3hte Citations

Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine.

Cell 139 744-56 (2009)
Cited: 184 times
EuropePMC logo PMID: 19914167

Abstract

ClpX is a AAA+ machine that uses the energy of ATP binding and hydrolysis to unfold native proteins and translocate unfolded polypeptides into the ClpP peptidase. The crystal structures presented here reveal striking asymmetry in ring hexamers of nucleotide-free and nucleotide-bound ClpX. Asymmetry arises from large changes in rotation between the large and small AAA+ domains of individual subunits. These differences prevent nucleotide binding to two subunits, generate a staggered arrangement of ClpX subunits and pore loops around the hexameric ring, and provide a mechanism for coupling conformational changes caused by ATP binding or hydrolysis in one subunit to flexing motions of the entire ring. Our structures explain numerous solution studies of ClpX function, predict mechanisms for pore elasticity during translocation of irregular polypeptides, and suggest how repetitive conformational changes might be coupled to mechanical work during the ATPase cycle of ClpX and related molecular machines.

Articles - 3hte mentioned but not cited (11)

  1. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT. Cell 139 744-756 (2009)
  2. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Stinson BM, Nager AR, Glynn SE, Schmitz KR, Baker TA, Sauer RT. Cell 153 628-639 (2013)
  3. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. Ye Q, Rosenberg SC, Moeller A, Speir JA, Su TY, Corbett KD. Elife 4 (2015)
  4. Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine. Glynn SE, Nager AR, Baker TA, Sauer RT. Nat Struct Mol Biol 19 616-622 (2012)
  5. The structural basis of ATP as an allosteric modulator. Lu S, Huang W, Wang Q, Shen Q, Li S, Nussinov R, Zhang J. PLoS Comput Biol 10 e1003831 (2014)
  6. A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein. Gleave ES, Schmidt H, Carter AP. J Struct Biol 186 367-375 (2014)
  7. Azlocillin can be the potential drug candidate against drug-tolerant Borrelia burgdorferi sensu stricto JLB31. Pothineni VR, Potula HSK, Ambati A, Mallajosyula VVA, Sridharan B, Inayathullah M, Ahmed MS, Rajadas J. Sci Rep 10 3798 (2020)
  8. Time-resolved neutron scattering provides new insight into protein substrate processing by a AAA+ unfoldase. Ibrahim Z, Martel A, Moulin M, Kim HS, Härtlein M, Franzetti B, Gabel F. Sci Rep 7 40948 (2017)
  9. New insights into structural and functional relationships between LonA proteases and ClpB chaperones. Rotanova TV, Andrianova AG, Kudzhaev AM, Li M, Botos I, Wlodawer A, Gustchina A. FEBS Open Bio 9 1536-1551 (2019)
  10. Nucleotide-dependent control of internal strains in ring-shaped AAA+ motors. Hwang W, Lang MJ. Cell Mol Bioeng 6 65-73 (2013)
  11. Gain of Spontaneous clpX Mutations Boosting Motility via Adaption to Environments in Escherichia coli. Li B, Hou C, Ju X, Feng Y, Ye ZQ, Xiao Y, Gu M, Fu C, Wei C, You C. Front Bioeng Biotechnol 9 772397 (2021)


Reviews citing this publication (48)

  1. AAA+ proteases: ATP-fueled machines of protein destruction. Sauer RT, Baker TA. Annu Rev Biochem 80 587-612 (2011)
  2. Chaperone machines for protein folding, unfolding and disaggregation. Saibil H. Nat Rev Mol Cell Biol 14 630-642 (2013)
  3. Functions and mechanics of dynein motor proteins. Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA. Nat Rev Mol Cell Biol 14 713-726 (2013)
  4. ClpXP, an ATP-powered unfolding and protein-degradation machine. Baker TA, Sauer RT. Biochim Biophys Acta 1823 15-28 (2012)
  5. Structure and Function of the 26S Proteasome. Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. Annu Rev Biochem 87 697-724 (2018)
  6. Regulated protein turnover: snapshots of the proteasome in action. Bhattacharyya S, Yu H, Mim C, Matouschek A. Nat Rev Mol Cell Biol 15 122-133 (2014)
  7. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Olivares AO, Baker TA, Sauer RT. Nat Rev Microbiol 14 33-44 (2016)
  8. Structural biology of the proteasome. Kish-Trier E, Hill CP. Annu Rev Biophys 42 29-49 (2013)
