3iyj Citations

Subunit interactions in bovine papillomavirus.

Proc Natl Acad Sci U S A 107 6298-303 (2010)
Cited: 104 times
EuropePMC logo PMID: 20308582

Abstract

Papillomaviruses, members of a group of dsDNA viruses associated with epithelial growths and tumors, have compact capsids assembled from 72 pentamers of the protein L1. We have determined the structure of bovine papillomavirus by electron cryomicrosopy (cryoEM), at approximately 3.6 A resolution. The density map, obtained from single-particle analysis of approximately 4,000 particle images, shows the trace of the L1 polypeptide chain and reveals how the N- and C-terminal "arms" of a subunit (extensions from its beta-jelly-roll core) associate with a neighboring pentamer. Critical contacts come from the C-terminal arm, which loops out from the core of the subunit, forms contacts (including a disulfide) with two subunits in a neighboring pentamer, and reinserts into the pentamer from which it emanates. This trace corrects one feature of an earlier model. We discuss implications of the structure for virion assembly and for pathways of infectious viral entry. We suggest that it should be possible to obtain image reconstructions of comparable resolution from cryoEM images of asymmetric particles. From the work on papillomavirus described here, we estimate that such a reconstruction will require about 1.5 million images to achieve the same number of averaged asymmetric units; structural variability will increase this number substantially.

Reviews - 3iyj mentioned but not cited (2)

  1. Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. Plummer EM, Manchester M. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3 174-196 (2011)
  2. Reconstructing virus structures from nanometer to near-atomic resolutions with cryo-electron microscopy and tomography. Chang J, Liu X, Rochat RH, Baker ML, Chiu W. Adv. Exp. Med. Biol. 726 49-90 (2012)

Articles - 3iyj mentioned but not cited (8)

  1. Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity. Zhao Q, Modis Y, High K, Towne V, Meng Y, Wang Y, Alexandroff J, Brown M, Carragher B, Potter CS, Abraham D, Wohlpart D, Kosinski M, Washabaugh MW, Sitrin RD. Virol. J. 9 52 (2012)
  2. Maturation of the human papillomavirus 16 capsid. Cardone G, Moyer AL, Cheng N, Thompson CD, Dvoretzky I, Lowy DR, Schiller JT, Steven AC, Buck CB, Trus BL. MBio 5 e01104-14 (2014)
  3. A cryo-electron microscopy study identifies the complete H16.V5 epitope and reveals global conformational changes initiated by binding of the neutralizing antibody fragment. Lee H, Brendle SA, Bywaters SM, Guan J, Ashley RE, Yoder JD, Makhov AM, Conway JF, Christensen ND, Hafenstein S. J. Virol. 89 1428-1438 (2015)
  4. Identification of Broad-Genotype HPV L2 Neutralization Site for Pan-HPV Vaccine Development by a Cross-Neutralizing Antibody. Wang D, Li Z, Xiao J, Wang J, Zhang L, Liu Y, Fan F, Xin L, Wei M, Kong Z, Yu H, Gu Y, Zhang J, Li S, Xia N. PLoS ONE 10 e0123944 (2015)
  5. The C-Terminal Arm of the Human Papillomavirus Major Capsid Protein Is Immunogenic and Involved in Virus-Host Interaction. Li Z, Yan X, Yu H, Wang D, Song S, Li Y, He M, Hong Q, Zheng Q, Zhao Q, Gu Y, Zhang J, Janssen ME, Cardone G, Olson NH, Baker TS, Li S, Xia N. Structure 24 874-885 (2016)
  6. High Genotypic Diversity, Putative New Types and Intra-Genotype Variants of Bovine Papillomavirus in Northeast Brazil. Figueirêdo RP, Santos GF, Oliveira LB, Santos LABO, Barreto DM, Cândido AL, Campos AC, Azevedo EO, Batista MVA. Pathogens 9 E748 (2020)
  7. Identification of Genetic Variants of Human Papillomavirus in a Group of Mexican HIV/AIDS Patients and Their Possible Association with Cervical Cancer. Ortiz-Gutiérrez F, Sánchez-Minutti L, Martínez-Herrera JF, Torres-Escobar ID, Pezzat-Said EB, Márquez-Domínguez L, Grandes-Blanco AI. Pol J Microbiol 70 501-509 (2021)
  8. Viral Phrenology. Wilson DP, Roof DA. Viruses 13 2191 (2021)


