3jad Citations

Glycine receptor mechanism elucidated by electron cryo-microscopy.

Nature 526 224-9 (2015)
Related entries: 3jae, 3jaf

Cited: 212 times
EuropePMC logo PMID: 26344198

Abstract

The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders, including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of glycine receptors has been hindered by a lack of high-resolution structures. Here we report electron cryo-microscopy structures of the zebrafish α1 GlyR with strychnine, glycine, or glycine and ivermectin (glycine/ivermectin). Strychnine arrests the receptor in an antagonist-bound closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain 'wrist' interface, and leads to rotation of the transmembrane domain towards the pore axis, occluding the ion conduction pathway. These structures illuminate the GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors.

Reviews - 3jad mentioned but not cited (4)

Articles - 3jad mentioned but not cited (25)

  1. Glycine receptor mechanism elucidated by electron cryo-microscopy. Du J, Lü W, Wu S, Cheng Y, Gouaux E. Nature 526 224-229 (2015)
  2. X-ray structure of the human α4β2 nicotinic receptor. Morales-Perez CL, Noviello CM, Hibbs RE. Nature 538 411-415 (2016)
  3. Cryo-EM reveals two distinct serotonin-bound conformations of full-length 5-HT3A receptor. Basak S, Gicheru Y, Rao S, Sansom MSP, Chakrapani S. Nature 563 270-274 (2018)
  4. Loose ends: almost one in five human genes still have unresolved coding status. Abascal F, Juan D, Jungreis I, Kellis M, Martinez L, Rigau M, Rodriguez JM, Vazquez J, Tress ML. Nucleic Acids Res 46 7070-7084 (2018)
  5. Mechanism of gating and partial agonist action in the glycine receptor. Yu J, Zhu H, Lape R, Greiner T, Du J, Lü W, Sivilotti L, Gouaux E. Cell 184 957-968.e21 (2021)
  6. Signal Transduction at the Domain Interface of Prokaryotic Pentameric Ligand-Gated Ion Channels. Bertozzi C, Zimmermann I, Engeler S, Hilf RJ, Dutzler R. PLoS Biol. 14 e1002393 (2016)
  7. Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What? Puthenkalam R, Hieckel M, Simeone X, Suwattanasophon C, Feldbauer RV, Ecker GF, Ernst M. Front Mol Neurosci 9 44 (2016)
  8. Functional Annotation of Ion Channel Structures by Molecular Simulation. Trick JL, Chelvaniththilan S, Klesse G, Aryal P, Wallace EJ, Tucker SJ, Sansom MSP. Structure 24 2207-2216 (2016)
  9. Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. Phulera S, Zhu H, Yu J, Claxton DP, Yoder N, Yoshioka C, Gouaux E. Elife 7 (2018)
  10. The intracellular domain of homomeric glycine receptors modulates agonist efficacy. Ivica J, Lape R, Jazbec V, Yu J, Zhu H, Gouaux E, Gold MG, Sivilotti LG. J Biol Chem 296 100387 (2021)
  11. Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine. Nys M, Wijckmans E, Farinha A, Yoluk Ö, Andersson M, Brams M, Spurny R, Peigneur S, Tytgat J, Lindahl E, Ulens C. Proc. Natl. Acad. Sci. U.S.A. 113 E6696-E6703 (2016)
  12. Altered Channel Conductance States and Gating of GABAA Receptors by a Pore Mutation Linked to Dravet Syndrome. Hernandez CC, Kong W, Hu N, Zhang Y, Shen W, Jackson L, Liu X, Jiang Y, Macdonald RL. eNeuro 4 (2017)
  13. Variability of Protein Structure Models from Electron Microscopy. Monroe L, Terashi G, Kihara D. Structure 25 592-602.e2 (2017)
  14. Diversity of Nicotinic Acetylcholine Receptor Positive Allosteric Modulators Revealed by Mutagenesis and a Revised Structural Model. Newcombe J, Chatzidaki A, Sheppard TD, Topf M, Millar NS. Mol. Pharmacol. 93 128-140 (2018)
  15. Investigating the function and possible biological role of an acetylcholine-gated chloride channel subunit (ACC-1) from the parasitic nematode Haemonchus contortus. Callanan MK, Habibi SA, Law WJ, Nazareth K, Komuniecki RL, Forrester SG. Int J Parasitol Drugs Drug Resist 8 526-533 (2018)