  9. The nuts and bolts of ring-translocase structure and mechanism. Lyubimov AY, Strycharska M, Berger JM. Curr Opin Struct Biol 21 240-248 (2011)
  10. Regulated proteolysis in Gram-negative bacteria--how and when? Gur E, Biran D, Ron EZ. Nat Rev Microbiol 9 839-848 (2011)
  11. Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Mogk A, Kummer E, Bukau B. Front Mol Biosci 2 22 (2015)
  12. The protein shells of bacterial microcompartment organelles. Yeates TO, Thompson MC, Bobik TA. Curr Opin Struct Biol 21 223-231 (2011)
  13. The unfolding story of anthrax toxin translocation. Thoren KL, Krantz BA. Mol Microbiol 80 588-595 (2011)
  14. The complexities of p97 function in health and disease. Chapman E, Fry AN, Kang M. Mol Biosyst 7 700-710 (2011)
  15. The molecular principles governing the activity and functional diversity of AAA+ proteins. Puchades C, Sandate CR, Lander GC. Nat Rev Mol Cell Biol 21 43-58 (2020)
  16. Unveiling the long-held secrets of the 26S proteasome. Förster F, Unverdorben P, Sledź P, Baumeister W. Structure 21 1551-1562 (2013)
  17. Essentials of Proteolytic Machineries in Chloroplasts. Nishimura K, Kato Y, Sakamoto W. Mol Plant 10 4-19 (2017)
  18. Design principles of a universal protein degradation machine. Matyskiela ME, Martin A. J Mol Biol 425 199-213 (2013)
  19. ATP-driven molecular chaperone machines. Clare DK, Saibil HR. Biopolymers 99 846-859 (2013)
  20. The mechanism of dynein motility: insight from crystal structures of the motor domain. Cho C, Vale RD. Biochim Biophys Acta 1823 182-191 (2012)
  21. Recent Advances in Deciphering the Structure and Molecular Mechanism of the AAA+ ATPase N-Ethylmaleimide-Sensitive Factor (NSF). Zhao M, Brunger AT. J Mol Biol 428 1912-1926 (2016)
  22. Marching to the beat of the ring: polypeptide translocation by AAA+ proteases. Nyquist K, Martin A. Trends Biochem Sci 39 53-60 (2014)
  23. Review: The lord of the rings: Structure and mechanism of the sliding clamp loader. Kelch BA. Biopolymers 105 532-546 (2016)
  24. Torsins: not your typical AAA+ ATPases. Rose AE, Brown RS, Schlieker C. Crit Rev Biochem Mol Biol 50 532-549 (2015)
  25. Maintaining photosynthetic CO2 fixation via protein remodelling: the Rubisco activases. Mueller-Cajar O, Stotz M, Bracher A. Photosynth Res 119 191-201 (2014)
  26. Mapping the road to recovery: the ClpB/Hsp104 molecular chaperone. Hodson S, Marshall JJ, Burston SG. J Struct Biol 179 161-171 (2012)
  27. Fundamental Characteristics of AAA+ Protein Family Structure and Function. Miller JM, Miller JM, Enemark EJ. Archaea 2016 9294307 (2016)
  28. Spiraling in Control: Structures and Mechanisms of the Hsp104 Disaggregase. Shorter J, Southworth DR. Cold Spring Harb Perspect Biol 11 (2019)
  29. Mechanisms of cellular proteostasis: insights from single-molecule approaches. Bustamante CJ, Kaiser CM, Maillard RA, Goldman DH, Wilson CA. Annu Rev Biophys 43 119-140 (2014)
  30. Mini review: ATP-dependent proteases in bacteria. Bittner LM, Arends J, Narberhaus F. Biopolymers 105 505-517 (2016)
  31. AAA-ATPases in Protein Degradation. Yedidi RS, Wendler P, Enenkel C. Front Mol Biosci 4 42 (2017)
  32. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. Burmann BM, Hiller S. Prog Nucl Magn Reson Spectrosc 86-87 41-64 (2015)
  33. The development of small-molecule modulators for ClpP protease activity. Ye F, Li J, Yang CG. Mol Biosyst 13 23-31 (2016)
  34. Intersubunit coordination and cooperativity in ring-shaped NTPases. Iino R, Noji H. Curr Opin Struct Biol 23 229-234 (2013)
  35. Structure and mechanism of the ESCRT pathway AAA+ ATPase Vps4. Han H, Hill CP. Biochem Soc Trans 47 37-45 (2019)
  36. Structural mechanisms of chaperone mediated protein disaggregation. Sousa R. Front Mol Biosci 1 12 (2014)
  37. Shaping the Nascent Ribosome: AAA-ATPases in Eukaryotic Ribosome Biogenesis. Prattes M, Lo YH, Bergler H, Stanley RE. Biomolecules 9 (2019)
  38. The influence of ATP-dependent proteases on a variety of nucleoid-associated processes. Ambro L, Pevala V, Bauer J, Kutejová E. J Struct Biol 179 181-192 (2012)
