroquinoxalin-2(1H)-ones as Novel Tubulin Inhibitors. Jiang L, Goto M, Zhu DQ, Hsu PL, Li KP, Cui M, He X, Morris-Natschke SL, Lee KH, Xie L. ACS Med Chem Lett 11 83-89 (2020)
  76. Synthesis of Novel Pyrazole Derivatives and Their Tumor Cell Growth Inhibitory Activity. Cui YJ, Tang LQ, Zhang CM, Liu ZP. Molecules 24 E279 (2019)
  77. Tools for the rational design of bivalent microtubule-targeting drugs. Marangon J, Christodoulou MS, Casagrande FV, Tiana G, Dalla Via L, Aliverti A, Passarella D, Cappelletti G, Ricagno S. Biochem Biophys Res Commun 479 48-53 (2016)
  78. Tubulin inhibitor identification by bioactive conformation alignment pharmacophore-guided virtual screening. Nagarajan S, Choi MJ, Cho YS, Min SJ, Keum G, Kim SJ, Lee CS, Pae AN. Chem Biol Drug Des 86 998-1016 (2015)
  79. Tubulin-binding dibenz[c,e]oxepines as colchinol analogues for targeting tumour vasculature. Edwards DJ, Hadfield JA, Wallace TW, Ducki S. Org Biomol Chem 9 219-231 (2011)
  80. Computational-Based Discovery of the Anti-Cancer Activities of Pyrrole-Based Compounds Targeting the Colchicine-Binding Site of Tubulin. Boichuk S, Syuzov K, Bikinieva F, Galembikova A, Zykova S, Gankova K, Igidov S, Igidov N. Molecules 27 2873 (2022)
  81. Design, synthesis, and biological screening of a series of 4'-fluoro-benzotriazole-acrylonitrile derivatives as microtubule-destabilising agents (MDAs). Riu F, Ibba R, Zoroddu S, Sestito S, Lai M, Piras S, Sanna L, Bordoni V, Bagella L, Carta A. J Enzyme Inhib Med Chem 37 2223-2240 (2022)
  82. Insight into microtubule destabilization mechanism of 3,4,5-trimethoxyphenyl indanone derivatives using molecular dynamics simulation and conformational modes analysis. Tripathi S, Srivastava G, Singh A, Prakasham AP, Negi AS, Sharma A. J Comput Aided Mol Des 32 559-572 (2018)
  83. Synthesis, Biological Evaluation, and Molecular Modeling Studies of 1-Aryl-1H-pyrazole-Fused Curcumin Analogues as Anticancer Agents. Doan NQH, Nguyen NTK, Duong VB, Nguyen HTT, Vong LB, Duong DN, Nguyen NT, Nguyen TLT, Do TTH, Truong TN. ACS Omega 7 33963-33984 (2022)
  84. Watching the release of a photopharmacological drug from tubulin using time-resolved serial crystallography. Wranik M, Weinert T, Slavov C, Masini T, Furrer A, Gaillard N, Gioia D, Ferrarotti M, James D, Glover H, Carrillo M, Kekilli D, Stipp R, Skopintsev P, Brünle S, Mühlethaler T, Beale J, Gashi D, Nass K, Ozerov D, Johnson PJM, Cirelli C, Bacellar C, Braun M, Wang M, Dworkowski F, Milne C, Cavalli A, Wachtveitl J, Steinmetz MO, Standfuss J. Nat Commun 14 903 (2023)
  85. 2-APCAs, the Novel Microtubule Targeting Agents Active Against Distinct Cancer Cell Lines. Boichuk S, Galembikova A, Bikinieva F, Dunaev P, Aukhadieva A, Syuzov K, Zykova S, Igidov N, Ksenofontov A, Bocharov P. Molecules 26 616 (2021)
  86. 2-Anilino-3-Aroylquinolines as Potent Tubulin Polymerization Inhibitors. Srikanth PS, Nayak VL, Suresh Babu K, Kumar GB, Ravikumar A, Kamal A. ChemMedChem 11 2050-2062 (2016)
  87. Design, synthesis, biological evaluation and molecular modeling study of novel macrocyclic bisbibenzyl analogues as antitubulin agents. Sun B, Li L, Hu QW, Zheng HB, Tang H, Niu HM, Yuan HQ, Lou HX. Eur J Med Chem 129 186-208 (2017)
  88. New 3-Substituted-2-(4-hydroxyanilino)pyridine Derivatives: Synthesis, Antitumor Activity, and Tubulin Polymerization Inhibition. Elmeligie S, Khalil NA, Ahmed EM, Emam SH. Arch Pharm (Weinheim) 350 (2017)