  16. Comparing Cryo-EM Reconstructions and Validating Atomic Model Fit Using Difference Maps. Joseph AP, Lagerstedt I, Jakobi A, Burnley T, Patwardhan A, Topf M, Winn M. J Chem Inf Model 60 2552-2560 (2020)
  17. Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus. Atif M, Estrada-Mondragon A, Nguyen B, Lynch JW, Keramidas A. PLoS Pathog. 13 e1006663 (2017)
  18. GABA A Receptor Coupling Junction and Pore GABRB3 Mutations are Linked to Early-Onset Epileptic Encephalopathy. Hernandez CC, Zhang Y, Hu N, Shen D, Shen W, Liu X, Kong W, Jiang Y, Macdonald RL. Sci Rep 7 15903 (2017)
  19. Mechanisms of activation and desensitization of full-length glycine receptor in lipid nanodiscs. Kumar A, Basak S, Rao S, Gicheru Y, Mayer ML, Sansom MSP, Chakrapani S. Nat Commun 11 3752 (2020)
  20. A Refined Open State of the Glycine Receptor Obtained via Molecular Dynamics Simulations. Dämgen MA, Biggin PC. Structure 28 130-139.e2 (2020)
  21. Exploring the Conformational Impact of Glycine Receptor TM1-2 Mutations Through Coarse-Grained Analysis and Atomistic Simulations. Mhashal AR, Yoluk O, Orellana L. Front Mol Biosci 9 890851 (2022)
  22. Inhibitory Actions of Tropeines on the α3 Glycine Receptor Function. San Martín VP, Burgos CF, Marileo AM, Lara CO, Sazo A, Fuentealba J, Guzmán L, Castro PA, Aguayo LG, Moraga-Cid G, Yévenes GE. Front Pharmacol 10 331 (2019)
  23. Insect RDL Receptor Models for Virtual Screening: Impact of the Template Conformational State in Pentameric Ligand-Gated Ion Channels. Felsztyna I, Villarreal MA, García DA, Miguel V. ACS Omega 7 1988-2001 (2022)
  24. Molecular Simulations of Hydrophobic Gating of Pentameric Ligand Gated Ion Channels: Insights into Water and Ions. Rao S, Klesse G, Lynch CI, Tucker SJ, Sansom MSP. J Phys Chem B 125 981-994 (2021)
  25. The startle disease mutation α1S270T predicts shortening of glycinergic synaptic currents. Wu Z, Lape R, Jopp-Saile L, O'Callaghan BJ, Greiner T, Sivilotti LG. J Physiol 598 3417-3438 (2020)


Reviews citing this publication (41)

  1. Unravelling biological macromolecules with cryo-electron microscopy. Fernandez-Leiro R, Scheres SH. Nature 537 339-346 (2016)
  2. Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Changeux JP, Christopoulos A. Cell 166 1084-1102 (2016)
  3. Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels. Nemecz Á, Prevost MS, Menny A, Corringer PJ. Neuron 90 452-470 (2016)
  4. Resolution advances in cryo-EM enable application to drug discovery. Subramaniam S, Earl LA, Falconieri V, Milne JL, Egelman EH. Curr. Opin. Struct. Biol. 41 194-202 (2016)
  5. Progress in nicotinic receptor structural biology. Gharpure A, Noviello CM, Hibbs RE. Neuropharmacology 171 108086 (2020)
  6. Structural mechanisms of activation and desensitization in neurotransmitter-gated ion channels. Plested AJ. Nat. Struct. Mol. Biol. 23 494-502 (2016)
  7. Architecture and functional properties of the CFTR channel pore. Linsdell P. Cell. Mol. Life Sci. 74 67-83 (2017)
  8. Cryo-EM in drug discovery: achievements, limitations and prospects. Renaud JP, Chari A, Ciferri C, Liu WT, Rémigy HW, Stark H, Wiesmann C. Nat Rev Drug Discov 17 471-492 (2018)
  9. GABAA receptor: Positive and negative allosteric modulators. Olsen RW. Neuropharmacology 136 10-22 (2018)
  10. Nicotinic acetylcholine receptors at the single-channel level. Bouzat C, Sine SM. Br. J. Pharmacol. 175 1789-1804 (2018)
  11. Advances in high-speed atomic force microscopy (HS-AFM) reveal dynamics of transmembrane channels and transporters. Heath GR, Scheuring S. Curr Opin Struct Biol 57 93-102 (2019)