  39. Assessing heterogeneity in oligomeric AAA+ machines. Sysoeva TA. Cell Mol Life Sci 74 1001-1018 (2017)
  40. Structure, Dynamics and Function of the 26S Proteasome. Mao Y. Subcell Biochem 96 1-151 (2021)
  41. Structure and function of ClpXP, a AAA+ proteolytic machine powered by probabilistic ATP hydrolysis. Sauer RT, Fei X, Bell TA, Baker TA. Crit Rev Biochem Mol Biol 57 188-204 (2022)
  42. AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms. Zhang S, Mao Y. Biomolecules 10 (2020)
  43. Molecular switch-like regulation in motor proteins. Tafoya S, Bustamante C. Philos Trans R Soc Lond B Biol Sci 373 (2018)
  44. AAA+ ATPases: structural insertions under the magnifying glass. Jessop M, Felix J, Gutsche I. Curr Opin Struct Biol 66 119-128 (2021)
  45. Insights into the Structure and Function of the Pex1/Pex6 AAA-ATPase in Peroxisome Homeostasis. Judy RM, Sheedy CJ, Gardner BM. Cells 11 2067 (2022)
  46. Recent structural insights into the mechanism of ClpP protease regulation by AAA+ chaperones and small molecules. Mabanglo MF, Houry WA. J Biol Chem 298 101781 (2022)
  47. Repair or Degrade: the Thermodynamic Dilemma of Cellular Protein Quality-Control. Fauvet B, Rebeaud ME, Tiwari S, De Los Rios P, Goloubinoff P. Front Mol Biosci 8 768888 (2021)
  48. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, Lipkowitz S. Cancers (Basel) 15 1936 (2023)

Articles citing this publication (125)

  1. Complete subunit architecture of the proteasome regulatory particle. Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. Nature 482 186-191 (2012)
  2. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Lasker K, Förster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W. Proc Natl Acad Sci U S A 109 1380-1387 (2012)
  3. Conformational switching of the 26S proteasome enables substrate degradation. Matyskiela ME, Lander GC, Martin A. Nat Struct Mol Biol 20 781-788 (2013)
  4. Crystal structure of the dynein motor domain. Carter AP, Cho C, Jin L, Vale RD. Science 331 1159-1165 (2011)
  5. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Maillard RA, Chistol G, Sen M, Righini M, Tan J, Kaiser CM, Hodges C, Martin A, Bustamante C. Cell 145 459-469 (2011)
  6. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Smith DM, Fraga H, Reis C, Kafri G, Goldberg AL. Cell 144 526-538 (2011)
  7. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Aubin-Tam ME, Olivares AO, Sauer RT, Baker TA, Lang MJ. Cell 145 257-267 (2011)
  8. Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104. Gates SN, Yokom AL, Lin J, Jackrel ME, Rizo AN, Kendsersky NM, Buell CE, Sweeny EA, Mack KL, Chuang E, Torrente MP, Su M, Shorter J, Southworth DR. Science 357 273-279 (2017)
  9. An atomic structure of the human 26S proteasome. Huang X, Luan B, Wu J, Shi Y. Nat Struct Mol Biol 23 778-785 (2016)
  10. Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Unverdorben P, Beck F, Śledź P, Schweitzer A, Pfeifer G, Plitzko JM, Baumeister W, Förster F. Proc Natl Acad Sci U S A 111 5544-5549 (2014)
  11. Insights into dynein motor domain function from a 3.3-Å crystal structure. Schmidt H, Gleave ES, Carter AP. Nat Struct Mol Biol 19 492-7, S1 (2012)
  12. How a DNA polymerase clamp loader opens a sliding clamp. Kelch BA, Makino DL, O'Donnell M, Kuriyan J. Science 334 1675-1680 (2011)
  13. Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Śledź P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Förster F, Baumeister W. Proc Natl Acad Sci U S A 110 7264-7269 (2013)
  14. Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP. Li DH, Chung YS, Gloyd M, Joseph E, Ghirlando R, Wright GD, Cheng YQ, Maurizi MR, Guarné A, Ortega J. Chem Biol 17 959-969 (2010)
  15. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Beckwith R, Estrin E, Worden EJ, Martin A. Nat Struct Mol Biol 20 1164-1172 (2013)
  16. Structure and function of the AAA+ protein CbbX, a red-type Rubisco activase. Mueller-Cajar O, Stotz M, Wendler P, Hartl FU, Bracher A, Hayer-Hartl M. Nature 479 194-199 (2011)