Reviews citing this publication (24)

  1. Human papillomavirus molecular biology and disease association. Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I. Rev. Med. Virol. 25 Suppl 1 2-23 (2015)
  2. Single-Particle Cryo-EM at Crystallographic Resolution. Cheng Y. Cell 161 450-457 (2015)
  3. Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Zhao Q, Li S, Yu H, Xia N, Modis Y. Trends Biotechnol. 31 654-663 (2013)
  4. Structural insights into the coupling of virion assembly and rotavirus replication. Trask SD, McDonald SM, Patton JT. Nat. Rev. Microbiol. 10 165-177 (2012)
  5. Electron tomography of cells. Gan L, Jensen GJ. Q. Rev. Biophys. 45 27-56 (2012)
  6. The papillomavirus major capsid protein L1. Buck CB, Day PM, Trus BL. Virology 445 169-174 (2013)
  7. Atomic resolution cryo electron microscopy of macromolecular complexes. Zhou ZH. Adv Protein Chem Struct Biol 82 1-35 (2011)
  8. Principles of virus structural organization. Prasad BV, Schmid MF. Adv. Exp. Med. Biol. 726 17-47 (2012)
  9. Precise beam-tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution cryo-EM. Glaeser RM, Typke D, Tiemeijer PC, Pulokas J, Cheng A. J. Struct. Biol. 174 1-10 (2011)
  10. Limiting factors in atomic resolution cryo electron microscopy: no simple tricks. Zhang X, Zhou ZH. J. Struct. Biol. 175 253-263 (2011)
  11. Reaching the information limit in cryo-EM of biological macromolecules: experimental aspects. Glaeser RM, Hall RJ. Biophys. J. 100 2331-2337 (2011)
  12. Near-atomic-resolution cryo-EM for molecular virology. Hryc CF, Chen DH, Chiu W. Curr Opin Virol 1 110-117 (2011)
  13. Cryogenic electron microscopy and single-particle analysis. Elmlund D, Elmlund H. Annu. Rev. Biochem. 84 499-517 (2015)
  14. Lessons learned from successful human vaccines: Delineating key epitopes by dissecting the capsid proteins. Zhang X, Xin L, Li S, Fang M, Zhang J, Xia N, Zhao Q. Hum Vaccin Immunother 11 1277-1292 (2015)
  15. Structure of thermally activated TRP channels. Cohen MR, Moiseenkova-Bell VY. Curr Top Membr 74 181-211 (2014)
  16. Cruising the cellular highways: How human papillomavirus travels from the surface to the nucleus. DiGiuseppe S, Bienkowska-Haba M, Guion LG, Sapp M. Virus Res. 231 1-9 (2017)
  17. Viral Infection at High Magnification: 3D Electron Microscopy Methods to Analyze the Architecture of Infected Cells. Romero-Brey I, Bartenschlager R. Viruses 7 6316-6345 (2015)
  18. Functional and structural studies of TRP channels heterologously expressed in budding yeast. Moiseenkova-Bell V, Wensel TG. Adv. Exp. Med. Biol. 704 25-40 (2011)
  19. Papillomavirus Infectious Pathways: A Comparison of Systems. Biryukov J, Meyers C. Viruses 7 4303-4325 (2015)
  20. Rationally Designed Protein Building Blocks for Programmable Hierarchical Architectures. Zhang W, Mo S, Liu M, Liu L, Yu L, Wang C. Front Chem 8 587975 (2020)
  21. Natural and artificial protein cages: design, structure and therapeutic applications. Heddle JG, Chakraborti S, Iwasaki K. Curr. Opin. Struct. Biol. 43 148-155 (2017)
  22. Papillomavirus assembly: An overview and perspectives. Cerqueira C, Schiller JT. Virus Res. 231 103-107 (2017)
  23. AChiralPentagonalPolyhedralFramework forCharacterizingVirusCapsidStructures. Raguram A, Sasisekharan V, Sasisekharan R. Trends Microbiol. 25 438-446 (2017)
  24. Recent Advances in PROTAC-Based Antiviral Strategies. Ahmad H, Zia B, Husain H, Husain A. Vaccines (Basel) 11 270 (2023)

Articles citing this publication (70)