  89. Probing the opportunities for designing anthelmintic leads by sub-structural topology-based QSAR modelling. Ranjan P, Athar M, Jha PC, Krishna KV. Mol Divers 22 669-683 (2018)
  90. Tubulin colchicine site binding agent LL01 displays potent antitumor efficiency both in vitro and in vivo with suitable drug-like properties. Wu JD, Cui YJ, Zhou YG, Tang LQ, Zhang CM, Liu ZP. Invest New Drugs 38 29-38 (2020)
  91. 4-(3-Phenyl-4-(3,4,5-trimethoxybenzoyl)-1H-pyrrol-1-yl)benzenesulfonamide, a Novel Carbonic Anhydrase and Wnt/β-Catenin Signaling Pathway Dual-Targeting Inhibitor with Potent Activity against Multidrug Resistant Cancer Cells. Masci D, Puxeddu M, Di Magno L, D'Ambrosio M, Parisi A, Nalli M, Bai R, Coluccia A, Sciò P, Orlando V, D'Angelo S, Biagioni S, Urbani A, Hamel E, Nocentini A, Filiberti S, Turati M, Ronca R, Kopecka J, Riganti C, Fionda C, Bordone R, Della Rocca G, Canettieri G, Supuran CT, Silvestri R, La Regina G. J Med Chem 66 14824-14842 (2023)
  92. Comparison of the Molecular Motility of Tubulin Dimeric Isoforms: Molecular Dynamics Simulations and Diffracted X-ray Tracking Study. Yamane T, Nakayama T, Ekimoto T, Inoue M, Ikezaki K, Sekiguchi H, Kuramochi M, Terao Y, Judai K, Saito M, Ikeguchi M, Sasaki YC. Int J Mol Sci 24 15423 (2023)
  93. Copper-Plumbagin Complex Produces Potent Anticancer Effects by Depolymerizing Microtubules and Inducing Reactive Oxygen Species and DNA Damage. Mukherjee S, Sawant AV, Prassanawar SS, Panda D. ACS Omega 8 3221-3235 (2023)
  94. Enhancing Giardicidal Activity and Aqueous Solubility through the Development of "RetroABZ", a Regioisomer of Albendazole: In Vitro, In Vivo, and In Silico Studies. Martínez-Conde C, Colín-Lozano B, Gutiérrez-Hernández A, Hernández-Núñez E, Yépez-Mulia L, Colorado-Pablo LF, Aguayo-Ortiz R, Escalante J, Rivera-Leyva JC, Sánchez-Carranza JN, Barbosa-Cabrera E, Navarrete-Vazquez G. Int J Mol Sci 24 14949 (2023)
  95. New para-para stilbenophanes: synthesis by McMurry coupling, conformational analysis and inhibition of tubulin polymerisation. Álvarez R, López V, Mateo C, Medarde M, Peláez R. Chemistry 17 3406-3419 (2011)
  96. Novel pyrimidine Schiff bases and their selenium-containing nanoparticles as dual inhibitors of CDK1 and tubulin polymerase: design, synthesis, anti-proliferative evaluation, and molecular modelling. El-Kalyoubi S, El-Sebaey SA, El-Sayed AA, Abdelhamid MS, Agili F, Elfeky SM. J Enzyme Inhib Med Chem 38 2232125 (2023)
  97. Potent and Selective Benzothiazole-Based Antimitotics with Improved Water Solubility: Design, Synthesis, and Evaluation as Novel Anticancer Agents. Gallego-Yerga L, Ceña V, Peláez R. Pharmaceutics 15 1698 (2023)
  98. Systematic Studies on Anti-Cancer Evaluation of Stilbene and Dibenzo[b,f]oxepine Derivatives. Borys F, Tobiasz P, Poterała M, Fabczak H, Krawczyk H, Joachimiak E. Molecules 28 3558 (2023)
  99. The significance of the properties of water for the working cycle of the kinesin molecular motor. Kuffel A, Szałachowska M. J Chem Phys 148 235101 (2018)
  100. Treatment of CHO cells with Taxol and reversine improves micronucleation and microcell-mediated chromosome transfer efficiency. Uno N, Satofuka H, Miyamoto H, Honma K, Suzuki T, Yamazaki K, Ito R, Moriwaki T, Hamamichi S, Tomizuka K, Oshimura M, Kazuki Y. Mol Ther Nucleic Acids 33 391-403 (2023)
  101. Tubulin-binding dibenz[c,e]oxepines: Part 2. Structural variation and biological evaluation as tumour vasculature disrupting agents. Rossington SB, Hadfield JA, Shnyder SD, Wallace TW, Williams KJ. Bioorg Med Chem 25 1630-1642 (2017)