  17. Structure and mechanism of the hexameric MecA-ClpC molecular machine. Wang F, Mei Z, Qi Y, Yan C, Hu Q, Wang J, Shi Y. Nature 471 331-335 (2011)
  18. Structural basis for dynamic regulation of the human 26S proteasome. Chen S, Wu J, Lu Y, Ma YB, Lee BH, Yu Z, Ouyang Q, Finley DJ, Kirschner MW, Mao Y. Proc Natl Acad Sci U S A 113 12991-12996 (2016)
  19. Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome. Dong Y, Zhang S, Wu Z, Li X, Wang WL, Zhu Y, Stoilova-McPhie S, Lu Y, Finley D, Mao Y. Nature 565 49-55 (2019)
  20. Structure of the mitochondrial inner membrane AAA+ protease YME1 gives insight into substrate processing. Puchades C, Rampello AJ, Shin M, Giuliano CJ, Wiseman RL, Glynn SE, Lander GC. Science 358 (2017)
  21. Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation. Carroni M, Kummer E, Oguchi Y, Wendler P, Clare DK, Sinning I, Kopp J, Mogk A, Bukau B, Saibil HR. Elife 3 e02481 (2014)
  22. High degree of coordination and division of labor among subunits in a homomeric ring ATPase. Chistol G, Liu S, Hetherington CL, Moffitt JR, Grimes S, Jardine PJ, Bustamante C. Cell 151 1017-1028 (2012)
  23. The ClpXP protease unfolds substrates using a constant rate of pulling but different gears. Sen M, Maillard RA, Nyquist K, Rodriguez-Aliaga P, Pressé S, Martin A, Bustamante C. Cell 155 636-646 (2013)
  24. Structural insights into the functional cycle of the ATPase module of the 26S proteasome. Wehmer M, Rudack T, Beck F, Aufderheide A, Pfeifer G, Plitzko JM, Förster F, Schulten K, Baumeister W, Sakata E. Proc Natl Acad Sci U S A 114 1305-1310 (2017)
  25. Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine. Cordova JC, Olivares AO, Shin Y, Stinson BM, Calmat S, Schmitz KR, Aubin-Tam ME, Baker TA, Lang MJ, Sauer RT. Cell 158 647-658 (2014)
  26. A "push and slide" mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase. Bauer BW, Shemesh T, Chen Y, Rapoport TA. Cell 157 1416-1429 (2014)
  27. Structure of green-type Rubisco activase from tobacco. Stotz M, Mueller-Cajar O, Ciniawsky S, Wendler P, Hartl FU, Bracher A, Hayer-Hartl M. Nat Struct Mol Biol 18 1366-1370 (2011)
  28. Spiral architecture of the Hsp104 disaggregase reveals the basis for polypeptide translocation. Yokom AL, Gates SN, Jackrel ME, Mack KL, Su M, Shorter J, Southworth DR. Nat Struct Mol Biol 23 830-837 (2016)
  29. Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. Cha SS, An YJ, Lee CR, Lee HS, Kim YG, Kim SJ, Kwon KK, De Donatis GM, Lee JH, Maurizi MR, Kang SG. EMBO J 29 3520-3530 (2010)
  30. A pathway of protein translocation in mitochondria mediated by the AAA-ATPase Bcs1. Wagener N, Ackermann M, Funes S, Neupert W. Mol Cell 44 191-202 (2011)
  31. P. aeruginosa PilT structures with and without nucleotide reveal a dynamic type IV pilus retraction motor. Misic AM, Satyshur KA, Forest KT. J Mol Biol 400 1011-1021 (2010)
  32. An asymmetric interface between the regulatory and core particles of the proteasome. Tian G, Park S, Lee MJ, Huck B, McAllister F, Hill CP, Gygi SP, Finley D. Nat Struct Mol Biol 18 1259-1267 (2011)
  33. Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Yang B, Stjepanovic G, Shen Q, Martin A, Hurley JH. Nat Struct Mol Biol 22 492-498 (2015)
  34. Mechanochemical basis of protein degradation by a double-ring AAA+ machine. Olivares AO, Nager AR, Iosefson O, Sauer RT, Baker TA. Nat Struct Mol Biol 21 871-875 (2014)
  35. Allosteric communication in the dynein motor domain. Bhabha G, Cheng HC, Zhang N, Moeller A, Liao M, Speir JA, Cheng Y, Vale RD. Cell 159 857-868 (2014)
  36. Structure and mechanism of the ATPase that powers viral genome packaging. Hilbert BJ, Hayes JA, Stone NP, Duffy CM, Sankaran B, Kelch BA. Proc Natl Acad Sci U S A 112 E3792-9 (2015)
  37. AAA+ chaperones and acyldepsipeptides activate the ClpP protease via conformational control. Gersch M, Famulla K, Dahmen M, Göbl C, Malik I, Richter K, Korotkov VS, Sass P, Rübsamen-Schaeff H, Madl T, Brötz-Oesterhelt H, Sieber SA. Nat Commun 6 6320 (2015)
