3ipd Citations

Helical extension of the neuronal SNARE complex into the membrane.

OpenAccess logo Nature 460 525-8 (2009)
Cited: 272 times
EuropePMC logo PMID: 19571812

Abstract

Neurotransmission relies on synaptic vesicles fusing with the membrane of nerve cells to release their neurotransmitter content into the synaptic cleft, a process requiring the assembly of several members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) family. SNAREs represent an evolutionarily conserved protein family that mediates membrane fusion in the secretory and endocytic pathways of eukaryotic cells. On membrane contact, these proteins assemble in trans between the membranes as a bundle of four alpha-helices, with the energy released during assembly being thought to drive fusion. However, it is unclear how the energy is transferred to the membranes and whether assembly is conformationally linked to fusion. Here, we report the X-ray structure of the neuronal SNARE complex, consisting of rat syntaxin 1A, SNAP-25 and synaptobrevin 2, with the carboxy-terminal linkers and transmembrane regions at 3.4 A resolution. The structure shows that assembly proceeds beyond the already known core SNARE complex, resulting in a continuous helical bundle that is further stabilized by side-chain interactions in the linker region. Our results suggest that the final phase of SNARE assembly is directly coupled to membrane merger.

Reviews - 3ipd mentioned but not cited (3)

  1. The Multifaceted Role of SNARE Proteins in Membrane Fusion. Han J, Pluhackova K, Böckmann RA. Front Physiol 8 5 (2017)
  2. Cysteine string protein (CSP) and its role in preventing neurodegeneration. Burgoyne RD, Morgan A. Semin Cell Dev Biol 40 153-159 (2015)
  3. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Mol Biomed 3 29 (2022)

Articles - 3ipd mentioned but not cited (11)



Reviews citing this publication (65)