  12. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors. Wang J, Lindstrom J. Br. J. Pharmacol. 175 1805-1821 (2018)
  13. Electron Cryo-microscopy as a Tool for Structure-Based Drug Development. Merino F, Raunser S. Angew. Chem. Int. Ed. Engl. 56 2846-2860 (2017)
  14. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine-Binding Protein as a Structural Surrogate. Shahsavar A, Gajhede M, Kastrup JS, Balle T. Basic Clin. Pharmacol. Toxicol. 118 399-407 (2016)
  15. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. J Biol Chem 296 100557 (2021)
  16. The Intracellular Loop of the Glycine Receptor: It's not all about the Size. Langlhofer G, Villmann C. Front Mol Neurosci 9 41 (2016)
  17. The dual-gate model for pentameric ligand-gated ion channels activation and desensitization. Gielen M, Corringer PJ. J. Physiol. (Lond.) 596 1873-1902 (2018)
  18. The Molecular Industrial Revolution: Automated Synthesis of Small Molecules. Trobe M, Burke MD. Angew. Chem. Int. Ed. Engl. 57 4192-4214 (2018)
  19. Allosteric modulation as a unifying mechanism for receptor function and regulation. Changeux JP, Christopoulos A. Diabetes Obes Metab 19 Suppl 1 4-21 (2017)
  20. Ivermectin and its target molecules: shared and unique modulation mechanisms of ion channels and receptors by ivermectin. Chen IS, Kubo Y. J. Physiol. (Lond.) 596 1833-1845 (2018)
  21. The nicotinic acetylcholine receptor: a typical 'allosteric machine'. Changeux JP. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 373 (2018)
  22. Comparison of αβδ and αβγ GABAA receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics. Feng HJ, Forman SA. Pharmacol. Res. 133 289-300 (2018)
  23. Membrane protein structural biology in the era of single particle cryo-EM. Cheng Y. Curr. Opin. Struct. Biol. 52 58-63 (2018)
  24. Structure, Function and Physiology of 5-Hydroxytryptamine Receptors Subtype 3. Gibbs E, Chakrapani S. Subcell Biochem 96 373-408 (2021)
  25. Acetylcholine nicotinic receptor subtypes in chromaffin cells. Criado M. Pflugers Arch. 470 13-20 (2018)
  26. Detergents: Friends not foes for high-performance membrane proteomics toward precision medicine. Zhang X. Proteomics 17 (2017)
  27. Impaired Glycine Receptor Trafficking in Neurological Diseases. Schaefer N, Roemer V, Janzen D, Villmann C. Front Mol Neurosci 11 291 (2018)
  28. Recent progress on the molecular pharmacology of propofol. Tang P, Eckenhoff R. F1000Res 7 123 (2018)
  29. Startle Disease: New Molecular Insights into an Old Neurological Disorder. Schaefer N, Harvey RJ, Villmann C. Neuroscientist 29 767-781 (2023)
  30. The Hair Cell α9α10 Nicotinic Acetylcholine Receptor: Odd Cousin in an Old Family. Lipovsek M, Marcovich I, Elgoyhen AB. Front Cell Neurosci 15 785265 (2021)
  31. Designer receptor technology for the treatment of epilepsy. Lieb A, Weston M, Kullmann DM. EBioMedicine 43 641-649 (2019)
  32. Function-Related Dynamics in Multi-Spanning Helical Membrane Proteins Revealed by Solution NMR. Takeuchi K, Kofuku Y, Imai S, Ueda T, Tokunaga Y, Toyama Y, Shiraishi Y, Shimada I. Membranes (Basel) 11 604 (2021)
  33. Glycine Receptor Subtypes and Their Roles in Nociception and Chronic Pain. San Martín VP, Sazo A, Utreras E, Moraga-Cid G, Yévenes GE. Front Mol Neurosci 15 848642 (2022)
  34. Insights into channel dysfunction from modelling and molecular dynamics simulations. Musgaard M, Paramo T, Domicevica L, Andersen OJ, Biggin PC. Neuropharmacology 132 20-30 (2018)
  35. Large-Scale Conformational Changes and Protein Function: Breaking the in silico Barrier. Orellana L. Front Mol Biosci 6 117 (2019)