  1. RELION: implementation of a Bayesian approach to cryo-EM structure determination. Scheres SH. J. Struct. Biol. 180 519-530 (2012)
  2. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y. Nat. Methods 10 584-590 (2013)
  3. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. Grant T, Grigorieff N. Elife 4 e06980 (2015)
  4. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S. Science 348 1147-1151 (2015)
  5. 4.4 Å cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. Zhang R, Hryc CF, Cong Y, Liu X, Jakana J, Gorchakov R, Baker ML, Weaver SC, Chiu W. EMBO J. 30 3854-3863 (2011)
  6. Quantitative characterization of electron detectors for transmission electron microscopy. Ruskin RS, Yu Z, Grigorieff N. J. Struct. Biol. 184 385-393 (2013)
  7. Fabs enable single particle cryoEM studies of small proteins. Wu S, Avila-Sakar A, Kim J, Booth DS, Greenberg CH, Rossi A, Liao M, Li X, Alian A, Griner SL, Juge N, Yu Y, Mergel CM, Chaparro-Riggers J, Strop P, Tampé R, Edwards RH, Stroud RM, Craik CS, Cheng Y. Structure 20 582-592 (2012)
  8. Multiple heparan sulfate binding site engagements are required for the infectious entry of human papillomavirus type 16. Richards KF, Bienkowska-Haba M, Dasgupta J, Chen XS, Sapp M. J. Virol. 87 11426-11437 (2013)
  9. Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy. Milazzo AC, Cheng A, Moeller A, Lyumkis D, Jacovetty E, Polukas J, Ellisman MH, Xuong NH, Carragher B, Potter CS. J. Struct. Biol. 176 404-408 (2011)
  10. Modeling protein structure at near atomic resolutions with Gorgon. Baker ML, Abeysinghe SS, Schuh S, Coleman RA, Abrams A, Marsh MP, Hryc CF, Ruths T, Chiu W, Ju T. J. Struct. Biol. 174 360-373 (2011)
  11. In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus. Zhang X, Ding K, Yu X, Chang W, Sun J, Zhou ZH. Nature 527 531-534 (2015)
  12. Kallikrein-8 Proteolytically Processes Human Papillomaviruses in the Extracellular Space To Facilitate Entry into Host Cells. Cerqueira C, Samperio Ventayol P, Vogeley C, Schelhaas M. J. Virol. 89 7038-7052 (2015)
  13. Determining macromolecular assembly structures by molecular docking and fitting into an electron density map. Lasker K, Sali A, Wolfson HJ. Proteins 78 3205-3211 (2010)
  14. Influence of electron dose rate on electron counting images recorded with the K2 camera. Li X, Zheng SQ, Egami K, Agard DA, Cheng Y. J. Struct. Biol. 184 251-260 (2013)
  15. Cryoelectron Microscopy Maps of Human Papillomavirus 16 Reveal L2 Densities and Heparin Binding Site. Guan J, Bywaters SM, Brendle SA, Ashley RE, Makhov AM, Conway JF, Christensen ND, Hafenstein S. Structure 25 253-263 (2017)
  16. Differentiation-dependent interpentameric disulfide bond stabilizes native human papillomavirus type 16. Conway MJ, Cruz L, Alam S, Christensen ND, Meyers C. PLoS ONE 6 e22427 (2011)
  17. In planta production of a candidate vaccine against bovine papillomavirus type 1. Love AJ, Chapman SN, Matic S, Noris E, Lomonossoff GP, Taliansky M. Planta 236 1305-1313 (2012)
  18. Toolbox for non-intrusive structural and functional analysis of recombinant VLP based vaccines: a case study with hepatitis B vaccine. Mulder AM, Carragher B, Towne V, Meng Y, Wang Y, Dieter L, Potter CS, Washabaugh MW, Sitrin RD, Zhao Q. PLoS ONE 7 e33235 (2012)
  19. GPU-enabled FREALIGN: accelerating single particle 3D reconstruction and refinement in Fourier space on graphics processors. Li X, Grigorieff N, Cheng Y. J. Struct. Biol. 172 407-412 (2010)