  1. The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices--guilty as charged? Rizo J, Südhof TC. Annu Rev Cell Dev Biol 28 279-308 (2012)
  2. Botulinum neurotoxin: a marvel of protein design. Montal M. Annu Rev Biochem 79 591-617 (2010)
  3. The Synaptic Vesicle Release Machinery. Rizo J, Xu J. Annu Rev Biophys 44 339-367 (2015)
  4. Membrane Repair: Mechanisms and Pathophysiology. Cooper ST, McNeil PL. Physiol Rev 95 1205-1240 (2015)
  5. Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Alabi AA, Tsien RW. Annu Rev Physiol 75 393-422 (2013)
  6. Protein-driven membrane stresses in fusion and fission. Kozlov MM, McMahon HT, Chernomordik LV. Trends Biochem Sci 35 699-706 (2010)
  7. Synaptic vesicle recycling: steps and principles. Rizzoli SO. EMBO J 33 788-822 (2014)
  8. Chaperoning SNARE assembly and disassembly. Baker RW, Hughson FM. Nat Rev Mol Cell Biol 17 465-479 (2016)
  9. Distinct initial SNARE configurations underlying the diversity of exocytosis. Kasai H, Takahashi N, Tokumaru H. Physiol Rev 92 1915-1964 (2012)
  10. Mechanism of neurotransmitter release coming into focus. Rizo J. Protein Sci 27 1364-1391 (2018)
  11. The hallmarks of cell-cell fusion. Hernández JM, Podbilewicz B. Development 144 4481-4495 (2017)
  12. Molecular Mechanisms of Fast Neurotransmitter Release. Brunger AT, Choi UB, Lai Y, Leitz J, Zhou Q. Annu Rev Biophys 47 469-497 (2018)
  13. The molecular machinery of neurotransmitter release (Nobel lecture). Südhof TC. Angew Chem Int Ed Engl 53 12696-12717 (2014)
  14. Transmembrane helix dimerization: beyond the search for sequence motifs. Li E, Wimley WC, Hristova K. Biochim Biophys Acta 1818 183-193 (2012)
  15. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Pharmacol Rev 66 513-569 (2014)
  16. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Pantano S, Montecucco C. Cell Mol Life Sci 71 793-811 (2014)
  17. The SNARE complex in neuronal and sensory cells. Ramakrishnan NA, Drescher MJ, Drescher DG. Mol Cell Neurosci 50 58-69 (2012)
  18. Organization of SNAREs within the Golgi stack. Malsam J, Söllner TH. Cold Spring Harb Perspect Biol 3 a005249 (2011)
  19. Invited review: Mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily. Daumke O, Praefcke GJ. Biopolymers 105 580-593 (2016)
  20. Hypothesis - buttressed rings assemble, clamp, and release SNAREpins for synaptic transmission. Rothman JE, Krishnakumar SS, Grushin K, Pincet F. FEBS Lett 591 3459-3480 (2017)
  21. Transport logistics in pollen tubes. Chebli Y, Kroeger J, Geitmann A. Mol Plant 6 1037-1052 (2013)
  22. Fusion of the endoplasmic reticulum by membrane-bound GTPases. Hu J, Rapoport TA. Semin Cell Dev Biol 60 105-111 (2016)
  23. Rules and tools to predict the splicing effects of exonic and intronic mutations. Ohno K, Takeda JI, Masuda A. Wiley Interdiscip Rev RNA 9 (2018)
  24. How could SNARE proteins open a fusion pore? Fang Q, Lindau M. Physiology (Bethesda) 29 278-285 (2014)
  25. Endosomal and Phagosomal SNAREs. Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Physiol Rev 98 1465-1492 (2018)
  26. Lipid dynamics in exocytosis. Chasserot-Golaz S, Coorssen JR, Meunier FA, Vitale N. Cell Mol Neurobiol 30 1335-1342 (2010)
  27. Review: Progresses in understanding N-ethylmaleimide sensitive factor (NSF) mediated disassembly of SNARE complexes. Ryu JK, Jahn R, Yoon TY. Biopolymers 105 518-531 (2016)
  28. Tuning microbial hosts for membrane protein production. Freigassner M, Pichler H, Glieder A. Microb Cell Fact 8 69 (2009)
  29. Relating structure to evolution in class II viral membrane fusion proteins. Modis Y. Curr Opin Virol 5 34-41 (2014)
  30. Three steps forward, two steps back: mechanistic insights into the assembly and disassembly of the SNARE complex. Bombardier JP, Munson M. Curr Opin Chem Biol 29 66-71 (2015)
  31. Chaperoning SNARE Folding and Assembly. Zhang Y, Hughson FM. Annu Rev Biochem 90 581-603 (2021)
  32. The fusion pore, 60 years after the first cartoon. Sharma S, Lindau M. FEBS Lett 592 3542-3562 (2018)
  33. Mechanics of membrane fusion/pore formation. Fuhrmans M, Marelli G, Smirnova YG, Müller M. Chem Phys Lipids 185 109-128 (2015)
  34. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Zhang Y. Protein Sci 26 1252-1265 (2017)
  35. Subcellular phosphoproteomics. Trost M, Bridon G, Desjardins M, Thibault P. Mass Spectrom Rev 29 962-990 (2010)