  36. Mutagenesis computer experiments in pentameric ligand-gated ion channels: the role of simulation tools with different resolution. Crnjar A, Comitani F, Melis C, Molteni C. Interface Focus 9 20180067 (2019)
  37. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport. Howard RJ, Carnevale V, Delemotte L, Hellmich UA, Rothberg BS. Biochim Biophys Acta Biomembr 1860 927-942 (2018)
  38. Photopharmacology of Ion Channels through the Light of the Computational Microscope. Nin-Hill A, Mueller NPF, Molteni C, Rovira C, Alfonso-Prieto M. Int J Mol Sci 22 12072 (2021)
  39. Positive Allosteric Modulators of Glycine Receptors and Their Potential Use in Pain Therapies. Gallagher CI, Ha DA, Harvey RJ, Vandenberg RJ. Pharmacol Rev 74 933-961 (2022)
  40. Recent Insight into Lipid Binding and Lipid Modulation of Pentameric Ligand-Gated Ion Channels. Ananchenko A, Hussein TOK, Mody D, Thompson MJ, Baenziger JE. Biomolecules 12 814 (2022)
  41. To Be or Not to Be an Ion Channel: Cryo-EM Structures Have a Say. Chen GL, Li J, Zhang J, Zeng B. Cells 12 1870 (2023)

Articles citing this publication (142)

  1. Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JLS, Subramaniam S. Cell 165 1698-1707 (2016)
  2. The development of cryo-EM into a mainstream structural biology technique. Nogales E. Nat. Methods 13 24-27 (2016)
  3. Structure of the Native Muscle-type Nicotinic Receptor and Inhibition by Snake Venom Toxins. Rahman MM, Teng J, Worrell BT, Noviello CM, Lee M, Karlin A, Stowell MHB, Hibbs RE. Neuron 106 952-962.e5 (2020)
  4. Cryo-EM Structures of the Magnesium Channel CorA Reveal Symmetry Break upon Gating. Matthies D, Dalmas O, Borgnia MJ, Dominik PK, Merk A, Rao P, Reddy BG, Islam S, Bartesaghi A, Perozo E, Subramaniam S. Cell 164 747-756 (2016)
  5. Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process. Iacovache I, De Carlo S, Cirauqui N, Dal Peraro M, van der Goot FG, Zuber B. Nat Commun 7 12062 (2016)
  6. Structural basis for GABAA receptor potentiation by neurosteroids. Miller PS, Scott S, Masiulis S, De Colibus L, Pardon E, Steyaert J, Aricescu AR. Nat. Struct. Mol. Biol. 24 986-992 (2017)
  7. Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites. Laverty D, Thomas P, Field M, Andersen OJ, Gold MG, Biggin PC, Gielen M, Smart TG. Nat. Struct. Mol. Biol. 24 977-985 (2017)
  8. Structural Bases of Noncompetitive Inhibition of AMPA-Subtype Ionotropic Glutamate Receptors by Antiepileptic Drugs. Yelshanskaya MV, Singh AK, Sampson JM, Narangoda C, Kurnikova M, Sobolevsky AI. Neuron 91 1305-1315 (2016)
  9. Crystal structures of human glycine receptor α3 bound to a novel class of analgesic potentiators. Huang X, Shaffer PL, Ayube S, Bregman H, Chen H, Lehto SG, Luther JA, Matson DJ, McDonough SI, Michelsen K, Plant MH, Schneider S, Simard JR, Teffera Y, Yi S, Zhang M, DiMauro EF, Gingras J. Nat. Struct. Mol. Biol. 24 108-113 (2017)
  10. Structure and gating mechanism of the α7 nicotinic acetylcholine receptor. Noviello CM, Gharpure A, Mukhtasimova N, Cabuco R, Baxter L, Borek D, Sine SM, Hibbs RE. Cell 184 2121-2134.e13 (2021)
  11. Structure of a human synaptic GABAA receptor. Zhu S, Noviello CM, Teng J, Walsh RM, Kim JJ, Hibbs RE. Nature 559 67-72 (2018)
  12. A lipid site shapes the agonist response of a pentameric ligand-gated ion channel. Hénault CM, Govaerts C, Spurny R, Brams M, Estrada-Mondragon A, Lynch J, Bertrand D, Pardon E, Evans GL, Woods K, Elberson BW, Cuello LG, Brannigan G, Nury H, Steyaert J, Baenziger JE, Ulens C. Nat Chem Biol 15 1156-1164 (2019)
  13. Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel. Basak S, Schmandt N, Gicheru Y, Chakrapani S. Elife 6 (2017)