  20. The nuclear retention signal of HPV16 L2 protein is essential for incoming viral genome to transverse the trans-Golgi network. DiGiuseppe S, Bienkowska-Haba M, Hilbig L, Sapp M. Virology 458-459 93-105 (2014)
  21. Characterization of virus-like particles in GARDASIL® by cryo transmission electron microscopy. Zhao Q, Potter CS, Carragher B, Lander G, Sworen J, Towne V, Abraham D, Duncan P, Washabaugh MW, Sitrin RD. Hum Vaccin Immunother 10 734-739 (2014)
  22. Structural comparison of four different antibodies interacting with human papillomavirus 16 and mechanisms of neutralization. Guan J, Bywaters SM, Brendle SA, Lee H, Ashley RE, Makhov AM, Conway JF, Christensen ND, Hafenstein S. Virology 483 253-263 (2015)
  23. Visualizing viral assemblies in a nanoscale biosphere. Gilmore BL, Showalter SP, Dukes MJ, Tanner JR, Demmert AC, McDonald SM, Kelly DF. Lab Chip 13 216-219 (2013)
  24. De novo modeling of the F(420)-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy. Mills DJ, Vitt S, Strauss M, Shima S, Vonck J. Elife 2 e00218 (2013)
  25. Efficient initial volume determination from electron microscopy images of single particles. Vargas J, Álvarez-Cabrera AL, Marabini R, Carazo JM, Sorzano CO. Bioinformatics 30 2891-2898 (2014)
  26. Structure and assembly of scalable porous protein cages. Sasaki E, Böhringer D, van de Waterbeemd M, Leibundgut M, Zschoche R, Heck AJ, Ban N, Hilvert D. Nat Commun 8 14663 (2017)
  27. Maximizing the potential of electron cryomicroscopy data collected using direct detectors. Veesler D, Campbell MG, Cheng A, Fu CY, Murez Z, Johnson JE, Potter CS, Carragher B. J. Struct. Biol. 184 193-202 (2013)
  28. The structure of avian polyomavirus reveals variably sized capsids, non-conserved inter-capsomere interactions, and a possible location of the minor capsid protein VP4. Shen PS, Enderlein D, Nelson CD, Carter WS, Kawano M, Xing L, Swenson RD, Olson NH, Baker TS, Cheng RH, Atwood WJ, Johne R, Belnap DM. Virology 411 142-152 (2011)
  29. A new topology of the HK97-like fold revealed in Bordetella bacteriophage by cryoEM at 3.5 A resolution. Zhang X, Guo H, Jin L, Czornyj E, Hodes A, Hui WH, Nieh AW, Miller JF, Zhou ZH. Elife 2 e01299 (2013)
  30. Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter. Sindelar CV, Grigorieff N. J. Struct. Biol. 180 26-38 (2012)
  31. Real time monitoring of antigenicity development of HBsAg virus-like particles (VLPs) during heat- and redox-treatment. Zhao Q, Wang Y, Abraham D, Towne V, Kennedy R, Sitrin RD. Biochem. Biophys. Res. Commun. 408 447-453 (2011)
  32. FASTDEF: fast defocus and astigmatism estimation for high-throughput transmission electron microscopy. Vargas J, Otón J, Marabini R, Jonic S, de la Rosa-Trevín JM, Carazo JM, Sorzano CO. J. Struct. Biol. 181 136-148 (2013)
  33. Structures and stabilization of kinetoplastid-specific split rRNAs revealed by comparing leishmanial and human ribosomes. Zhang X, Lai M, Chang W, Yu I, Ding K, Mrazek J, Ng HL, Yang OO, Maslov DA, Zhou ZH. Nat Commun 7 13223 (2016)
  34. Susceptibility of high-risk human papillomavirus type 16 to clinical disinfectants. Meyers J, Ryndock E, Conway MJ, Meyers C, Robison R. J. Antimicrob. Chemother. 69 1546-1550 (2014)
  35. Human Papillomavirus Major Capsid Protein L1 Remains Associated with the Incoming Viral Genome throughout the Entry Process. DiGiuseppe S, Bienkowska-Haba M, Guion LGM, Keiffer TR, Sapp M. J. Virol. 91 (2017)
  36. Virology. Looking inside adenovirus. Harrison SC. Science 329 1026-1027 (2010)