  38. Differentiation of the DnaA-oriC subcomplex for DNA unwinding in a replication initiation complex. Ozaki S, Noguchi Y, Hayashi Y, Miyazaki E, Katayama T. J Biol Chem 287 37458-37471 (2012)
  39. Coordination of substrate binding and ATP hydrolysis in Vps4-mediated ESCRT-III disassembly. Davies BA, Azmi IF, Payne J, Shestakova A, Horazdovsky BF, Babst M, Katzmann DJ. Mol Biol Cell 21 3396-3408 (2010)
  40. Regulatory circuits of the AAA+ disaggregase Hsp104. Franzmann TM, Czekalla A, Walter SG. J Biol Chem 286 17992-18001 (2011)
  41. Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor. Mao H, Saha M, Reyes-Aldrete E, Sherman MB, Woodson M, Atz R, Grimes S, Jardine PJ, Morais MC. Cell Rep 14 2017-2029 (2016)
  42. The AAA3 domain of cytoplasmic dynein acts as a switch to facilitate microtubule release. DeWitt MA, Cypranowska CA, Cleary FB, Belyy V, Yildiz A. Nat Struct Mol Biol 22 73-80 (2015)
  43. Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine. Iosefson O, Nager AR, Baker TA, Sauer RT. Nat Chem Biol 11 201-206 (2015)
  44. Human CCT4 and CCT5 chaperonin subunits expressed in Escherichia coli form biologically active homo-oligomers. Sergeeva OA, Chen B, Haase-Pettingell C, Ludtke SJ, Chiu W, King JA. J Biol Chem 288 17734-17744 (2013)
  45. Katanin spiral and ring structures shed light on power stroke for microtubule severing. Zehr E, Szyk A, Piszczek G, Szczesna E, Zuo X, Roll-Mecak A. Nat Struct Mol Biol 24 717-725 (2017)
  46. Structural basis for intersubunit signaling in a protein disaggregating machine. Biter AB, Lee S, Sung N, Tsai FT. Proc Natl Acad Sci U S A 109 12515-12520 (2012)
  47. ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function. Kim YC, Snoberger A, Schupp J, Smith DM. Nat Commun 6 8520 (2015)
  48. Molecular snapshots of the Pex1/6 AAA+ complex in action. Ciniawsky S, Grimm I, Saffian D, Girzalsky W, Erdmann R, Wendler P. Nat Commun 6 7331 (2015)
  49. Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study. Huang R, Ripstein ZA, Augustyniak R, Lazniewski M, Ginalski K, Kay LE, Rubinstein JL. Proc Natl Acad Sci U S A 113 E4190-9 (2016)
  50. Structural basis for the disaggregase activity and regulation of Hsp104. Heuck A, Schitter-Sollner S, Suskiewicz MJ, Kurzbauer R, Kley J, Schleiffer A, Rombaut P, Herzog F, Clausen T. Elife 5 (2016)
  51. Structural mechanism for nucleotide-driven remodeling of the AAA-ATPase unfoldase in the activated human 26S proteasome. Zhu Y, Wang WL, Yu D, Ouyang Q, Lu Y, Mao Y. Nat Commun 9 1360 (2018)
  52. Dissection of Axial-Pore Loop Function during Unfolding and Translocation by a AAA+ Proteolytic Machine. Iosefson O, Olivares AO, Baker TA, Sauer RT. Cell Rep 12 1032-1041 (2015)
  53. Interplay between E. coli DnaK, ClpB and GrpE during protein disaggregation. Doyle SM, Shastry S, Kravats AN, Shih YH, Miot M, Hoskins JR, Stan G, Wickner S. J Mol Biol 427 312-327 (2015)
  54. Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis. Sysoeva TA, Chowdhury S, Guo L, Nixon BT. Genes Dev 27 2500-2511 (2013)
  55. Separating speed and ability to displace roadblocks during DNA translocation by FtsK. Crozat E, Meglio A, Allemand JF, Chivers CE, Howarth M, Vénien-Bryan C, Grainge I, Sherratt DJ. EMBO J 29 1423-1433 (2010)
  56. Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX. Stinson BM, Baytshtok V, Schmitz KR, Baker TA, Sauer RT. Nat Struct Mol Biol 22 411-416 (2015)
  57. A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery. Ripstein ZA, Vahidi S, Houry WA, Rubinstein JL, Kay LE. Elife 9 (2020)
  58. Mechanical operation and intersubunit coordination of ring-shaped molecular motors: insights from single-molecule studies. Liu S, Chistol G, Bustamante C. Biophys J 106 1844-1858 (2014)
  59. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly. Caillat C, Macheboeuf P, Wu Y, McCarthy AA, Boeri-Erba E, Effantin G, Göttlinger HG, Weissenhorn W, Renesto P. Nat Commun 6 8781 (2015)
  60. Role of the D1-D2 Linker of Human VCP/p97 in the Asymmetry and ATPase Activity of the D1-domain. Tang WK, Xia D. Sci Rep 6 20037 (2016)