  14. Sites of Anesthetic Inhibitory Action on a Cationic Ligand-Gated Ion Channel. Laurent B, Murail S, Shahsavar A, Sauguet L, Delarue M, Baaden M. Structure 24 595-605 (2016)
  15. Crystal structure of a human neuronal nAChR extracellular domain in pentameric assembly: Ligand-bound α2 homopentamer. Kouvatsos N, Giastas P, Chroni-Tzartou D, Poulopoulou C, Tzartos SJ. Proc. Natl. Acad. Sci. U.S.A. 113 9635-9640 (2016)
  16. Identification of a pre-active conformation of a pentameric channel receptor. Menny A, Lefebvre SN, Schmidpeter PA, Drège E, Fourati Z, Delarue M, Edelstein SJ, Nimigean CM, Joseph D, Corringer PJ. Elife 6 (2017)
  17. String method solution of the gating pathways for a pentameric ligand-gated ion channel. Lev B, Murail S, Poitevin F, Cromer BA, Baaden M, Delarue M, Allen TW. Proc. Natl. Acad. Sci. U.S.A. 114 E4158-E4167 (2017)
  18. Top-down characterization of endogenous protein complexes with native proteomics. Skinner OS, Haverland NA, Fornelli L, Melani RD, Do Vale LHF, Seckler HS, Doubleday PF, Schachner LF, Srzentić K, Kelleher NL, Compton PD. Nat. Chem. Biol. 14 36-41 (2018)
  19. Alpha subunit-dependent glycine receptor clustering and regulation of synaptic receptor numbers. Patrizio A, Renner M, Pizzarelli R, Triller A, Specht CG. Sci Rep 7 10899 (2017)
  20. Identification of an Inhibitory Alcohol Binding Site in GABAA ρ1 Receptors. Borghese CM, Ruiz CI, Lee US, Cullins MA, Bertaccini EJ, Trudell JR, Harris RA. ACS Chem Neurosci 7 100-108 (2016)
  21. Loss of Glycine Transporter 1 Causes a Subtype of Glycine Encephalopathy with Arthrogryposis and Mildly Elevated Cerebrospinal Fluid Glycine. Kurolap A, Armbruster A, Hershkovitz T, Hauf K, Mory A, Paperna T, Hannappel E, Tal G, Nijem Y, Sella E, Mahajnah M, Ilivitzki A, Hershkovitz D, Ekhilevitch N, Mandel H, Eulenburg V, Baris HN. Am. J. Hum. Genet. 99 1172-1180 (2016)
  22. Structural basis for allosteric transitions of a multidomain pentameric ligand-gated ion channel. Hu H, Howard RJ, Bastolla U, Lindahl E, Delarue M. Proc Natl Acad Sci U S A 117 13437-13446 (2020)
  23. Cryo-EM structure of 5-HT3A receptor in its resting conformation. Basak S, Gicheru Y, Samanta A, Molugu SK, Huang W, Fuente M, Hughes T, Taylor DJ, Nieman MT, Moiseenkova-Bell V, Chakrapani S. Nat Commun 9 514 (2018)
  24. A Novel Glycine Receptor Variant with Startle Disease Affects Syndapin I and Glycinergic Inhibition. Langlhofer G, Schaefer N, Maric HM, Keramidas A, Zhang Y, Baumann P, Blum R, Breitinger U, Strømgaard K, Schlosser A, Kessels MM, Koch D, Qualmann B, Breitinger HG, Lynch JW, Villmann C. J Neurosci 40 4954-4969 (2020)
  25. Crystal Structures of Human GlyRα3 Bound to Ivermectin. Huang X, Chen H, Shaffer PL. Structure 25 945-950.e2 (2017)
  26. Functional modulation of glycine receptors by the alkaloid gelsemine. Lara CO, Murath P, Muñoz B, Marileo AM, Martín LS, San Martín VP, Burgos CF, Mariqueo TA, Aguayo LG, Fuentealba J, Godoy P, Guzman L, Yévenes GE. Br. J. Pharmacol. 173 2263-2277 (2016)
  27. Identification of Positive Allosteric Modulators of Glycine Receptors from a High-Throughput Screen Using a Fluorescent Membrane Potential Assay. Stead C, Brown A, Adams C, Nickolls SJ, Young G, Kammonen J, Pryde D, Cawkill D. J Biomol Screen 21 1042-1053 (2016)
  28. Ivermectin activates GIRK channels in a PIP2 -dependent, Gβγ -independent manner and an amino acid residue at the slide helix governs the activation. Chen IS, Tateyama M, Fukata Y, Uesugi M, Kubo Y. J. Physiol. (Lond.) 595 5895-5912 (2017)
  29. High-resolution structures of multiple 5-HT3AR-setron complexes reveal a novel mechanism of competitive inhibition. Basak S, Kumar A, Ramsey S, Gibbs E, Kapoor A, Filizola M, Chakrapani S. Elife 9 e57870 (2020)