  36. Efficient Exploration of Membrane-Associated Phenomena at Atomic Resolution. Vermaas JV, Baylon JL, Arcario MJ, Muller MP, Wu Z, Pogorelov TV, Tajkhorshid E. J Membr Biol 248 563-582 (2015)
  37. SNARE zippering. Lou X, Shin YK. Biosci Rep 36 e00327 (2016)
  38. Organization and dynamics of SNARE proteins in the presynaptic membrane. Milovanovic D, Jahn R. Front Physiol 6 89 (2015)
  39. SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling. Sauvola CW, Littleton JT. Front Mol Neurosci 14 733138 (2021)
  40. The Association of SNAP25 Gene Polymorphisms in Attention Deficit/Hyperactivity Disorder: a Systematic Review and Meta-Analysis. Liu YS, Dai X, Wu W, Yuan FF, Gu X, Chen JG, Zhu LQ, Wu J. Mol Neurobiol 54 2189-2200 (2017)
  41. Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains. Wu Z, Thiyagarajan S, O'Shaughnessy B, Karatekin E. Front Mol Neurosci 10 315 (2017)
  42. Planar Supported Membranes with Mobile SNARE Proteins and Quantitative Fluorescence Microscopy Assays to Study Synaptic Vesicle Fusion. Kiessling V, Liang B, Kreutzberger AJ, Tamm LK. Front Mol Neurosci 10 72 (2017)
  43. Recent insights into the structure and function of Mitofusins in mitochondrial fusion. Cohen MM, Tareste D. F1000Res 7 F1000 Faculty Rev-1983 (2018)
  44. SNARE protein analog-mediated membrane fusion. Kumar P, Guha S, Diederichsen U. J Pept Sci 21 621-629 (2015)
  45. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Meriney SD, Umbach JA, Gundersen CB. Prog Neurobiol 121 55-90 (2014)
  46. Reconciling the regulatory role of Munc18 proteins in SNARE-complex assembly. Rehman A, Archbold JK, Hu SH, Norwood SJ, Collins BM, Martin JL. IUCrJ 1 505-513 (2014)
  47. SNAREs: could they be the answer to an energy landscape riddle in exocytosis? Liu W, Parpura V. ScientificWorldJournal 10 1258-1268 (2010)
  48. Dynamic Relationship of the SNARE Complex with a Membrane. Holz RW, Zimmerberg J. Biophys J 117 627-630 (2019)
  49. Nanomachinery Organizing Release at Neuronal and Ribbon Synapses. Chakrabarti R, Wichmann C. Int J Mol Sci 20 E2147 (2019)
  50. Toward a unified picture of the exocytotic fusion pore. Karatekin E. FEBS Lett 592 3563-3585 (2018)
  51. Neuronal SNARE complex assembly guided by Munc18-1 and Munc13-1. Wang S, Ma C. FEBS Open Bio 12 1939-1957 (2022)
  52. Solution NMR of SNAREs, complexin and α-synuclein in association with membrane-mimetics. Liang B, Tamm LK. Prog Nucl Magn Reson Spectrosc 105 41-53 (2018)
  53. Ångstrom-size exocytotic fusion pore: Implications for pituitary hormone secretion. Kreft M, Jorgačevski J, Stenovec M, Zorec R. Mol Cell Endocrinol 463 65-71 (2018)
  54. How proteins open fusion pores: insights from molecular simulations. Risselada HJ, Grubmüller H. Eur Biophys J 50 279-293 (2021)
  55. v-SNARE function in chromaffin cells. Dhara M, Mohrmann R, Bruns D. Pflugers Arch 470 169-180 (2018)
  56. Energetics, kinetics, and pathways of SNARE assembly in membrane fusion. Zhang Y, Ma L, Bao H. Crit Rev Biochem Mol Biol 57 443-460 (2022)
  57. Exocytosis through the Lens. Graczyk A, Rickman C. Front Endocrinol (Lausanne) 4 147 (2013)
  58. Knockin' on Egg's Door: Maternal Control of Egg Activation That Influences Cortical Granule Exocytosis in Animal Species. Rojas J, Hinostroza F, Vergara S, Pinto-Borguero I, Aguilera F, Fuentes R, Carvacho I. Front Cell Dev Biol 9 704867 (2021)
  59. Reconstruction of destruction - in vitro reconstitution methods in autophagy research. Moparthi SB, Moparthi SB, Wollert T. J Cell Sci 132 jcs223792 (2018)
  60. Structural Insights into Membrane Fusion Mediated by Convergent Small Fusogens. Yang Y, Margam NN. Cells 10 160 (2021)
  61. The beginning and the end of SNARE-induced membrane fusion. Mion D, Bunel L, Heo P, Pincet F. FEBS Open Bio 12 1958-1979 (2022)
  62. Membrane fusion studied by colloidal probes. Witt H, Savić F, Verbeek S, Dietz J, Tarantola G, Oelkers M, Geil B, Janshoff A. Eur Biophys J 50 223-237 (2021)
  63. EPR Lineshape Analysis to Investigate the SNARE Folding Intermediates. Khounlo R, Hawk BJD, Shin YK. Methods Mol Biol 1860 33-51 (2019)
  64. Mechanisms of SNARE proteins in membrane fusion. Jahn R, Cafiso DC, Tamm LK. Nat Rev Mol Cell Biol (2023)
  65. The function of VAMP2 in mediating membrane fusion: An overview. Yan C, Jiang J, Yang Y, Geng X, Dong W. Front Mol Neurosci 15 948160 (2022)

Articles citing this publication (193)