3hte Citations

Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine.

Cell 139 744-56 (2009)
Cited: 184 times
EuropePMC logo PMID: 19914167

Abstract

ClpX is a AAA+ machine that uses the energy of ATP binding and hydrolysis to unfold native proteins and translocate unfolded polypeptides into the ClpP peptidase. The crystal structures presented here reveal striking asymmetry in ring hexamers of nucleotide-free and nucleotide-bound ClpX. Asymmetry arises from large changes in rotation between the large and small AAA+ domains of individual subunits. These differences prevent nucleotide binding to two subunits, generate a staggered arrangement of ClpX subunits and pore loops around the hexameric ring, and provide a mechanism for coupling conformational changes caused by ATP binding or hydrolysis in one subunit to flexing motions of the entire ring. Our structures explain numerous solution studies of ClpX function, predict mechanisms for pore elasticity during translocation of irregular polypeptides, and suggest how repetitive conformational changes might be coupled to mechanical work during the ATPase cycle of ClpX and related molecular machines.

Articles - 3hte mentioned but not cited (11)

  1. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT. Cell 139 744-756 (2009)
  2. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Stinson BM, Nager AR, Glynn SE, Schmitz KR, Baker TA, Sauer RT. Cell 153 628-639 (2013)
  3. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. Ye Q, Rosenberg SC, Moeller A, Speir JA, Su TY, Corbett KD. Elife 4 (2015)
  4. Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine. Glynn SE, Nager AR, Baker TA, Sauer RT. Nat Struct Mol Biol 19 616-622 (2012)
  5. The structural basis of ATP as an allosteric modulator. Lu S, Huang W, Wang Q, Shen Q, Li S, Nussinov R, Zhang J. PLoS Comput Biol 10 e1003831 (2014)
  6. A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein. Gleave ES, Schmidt H, Carter AP. J Struct Biol 186 367-375 (2014)
  7. Azlocillin can be the potential drug candidate against drug-tolerant Borrelia burgdorferi sensu stricto JLB31. Pothineni VR, Potula HSK, Ambati A, Mallajosyula VVA, Sridharan B, Inayathullah M, Ahmed MS, Rajadas J. Sci Rep 10 3798 (2020)
  8. Time-resolved neutron scattering provides new insight into protein substrate processing by a AAA+ unfoldase. Ibrahim Z, Martel A, Moulin M, Kim HS, Härtlein M, Franzetti B, Gabel F. Sci Rep 7 40948 (2017)
  9. New insights into structural and functional relationships between LonA proteases and ClpB chaperones. Rotanova TV, Andrianova AG, Kudzhaev AM, Li M, Botos I, Wlodawer A, Gustchina A. FEBS Open Bio 9 1536-1551 (2019)
  10. Nucleotide-dependent control of internal strains in ring-shaped AAA+ motors. Hwang W, Lang MJ. Cell Mol Bioeng 6 65-73 (2013)
  11. Gain of Spontaneous clpX Mutations Boosting Motility via Adaption to Environments in Escherichia coli. Li B, Hou C, Ju X, Feng Y, Ye ZQ, Xiao Y, Gu M, Fu C, Wei C, You C. Front Bioeng Biotechnol 9 772397 (2021)


Reviews citing this publication (48)