  61. Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease. Shin Y, Davis JH, Brau RR, Martin A, Kenniston JA, Baker TA, Sauer RT, Lang MJ. Proc Natl Acad Sci U S A 106 19340-19345 (2009)
  62. High-resolution cryo-EM structure of the proteasome in complex with ADP-AlFx. Ding Z, Fu Z, Xu C, Wang Y, Wang Y, Li J, Kong L, Chen J, Li N, Zhang R, Cong Y. Cell Res 27 373-385 (2017)
  63. Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP. Rodriguez-Aliaga P, Ramirez L, Kim F, Bustamante C, Martin A. Nat Struct Mol Biol 23 974-981 (2016)
  64. Mutation in human CLPX elevates levels of δ-aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. Yien YY, Ducamp S, van der Vorm LN, Kardon JR, Manceau H, Kannengiesser C, Bergonia HA, Kafina MD, Karim Z, Gouya L, Baker TA, Puy H, Phillips JD, Nicolas G, Paw BH. Proc Natl Acad Sci U S A 114 E8045-E8052 (2017)
  65. Nucleotide utilization requirements that render ClpB active as a chaperone. del Castillo U, Fernández-Higuero JA, Pérez-Acebrón S, Moro F, Muga A. FEBS Lett 584 929-934 (2010)
  66. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. Fei X, Bell TA, Jenni S, Stinson BM, Baker TA, Harrison SC, Sauer RT. Elife 9 (2020)
  67. Topological characterization of the DnaA-oriC complex using single-molecule nanomanipuation. Zorman S, Seitz H, Sclavi B, Strick TR. Nucleic Acids Res 40 7375-7383 (2012)
  68. Allosteric communication between the nucleotide binding domains of caseinolytic peptidase B. Fernández-Higuero JÁ, Acebrón SP, Taneva SG, Del Castillo U, Moro F, Muga A. J Biol Chem 286 25547-25555 (2011)
  69. Engineered AAA+ proteases reveal principles of proteolysis at the mitochondrial inner membrane. Shi H, Rampello AJ, Glynn SE. Nat Commun 7 13301 (2016)
  70. Cryo-EM structure of the ClpXP protein degradation machinery. Gatsogiannis C, Balogh D, Merino F, Sieber SA, Raunser S. Nat Struct Mol Biol 26 946-954 (2019)
  71. Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases. Baytshtok V, Baker TA, Sauer RT. Proc Natl Acad Sci U S A 112 5377-5382 (2015)
  72. Dynamic structural states of ClpB involved in its disaggregation function. Uchihashi T, Watanabe YH, Nakazaki Y, Yamasaki T, Watanabe H, Maruno T, Ishii K, Uchiyama S, Song C, Murata K, Iino R, Ando T. Nat Commun 9 2147 (2018)
  73. PspF-binding domain PspA1-144 and the PspA·F complex: New insights into the coiled-coil-dependent regulation of AAA+ proteins. Osadnik H, Schöpfel M, Heidrich E, Mehner D, Lilie H, Parthier C, Risselada HJ, Grubmüller H, Stubbs MT, Brüser T. Mol Microbiol 98 743-759 (2015)
  74. Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase: product inhibition, cooperativity, and magnesium activation. Hazra S, Henderson JN, Liles K, Hilton MT, Wachter RM. J Biol Chem 290 24222-24236 (2015)
  75. Structural Insights into Mdn1, an Essential AAA Protein Required for Ribosome Biogenesis. Chen Z, Suzuki H, Kobayashi Y, Wang AC, DiMaio F, Kawashima SA, Walz T, Kapoor TM. Cell 175 822-834.e18 (2018)
  76. trans-Acting arginine residues in the AAA+ chaperone ClpB allosterically regulate the activity through inter- and intradomain communication. Zeymer C, Fischer S, Reinstein J. J Biol Chem 289 32965-32976 (2014)
  77. Linked domain architectures allow for specialization of function in the FtsK/SpoIIIE ATPases of ESX secretion systems. Ramsdell TL, Huppert LA, Sysoeva TA, Fortune SM, Burton BM. J Mol Biol 427 1119-1132 (2015)
  78. Mechanistic insight into TRIP13-catalyzed Mad2 structural transition and spindle checkpoint silencing. Brulotte ML, Jeong BC, Li F, Li B, Yu EB, Wu Q, Brautigam CA, Yu H, Luo X. Nat Commun 8 1956 (2017)
  79. Microtubule-severing activity of the AAA+ ATPase Katanin is essential for female meiotic spindle assembly. Joly N, Martino L, Gigant E, Dumont J, Pintard L. Development 143 3604-3614 (2016)
  80. Structural Insights into the Allosteric Operation of the Lon AAA+ Protease. Lin CC, Su SC, Su MY, Liang PH, Feng CC, Wu SH, Chang CI. Structure 24 667-675 (2016)
  81. Antibacterial properties and mechanisms of gold-silver nanocages. Wang Y, Wan J, Miron RJ, Zhao Y, Zhang Y. Nanoscale 8 11143-11152 (2016)