  37. A putative ATPase mediates RNA transcription and capping in a dsRNA virus. Yu X, Jiang J, Sun J, Zhou ZH. Elife 4 e07901 (2015)
  38. Near-atomic resolution reconstructions using a mid-range electron microscope operated at 200 kV. Campbell MG, Kearney BM, Cheng A, Potter CS, Johnson JE, Carragher B, Veesler D. J. Struct. Biol. 188 183-187 (2014)
  39. Papillomavirus capsid proteins mutually impact structure. Chen HS, Conway MJ, Christensen ND, Alam S, Meyers C. Virology 412 378-383 (2011)
  40. The U4 Antibody Epitope on Human Papillomavirus 16 Identified by Cryo-electron Microscopy. Guan J, Bywaters SM, Brendle SA, Lee H, Ashley RE, Christensen ND, Hafenstein S. J. Virol. 89 12108-12117 (2015)
  41. Particle quality assessment and sorting for automatic and semiautomatic particle-picking techniques. Vargas J, Abrishami V, Marabini R, de la Rosa-Trevín JM, Zaldivar A, Carazo JM, Sorzano COS. J. Struct. Biol. 183 342-353 (2013)
  42. Roles for human papillomavirus type 16 l1 cysteine residues 161, 229, and 379 in genome encapsidation and capsid stability. Ryndock EJ, Conway MJ, Alam S, Gul S, Murad S, Christensen ND, Meyers C. PLoS ONE 9 e99488 (2014)
  43. Structural lability of Barley stripe mosaic virus virions. Makarov VV, Skurat EV, Semenyuk PI, Abashkin DA, Kalinina NO, Arutyunyan AM, Solovyev AG, Dobrov EN. PLoS ONE 8 e60942 (2013)
  44. A Cell-Free Assembly System for Generating Infectious Human Papillomavirus 16 Capsids Implicates a Size Discrimination Mechanism for Preferential Viral Genome Packaging. Cerqueira C, Pang YY, Day PM, Thompson CD, Buck CB, Lowy DR, Schiller JT. J. Virol. 90 1096-1107 (2016)
  45. Three-dimensional asymmetric reconstruction of tailed bacteriophage. Tang J, Sinkovits RS, Baker TS. Meth. Enzymol. 482 185-210 (2010)
  46. A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images. Reboul CF, Bonnet F, Elmlund D, Elmlund H. Structure 24 988-996 (2016)
  47. A pipeline for comprehensive and automated processing of electron diffraction data in IPLT. Schenk AD, Philippsen A, Engel A, Walz T. J. Struct. Biol. 182 173-185 (2013)
  48. Antibody Competition Reveals Surface Location of HPV L2 Minor Capsid Protein Residues 17-36. Bywaters SM, Brendle SA, Tossi KP, Biryukov J, Meyers C, Christensen ND. Viruses 9 (2017)
  49. Efficient Production of Papillomavirus Gene Delivery Vectors in Defined In Vitro Reactions. Cerqueira C, Thompson CD, Day PM, Pang YS, Lowy DR, Schiller JT. Mol Ther Methods Clin Dev 5 165-179 (2017)
  50. Evidences of Changes in Surface Electrostatic Charge Distribution during Stabilization of HPV16 Virus-Like Particles. Vega JF, Vicente-Alique E, Núñez-Ramírez R, Wang Y, Martínez-Salazar J. PLoS ONE 11 e0149009 (2016)
  51. Capturing RNA-dependent pathways for cryo-EM analysis. Tanner JR, Degen K, Gilmore BL, Kelly DF. Comput Struct Biotechnol J 1 e201204003 (2012)
  52. Extracellular Conformational Changes in the Capsid of Human Papillomaviruses Contribute to Asynchronous Uptake into Host Cells. Becker M, Greune L, Schmidt MA, Schelhaas M. J. Virol. 92 (2018)
  53. In situ TEM of biological assemblies in liquid. Dukes MJ, Gilmore BL, Tanner JR, McDonald SM, Kelly DF. J Vis Exp 50936 (2013)
  54. Naturally Occurring Single Amino Acid Substitution in the L1 Major Capsid Protein of Human Papillomavirus Type 16: Alteration of Susceptibility to Antibody-Mediated Neutralization. Ning T, Wolfe A, Nie J, Huang W, Chen XS, Wang Y. J. Infect. Dis. 216 867-876 (2017)