  1. AAA+ proteases: ATP-fueled machines of protein destruction. Sauer RT, Baker TA. Annu Rev Biochem 80 587-612 (2011)
  2. Chaperone machines for protein folding, unfolding and disaggregation. Saibil H. Nat Rev Mol Cell Biol 14 630-642 (2013)
  3. Functions and mechanics of dynein motor proteins. Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA. Nat Rev Mol Cell Biol 14 713-726 (2013)
  4. ClpXP, an ATP-powered unfolding and protein-degradation machine. Baker TA, Sauer RT. Biochim Biophys Acta 1823 15-28 (2012)
  5. Structure and Function of the 26S Proteasome. Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. Annu Rev Biochem 87 697-724 (2018)
  6. Regulated protein turnover: snapshots of the proteasome in action. Bhattacharyya S, Yu H, Mim C, Matouschek A. Nat Rev Mol Cell Biol 15 122-133 (2014)
  7. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Olivares AO, Baker TA, Sauer RT. Nat Rev Microbiol 14 33-44 (2016)
  8. Structural biology of the proteasome. Kish-Trier E, Hill CP. Annu Rev Biophys 42 29-49 (2013)
  9. The nuts and bolts of ring-translocase structure and mechanism. Lyubimov AY, Strycharska M, Berger JM. Curr Opin Struct Biol 21 240-248 (2011)
  10. Regulated proteolysis in Gram-negative bacteria--how and when? Gur E, Biran D, Ron EZ. Nat Rev Microbiol 9 839-848 (2011)
  11. Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Mogk A, Kummer E, Bukau B. Front Mol Biosci 2 22 (2015)
  12. The protein shells of bacterial microcompartment organelles. Yeates TO, Thompson MC, Bobik TA. Curr Opin Struct Biol 21 223-231 (2011)
  13. The unfolding story of anthrax toxin translocation. Thoren KL, Krantz BA. Mol Microbiol 80 588-595 (2011)
  14. The complexities of p97 function in health and disease. Chapman E, Fry AN, Kang M. Mol Biosyst 7 700-710 (2011)
  15. The molecular principles governing the activity and functional diversity of AAA+ proteins. Puchades C, Sandate CR, Lander GC. Nat Rev Mol Cell Biol 21 43-58 (2020)
  16. Unveiling the long-held secrets of the 26S proteasome. Förster F, Unverdorben P, Sledź P, Baumeister W. Structure 21 1551-1562 (2013)
  17. Essentials of Proteolytic Machineries in Chloroplasts. Nishimura K, Kato Y, Sakamoto W. Mol Plant 10 4-19 (2017)
  18. Design principles of a universal protein degradation machine. Matyskiela ME, Martin A. J Mol Biol 425 199-213 (2013)
  19. ATP-driven molecular chaperone machines. Clare DK, Saibil HR. Biopolymers 99 846-859 (2013)
  20. The mechanism of dynein motility: insight from crystal structures of the motor domain. Cho C, Vale RD. Biochim Biophys Acta 1823 182-191 (2012)
  21. Recent Advances in Deciphering the Structure and Molecular Mechanism of the AAA+ ATPase N-Ethylmaleimide-Sensitive Factor (NSF). Zhao M, Brunger AT. J Mol Biol 428 1912-1926 (2016)
  22. Marching to the beat of the ring: polypeptide translocation by AAA+ proteases. Nyquist K, Martin A. Trends Biochem Sci 39 53-60 (2014)
  23. Review: The lord of the rings: Structure and mechanism of the sliding clamp loader. Kelch BA. Biopolymers 105 532-546 (2016)
  24. Torsins: not your typical AAA+ ATPases. Rose AE, Brown RS, Schlieker C. Crit Rev Biochem Mol Biol 50 532-549 (2015)
  25. Maintaining photosynthetic CO2 fixation via protein remodelling: the Rubisco activases. Mueller-Cajar O, Stotz M, Bracher A. Photosynth Res 119 191-201 (2014)
  26. Mapping the road to recovery: the ClpB/Hsp104 molecular chaperone. Hodson S, Marshall JJ, Burston SG. J Struct Biol 179 161-171 (2012)
  27. Fundamental Characteristics of AAA+ Protein Family Structure and Function. Miller JM, Miller JM, Enemark EJ. Archaea 2016 9294307 (2016)
  28. Spiraling in Control: Structures and Mechanisms of the Hsp104 Disaggregase. Shorter J, Southworth DR. Cold Spring Harb Perspect Biol 11 (2019)
  29. Mechanisms of cellular proteostasis: insights from single-molecule approaches. Bustamante CJ, Kaiser CM, Maillard RA, Goldman DH, Wilson CA. Annu Rev Biophys 43 119-140 (2014)
  30. Mini review: ATP-dependent proteases in bacteria. Bittner LM, Arends J, Narberhaus F. Biopolymers 105 505-517 (2016)
  31. AAA-ATPases in Protein Degradation. Yedidi RS, Wendler P, Enenkel C. Front Mol Biosci 4 42 (2017)
  32. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. Burmann BM, Hiller S. Prog Nucl Magn Reson Spectrosc 86-87 41-64 (2015)
  33. The development of small-molecule modulators for ClpP protease activity. Ye F, Li J, Yang CG. Mol Biosyst 13 23-31 (2016)
  34. Intersubunit coordination and cooperativity in ring-shaped NTPases. Iino R, Noji H. Curr Opin Struct Biol 23 229-234 (2013)
  35. Structure and mechanism of the ESCRT pathway AAA+ ATPase Vps4. Han H, Hill CP. Biochem Soc Trans 47 37-45 (2019)
  36. Structural mechanisms of chaperone mediated protein disaggregation. Sousa R. Front Mol Biosci 1 12 (2014)
  37. Shaping the Nascent Ribosome: AAA-ATPases in Eukaryotic Ribosome Biogenesis. Prattes M, Lo YH, Bergler H, Stanley RE. Biomolecules 9 (2019)
  38. The influence of ATP-dependent proteases on a variety of nucleoid-associated processes. Ambro L, Pevala V, Bauer J, Kutejová E. J Struct Biol 179 181-192 (2012)
  39. Assessing heterogeneity in oligomeric AAA+ machines. Sysoeva TA. Cell Mol Life Sci 74 1001-1018 (2017)
  40. Structure, Dynamics and Function of the 26S Proteasome. Mao Y. Subcell Biochem 96 1-151 (2021)
  41. Structure and function of ClpXP, a AAA+ proteolytic machine powered by probabilistic ATP hydrolysis. Sauer RT, Fei X, Bell TA, Baker TA. Crit Rev Biochem Mol Biol 57 188-204 (2022)
  42. AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms. Zhang S, Mao Y. Biomolecules 10 (2020)
  43. Molecular switch-like regulation in motor proteins. Tafoya S, Bustamante C. Philos Trans R Soc Lond B Biol Sci 373 (2018)
  44. AAA+ ATPases: structural insertions under the magnifying glass. Jessop M, Felix J, Gutsche I. Curr Opin Struct Biol 66 119-128 (2021)
  45. Insights into the Structure and Function of the Pex1/Pex6 AAA-ATPase in Peroxisome Homeostasis. Judy RM, Sheedy CJ, Gardner BM. Cells 11 2067 (2022)
  46. Recent structural insights into the mechanism of ClpP protease regulation by AAA+ chaperones and small molecules. Mabanglo MF, Houry WA. J Biol Chem 298 101781 (2022)
  47. Repair or Degrade: the Thermodynamic Dilemma of Cellular Protein Quality-Control. Fauvet B, Rebeaud ME, Tiwari S, De Los Rios P, Goloubinoff P. Front Mol Biosci 8 768888 (2021)
  48. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, Lipkowitz S. Cancers (Basel) 15 1936 (2023)

Articles citing this publication (125)