  82. Identification of a Degradation Signal Sequence within Substrates of the Mitochondrial i-AAA Protease. Rampello AJ, Glynn SE. J Mol Biol 429 873-885 (2017)
  83. Small-molecule control of protein degradation using split adaptors. Davis JH, Baker TA, Sauer RT. ACS Chem Biol 6 1205-1213 (2011)
  84. Knots can impair protein degradation by ATP-dependent proteases. San Martín Á, Rodriguez-Aliaga P, Molina JA, Martin A, Bustamante C, Baez M. Proc Natl Acad Sci U S A 114 9864-9869 (2017)
  85. Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine. Liu J, Mei Z, Li N, Qi Y, Xu Y, Shi Y, Wang F, Lei J, Gao N. J Biol Chem 288 17597-17608 (2013)
  86. The Protein Chaperone ClpX Targets Native and Non-native Aggregated Substrates for Remodeling, Disassembly, and Degradation with ClpP. LaBreck CJ, May S, Viola MG, Conti J, Camberg JL. Front Mol Biosci 4 26 (2017)
  87. Structural basis of nucleosome assembly by the Abo1 AAA+ ATPase histone chaperone. Cho C, Jang J, Kang Y, Watanabe H, Uchihashi T, Kim SJ, Kato K, Lee JY, Song JJ. Nat Commun 10 5764 (2019)
  88. Structural insights into the unusually strong ATPase activity of the AAA domain of the Caenorhabditis elegans fidgetin-like 1 (FIGL-1) protein. Peng W, Lin Z, Li W, Lu J, Shen Y, Wang C. J Biol Chem 288 29305-29312 (2013)
  89. Folding-Degradation Relationship of a Membrane Protein Mediated by the Universally Conserved ATP-Dependent Protease FtsH. Yang Y, Guo R, Gaffney K, Kim M, Muhammednazaar S, Tian W, Wang B, Liang J, Hong H. J Am Chem Soc 140 4656-4665 (2018)
  90. Covalently linked HslU hexamers support a probabilistic mechanism that links ATP hydrolysis to protein unfolding and translocation. Baytshtok V, Chen J, Glynn SE, Nager AR, Grant RA, Baker TA, Sauer RT. J Biol Chem 292 5695-5704 (2017)
  91. Single chain forms of the enhancer binding protein PspF provide insights into geometric requirements for gene activation. Joly N, Buck M. J Biol Chem 286 12734-12742 (2011)
  92. Structural Features Reminiscent of ATP-Driven Protein Translocases Are Essential for the Function of a Type III Secretion-Associated ATPase. Kato J, Lefebre M, Galán JE. J Bacteriol 197 3007-3014 (2015)
  93. Highly Dynamic Interactions Maintain Kinetic Stability of the ClpXP Protease During the ATP-Fueled Mechanical Cycle. Amor AJ, Schmitz KR, Sello JK, Baker TA, Sauer RT. ACS Chem Biol 11 1552-1560 (2016)
  94. Molecular dynamics simulations of nucleotide release from the circadian clock protein KaiC reveal atomic-resolution functional insights. Hong L, Vani BP, Thiede EH, Rust MJ, Dinner AR. Proc Natl Acad Sci U S A 115 E11475-E11484 (2018)
  95. Mutant Analysis Reveals Allosteric Regulation of ClpB Disaggregase. Franke KB, Bukau B, Mogk A. Front Mol Biosci 4 6 (2017)
  96. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation. Amor AJ, Schmitz KR, Baker TA, Sauer RT. Protein Sci 28 756-765 (2019)
  97. Subunit dynamics and nucleotide-dependent asymmetry of an AAA(+) transcription complex. Zhang N, Gordiyenko Y, Joly N, Lawton E, Robinson CV, Buck M. J Mol Biol 426 71-83 (2014)
  98. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines. Kravats AN, Tonddast-Navaei S, Bucher RJ, Stan G. J Chem Phys 139 121921 (2013)
  99. Evidence that a catalytic glutamate and an 'Arginine Toggle' act in concert to mediate ATP hydrolysis and mechanochemical coupling in a viral DNA packaging motor. Ortiz D, delToro D, Ordyan M, Pajak J, Sippy J, Catala A, Oh CS, Vu A, Arya G, Feiss M, Smith DE, Catalano CE. Nucleic Acids Res 47 1404-1415 (2019)
  100. Protein denaturation at a single-molecule level: the effect of nonpolar environments and its implications on the unfolding mechanism by proteases. Cheng B, Wu S, Liu S, Rodriguez-Aliaga P, Yu J, Cui S. Nanoscale 7 2970-2977 (2015)
  101. Structural determinants for protein unfolding and translocation by the Hsp104 protein disaggregase. Lee J, Sung N, Yeo L, Chang C, Lee S, Tsai FTF. Biosci Rep 37 (2017)