  30. Investigating the Mechanism by Which Gain-of-function Mutations to the α1 Glycine Receptor Cause Hyperekplexia. Zhang Y, Bode A, Nguyen B, Keramidas A, Lynch JW. J. Biol. Chem. 291 15332-15341 (2016)
  31. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation. Wilkins ME, Caley A, Gielen MC, Harvey RJ, Smart TG. J. Physiol. (Lond.) 594 3589-3607 (2016)
  32. Disruption of a Structurally Important Extracellular Element in the Glycine Receptor Leads to Decreased Synaptic Integration and Signaling Resulting in Severe Startle Disease. Schaefer N, Berger A, van Brederode J, Zheng F, Zhang Y, Leacock S, Littau L, Jablonka S, Malhotra S, Topf M, Winter F, Davydova D, Lynch JW, Paige CJ, Alzheimer C, Harvey RJ, Villmann C. J. Neurosci. 37 7948-7961 (2017)
  33. The natural productome. Palazzolo AME, Simons CLW, Burke MD. Proc. Natl. Acad. Sci. U.S.A. 114 5564-5566 (2017)
  34. Un-gating and allosteric modulation of a pentameric ligand-gated ion channel captured by molecular dynamics. Martin NE, Malik S, Calimet N, Changeux JP, Cecchini M. PLoS Comput. Biol. 13 e1005784 (2017)
  35. 3D Electrophysiological Measurements on Cells Embedded within Fiber-Reinforced Matrigel. Schaefer N, Janzen D, Bakirci E, Hrynevich A, Dalton PD, Villmann C. Adv Healthc Mater 8 e1801226 (2019)
  36. A role for loop G in the β1 strand in GABAA receptor activation. Baptista-Hon DT, Krah A, Zachariae U, Hales TG. J. Physiol. (Lond.) 594 5555-5571 (2016)
  37. Altered inhibitory synapses in de novo GABRA5 and GABRA1 mutations associated with early onset epileptic encephalopathies. Hernandez CC, XiangWei W, Hu N, Shen D, Shen W, Lagrange AH, Zhang Y, Dai L, Ding C, Sun Z, Hu J, Zhu H, Jiang Y, Macdonald RL. Brain 142 1938-1954 (2019)
  38. Chasing the open-state structure of pentameric ligand-gated ion channels. Gonzalez-Gutierrez G, Wang Y, Cymes GD, Tajkhorshid E, Grosman C. J. Gen. Physiol. 149 1119-1138 (2017)
  39. Competitive antagonists facilitate the recovery from desensitization of α1β2γ2 GABAA receptors expressed in Xenopus oocytes. Xu XJ, Roberts D, Zhu GN, Chang YC. Acta Pharmacol. Sin. 37 1020-1030 (2016)
  40. Conformational transitions of the serotonin 5-HT3 receptor. Polovinkin L, Hassaine G, Perot J, Neumann E, Jensen AA, Lefebvre SN, Corringer PJ, Neyton J, Chipot C, Dehez F, Schoehn G, Nury H. Nature 563 275-279 (2018)
  41. Disturbances of Ligand Potency and Enhanced Degradation of the Human Glycine Receptor at Affected Positions G160 and T162 Originally Identified in Patients Suffering from Hyperekplexia. Atak S, Langlhofer G, Schaefer N, Kessler D, Meiselbach H, Delto C, Schindelin H, Villmann C. Front Mol Neurosci 8 79 (2015)
  42. Electrophysiological Signature of Homomeric and Heteromeric Glycine Receptor Channels. Raltschev C, Hetsch F, Winkelmann A, Meier JC, Semtner M. J. Biol. Chem. 291 18030-18040 (2016)
  43. Full mutational mapping of titratable residues helps to identify proton-sensors involved in the control of channel gating in the Gloeobacter violaceus pentameric ligand-gated ion channel. Nemecz Á, Hu H, Fourati Z, Van Renterghem C, Delarue M, Corringer PJ. PLoS Biol. 15 e2004470 (2017)
  44. Inter- and Intra-Subunit Butanol/Isoflurane Sites of Action in the Human Glycine Receptor. McCracken ML, Gorini G, McCracken LM, Mayfield RD, Harris RA, Trudell JR. Front Mol Neurosci 9 45 (2016)
  45. Regulation of a pentameric ligand-gated ion channel by a semiconserved cationic lipid-binding site. Sridhar A, Lummis SCR, Pasini D, Mehregan A, Brams M, Kambara K, Bertrand D, Lindahl E, Howard RJ, Ulens C. J Biol Chem 297 100899 (2021)
  46. State-dependent protein-lipid interactions of a pentameric ligand-gated ion channel in a neuronal membrane. Dämgen MA, Biggin PC. PLoS Comput Biol 17 e1007856 (2021)