  55. A comparative study of viral capsids and bacterial compartments reveals an enriched understanding of shell dynamics. Song G. Proteins 86 152-163 (2018)
  56. Bacterially expressed human papillomavirus type 6 and 11 bivalent vaccine: Characterization, antigenicity and immunogenicity. Pan H, Li Z, Wang J, Song S, Wang D, Wei M, Gu Y, Zhang J, Li S, Xia N. Vaccine 35 3222-3231 (2017)
  57. Crystal Structures of Two Immune Complexes Identify Determinants for Viral Infectivity and Type-Specific Neutralization of Human Papillomavirus. Li Z, Wang D, Gu Y, Song S, He M, Shi J, Liu X, Wei S, Li J, Yu H, Zheng Q, Yan X, Baker TS, Zhang J, McLellan JS, Li S, Xia N. MBio 8 (2017)
  58. Primed for Discovery: Atomic-Resolution Cryo-EM Structure of a Reovirus Entry Intermediate. Trask SD, Guglielmi KM, Patton JT. Viruses 2 1340-1346 (2010)
  59. Protruding Features of Viral Capsids Are Clustered on Icosahedral Great Circles. Wilson DP. PLoS ONE 11 e0152319 (2016)
  60. Structural basis for the shared neutralization mechanism of three classes of human papillomavirus type 58 antibodies with disparate modes of binding. He M, Chi X, Zha Z, Li Y, Chen J, Huang Y, Huang S, Yu M, Wang Z, Song S, Liu X, Wei S, Li Z, Li T, Wang Y, Yu H, Zhao Q, Zhang J, Zheng Q, Gu Y, Li S, Xia N. J Virol JVI.01587-20 (2021)
  61. Assembly mechanism of the pleomorphic immature poxvirus scaffold. Hyun J, Matsunami H, Kim TG, Wolf M. Nat Commun 13 1704 (2022)
  62. Cryo EM Analysis Reveals Inherent Flexibility of Authentic Murine Papillomavirus Capsids. Hartmann SR, Goetschius DJ, Hu J, Graff JJ, Bator CM, Christensen ND, Hafenstein SL. Viruses 13 2023 (2021)
  63. Crystal Structures of Plk1 Polo-Box Domain Bound to the Human Papillomavirus Minor Capsid Protein L2-Derived Peptide. Jung S, Lee HS, Shin HC, Choi JS, Kim SJ, Ku B. J Microbiol 61 755-764 (2023)
  64. High resolution cryo EM analysis of HPV16 identifies minor structural protein L2 and describes capsid flexibility. Goetschius DJ, Hartmann SR, Subramanian S, Bator CM, Christensen ND, Hafenstein SL. Sci Rep 11 3498 (2021)
  65. High-Resolution Structure Analysis of Antibody V5 and U4 Conformational Epitopes on Human Papillomavirus 16. Guan J, Bywaters SM, Brendle SA, Ashley RE, Makhov AM, Conway JF, Christensen ND, Hafenstein S. Viruses 9 (2017)
  66. N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in Escherichia coli and self-assembly in vitro. Wei M, Wang D, Li Z, Song S, Kong X, Mo X, Yang Y, He M, Li Z, Huang B, Lin Z, Pan H, Zheng Q, Yu H, Gu Y, Zhang J, Li S, Xia N. Emerg Microbes Infect 7 160 (2018)
  67. Packing and trimer-to-dimer protein reconstruction in icosahedral viral shells with a single type of symmetrical structural unit. Rochal SB, Konevtsova OV, Roshal DS, Božič A, Golushko IY, Podgornik R. Nanoscale Adv 4 4677-4688 (2022)
  68. Quasicrystalline and crystalline types of local protein order in capsids of small viruses. Konevtsova OV, Pimonov VV, Lorman VL, Rochal SB. J Phys Condens Matter 29 284002 (2017)
  69. Rational design of a multi-valent human papillomavirus vaccine by capsomere-hybrid co-assembly of virus-like particles. Wang D, Liu X, Wei M, Qian C, Song S, Chen J, Wang Z, Xu Q, Yang Y, He M, Chi X, Huang S, Li T, Kong Z, Zheng Q, Yu H, Wang Y, Zhao Q, Zhang J, Xia N, Gu Y, Li S. Nat Commun 11 2841 (2020)
  70. The Ewald sphere/focus gradient does not limit the resolution of cryoEM reconstructions. Heymann JB. J Struct Biol X 7 100083 (2023)