  102. ClpP-independent function of ClpX interferes with telithromycin resistance conferred by Msr(A) in Staphylococcus aureus. Vimberg V, Lenart J, Janata J, Balikova Novotna G. Antimicrob Agents Chemother 59 3611-3614 (2015)
  103. ClpX shifts into high gear to unfold stable proteins. Maurizi MR, Stan G. Cell 155 502-504 (2013)
  104. Deletion in the C-terminal domain of ClpX delayed entry of Salmonella enterica into a viable but non-culturable state. Kusumoto A, Miyashita M, Kawamoto K. Res Microbiol 164 335-341 (2013)
  105. Hinge-Linker Elements in the AAA+ Protein Unfoldase ClpX Mediate Intersubunit Communication, Assembly, and Mechanical Activity. Bell TA, Baker TA, Sauer RT. Biochemistry 57 6787-6796 (2018)
  106. Making sense of Vps4. Hurley JH, Yang B. J Mol Biol 426 503-506 (2014)
  107. Mitochondrial ClpX activates an essential biosynthetic enzyme through partial unfolding. Kardon JR, Moroco JA, Engen JR, Baker TA. Elife 9 (2020)
  108. Structural insights into ATP hydrolysis by the MoxR ATPase RavA and the LdcI-RavA cage-like complex. Jessop M, Arragain B, Miras R, Fraudeau A, Huard K, Bacia-Verloop M, Catty P, Felix J, Malet H, Gutsche I. Commun Biol 3 46 (2020)
  109. A Structurally Dynamic Region of the HslU Intermediate Domain Controls Protein Degradation and ATP Hydrolysis. Baytshtok V, Fei X, Grant RA, Baker TA, Sauer RT. Structure 24 1766-1777 (2016)
  110. Explorations of linked editosome domains leading to the discovery of motifs defining conserved pockets in editosome OB-folds. Park YJ, Hol WG. J Struct Biol 180 362-373 (2012)
  111. Mutagenic dissection of the sequence determinants of protein folding, recognition, and machine function. Sauer RT. Protein Sci 22 1675-1687 (2013)
  112. Optimization of ClpXP activity and protein synthesis in an E. coli extract-based cell-free expression system. Shi X, Wu T, M Cole C, K Devaraj N, Joseph S. Sci Rep 8 3488 (2018)
  113. Interactions between a subset of substrate side chains and AAA+ motor pore loops determine grip during protein unfolding. Bell TA, Baker TA, Sauer RT. Elife 8 (2019)
  114. Regulated proteolysis as a force to control the cell cycle. Camberg JL, Wickner S. Structure 20 1128-1130 (2012)
  115. The AAA+ protease ClpXP can easily degrade a 31 and a 52-knotted protein. Sivertsson EM, Jackson SE, Itzhaki LS. Sci Rep 9 2421 (2019)
  116. Force generation: ATP-powered proteasomes pull the rope. Dufrêne YF, Müller DJ. Curr Biol 21 R427-30 (2011)
  117. Role of mitochondrial processing peptidase and AAA proteases in processing of the yeast acetohydroxyacid synthase precursor. Dasari S, Kölling R. FEBS Open Bio 6 765-773 (2016)
  118. Selectivity among Anti-σ Factors by Mycobacterium tuberculosis ClpX Influences Intracellular Levels of Extracytoplasmic Function σ Factors. Joshi AC, Kaur P, Nair RK, Lele DS, Nandicoori VK, Gopal B. J Bacteriol 201 (2019)
  119. Sending protein aggregates into a downward spiral. Glynn SE, Chien P. Nat Struct Mol Biol 23 769-770 (2016)
  120. Insights into the structure-function relationship of the NorQ/NorD chaperones from Paracoccus denitrificans reveal shared principles of interacting MoxR AAA+/VWA domain proteins. Kahle M, Appelgren S, Elofsson A, Carroni M, Ädelroth P. BMC Biol 21 47 (2023)
  121. Intrinsic Dynamics of the ClpXP Proteolytic Machine Using Elastic Network Models. González-Paz L, Lossada C, Hurtado-León ML, Fernández-Materán FV, Paz JL, Parvizi S, Cardenas Castillo RE, Romero F, Alvarado YJ. ACS Omega 8 7302-7318 (2023)
  122. Ordering an engagement ring. Hoyt MA, Coffino P. Mol Cell 38 319-320 (2010)
  123. Proteomic analysis of the regulatory networks of ClpX in a model cyanobacterium Synechocystis sp. PCC 6803. Zhang Y, Wang Y, Wei W, Wang M, Jia S, Yang M, Ge F. Front Plant Sci 13 994056 (2022)
  124. Single molecule microscopy reveals diverse actions of substrate sequences that impair ClpX AAA+ ATPase function. Wang X, Simon SM, Coffino P. J Biol Chem 298 102457 (2022)
  125. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Proteostasis Factors. Creekmore BC, Chang YW, Lee EB. J Neuropathol Exp Neurol 80 494-513 (2021)