  47. Structural basis of neurosteroid anesthetic action on GABAA receptors. Chen Q, Wells MM, Arjunan P, Tillman TS, Cohen AE, Xu Y, Tang P. Nat Commun 9 3972 (2018)
  48. A Missense Mutation A384P Associated with Human Hyperekplexia Reveals a Desensitization Site of Glycine Receptors. Wang CH, Hernandez CC, Wu J, Zhou N, Hsu HY, Shen ML, Wang YC, Macdonald RL, Wu DC. J. Neurosci. 38 2818-2831 (2018)
  49. A chimeric prokaryotic-eukaryotic pentameric ligand gated ion channel reveals interactions between the extracellular and transmembrane domains shape neurosteroid modulation. Ghosh B, Tsao TW, Czajkowski C. Neuropharmacology 125 343-352 (2017)
  50. Applications of parallel synthetic lead hopping and pharmacophore-based virtual screening in the discovery of efficient glycine receptor potentiators. Chakka N, Andrews KL, Berry LM, Bregman H, Gunaydin H, Huang L, Guzman-Perez A, Plant MH, Simard JR, Gingras J, DiMauro EF. Eur J Med Chem 137 63-75 (2017)
  51. Architecture and assembly mechanism of native glycine receptors. Zhu H, Gouaux E. Nature 599 513-517 (2021)
  52. Binding site opening by loop C shift and chloride ion-pore interaction in the GABAA receptor model. Michałowski MA, Kraszewski S, Mozrzymas JW. Phys Chem Chem Phys 19 13664-13678 (2017)
  53. Direct interaction of the resistance to inhibitors of cholinesterase type 3 protein with the serotonin receptor type 3A intracellular domain. Nishtala SN, Mnatsakanyan N, Pandhare A, Leung C, Jansen M. J. Neurochem. 137 528-538 (2016)
  54. Discovery of an intrasubunit nicotinic acetylcholine receptor-binding site for the positive allosteric modulator Br-PBTC. Norleans J, Wang J, Kuryatov A, Leffler A, Doebelin C, Kamenecka TM, Lindstrom J. J Biol Chem 294 12132-12145 (2019)
  55. Engineering defined membrane-embedded elements of AMPA receptor induces opposing gating modulation by cornichon 3 and stargazin. Hawken NM, Zaika EI, Nakagawa T. J. Physiol. (Lond.) 595 6517-6539 (2017)
  56. Fluorescence-detection size-exclusion chromatography utilizing nanobody technology for expression screening of membrane proteins. Jin F, Shen C, Wang Y, Wang M, Sun M, Hattori M. Commun Biol 4 366 (2021)
  57. Loop G in the GABAA receptor α1 subunit influences gating efficacy. Baptista-Hon DT, Gulbinaite S, Hales TG. J. Physiol. (Lond.) 595 1725-1741 (2017)
  58. Mechanism of calcium potentiation of the α7 nicotinic acetylcholine receptor. Natarajan K, Mukhtasimova N, Corradi J, Lasala M, Bouzat C, Sine SM. J Gen Physiol 152 e202012606 (2020)
  59. Neurotransmitter-mediated activity spatially controls neuronal migration in the zebrafish cerebellum. Theisen U, Hennig C, Ring T, Schnabel R, Köster RW. PLoS Biol. 16 e2002226 (2018)
  60. Pentameric ligand-gated ion channels exhibit distinct transmembrane domain archetypes for folding/expression and function. Therien JP, Baenziger JE. Sci Rep 7 450 (2017)
  61. Physiological role for GABAA receptor desensitization in the induction of long-term potentiation at inhibitory synapses. Field M, Dorovykh V, Thomas P, Smart TG. Nat Commun 12 2112 (2021)
  62. Sequences Flanking the Gephyrin-Binding Site of GlyRβ Tune Receptor Stabilization at Synapses. Grünewald N, Jan A, Salvatico C, Kress V, Renner M, Triller A, Specht CG, Schwarz G. eNeuro 5 (2018)
  63. Side chain flexibility and the pore dimensions in the GABAA receptor. Rossokhin AV, Zhorov BS. J. Comput. Aided Mol. Des. 30 559-567 (2016)
  64. Structural titration of receptor ion channel GLIC gating by HS-AFM. Ruan Y, Kao K, Lefebvre S, Marchesi A, Corringer PJ, Hite RK, Scheuring S. Proc. Natl. Acad. Sci. U.S.A. 115 10333-10338 (2018)
  65. Structure/Function Studies of the α4 Subunit Reveal Evolutionary Loss of a GlyR Subtype Involved in Startle and Escape Responses. Leacock S, Syed P, James VM, Bode A, Kawakami K, Keramidas A, Suster M, Lynch JW, Harvey RJ. Front Mol Neurosci 11 23 (2018)
  66. Toward Generalization of Iterative Small Molecule Synthesis. Lehmann JW, Blair DJ, Burke MD. Nat Rev Chem 2 (2018)
  67. Trapping of ivermectin by a pentameric ligand-gated ion channel upon open-to-closed isomerization. Degani-Katzav N, Klein M, Har-Even M, Gortler R, Tobi R, Paas Y. Sci Rep 7 42481 (2017)
  68. Triple arginines as molecular determinants for pentameric assembly of the intracellular domain of 5-HT3A receptors. Pandhare A, Pirayesh E, Stuebler AG, Jansen M. J Gen Physiol 151 1135-1145 (2019)
  69. Voltage-Dependent Inhibition of Glycine Receptor Channels by Niflumic Acid. Maleeva G, Peiretti F, Zhorov BS, Bregestovski P. Front Mol Neurosci 10 125 (2017)
  70. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective. Lynch CI, Rao S, Sansom MSP. Chem Rev 120 10298-10335 (2020)
  71. A critical residue in the α1M2-M3 linker regulating mammalian GABAA receptor pore gating by diazepam. Nors JW, Gupta S, Goldschen-Ohm MP. Elife 10 e64400 (2021)
  72. A photoswitchable GABA receptor channel blocker. Maleeva G, Wutz D, Rustler K, Nin-Hill A, Rovira C, Petukhova E, Bautista-Barrufet A, Gomila-Juaneda A, Scholze P, Peiretti F, Alfonso-Prieto M, König B, Gorostiza P, Bregestovski P. Br. J. Pharmacol. 176 2661-2677 (2019)
  73. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons. Nakahata Y, Eto K, Murakoshi H, Watanabe M, Kuriu T, Hirata H, Moorhouse AJ, Ishibashi H, Nabekura J. eNeuro 4 (2017)
  74. Characterization of the Zebrafish Glycine Receptor Family Reveals Insights Into Glycine Receptor Structure Function and Stoichiometry. Low SE, Ito D, Hirata H. Front Mol Neurosci 11 286 (2018)
  75. Crystal structures of a pentameric ion channel gated by alkaline pH show a widely open pore and identify a cavity for modulation. Hu H, Nemecz Á, Van Renterghem C, Fourati Z, Sauguet L, Corringer PJ, Delarue M. Proc. Natl. Acad. Sci. U.S.A. 115 E3959-E3968 (2018)
  76. Distinct Modulation of Spontaneous and GABA-Evoked Gating by Flurazepam Shapes Cross-Talk Between Agonist-Free and Liganded GABAA Receptor Activity. Jatczak-Śliwa M, Terejko K, Brodzki M, Michałowski MA, Czyzewska MM, Nowicka JM, Andrzejczak A, Srinivasan R, Mozrzymas JW. Front Cell Neurosci 12 237 (2018)
  77. Emamectin is a non-selective allosteric activator of nicotinic acetylcholine receptors and GABAA/C receptors. Xu X, Sepich C, Lukas RJ, Zhu G, Chang Y. Biochem. Biophys. Res. Commun. 473 795-800 (2016)
  78. Expression and purification of a functional heteromeric GABAA receptor for structural studies. Claxton DP, Gouaux E. PLoS ONE 13 e0201210 (2018)
  79. Functional Human α7 Nicotinic Acetylcholine Receptor (nAChR) Generated from Escherichia coli. Tillman TS, Alvarez FJ, Reinert NJ, Liu C, Wang D, Xu Y, Xiao K, Zhang P, Tang P. J. Biol. Chem. 291 18276-18282 (2016)
  80. Functional and Biochemical Characterization of Alvinella pompejana Cys-Loop Receptor Homologues. Wijckmans E, Nys M, Debaveye S, Brams M, Pardon E, Willegems K, Bertrand D, Steyaert J, Efremov R, Ulens C. PLoS ONE 11 e0151183 (2016)
  81. Lateral fenestrations in the extracellular domain of the glycine receptor contribute to the main chloride permeation pathway. Cerdan AH, Peverini L, Changeux JP, Corringer PJ, Cecchini M. Sci Adv 8 eadc9340 (2022)
  82. Loss, Gain and Altered Function of GlyR α2 Subunit Mutations in Neurodevelopmental Disorders. Chen X, Wilson KA, Schaefer N, De Hayr L, Windsor M, Scalais E, van Rijckevorsel G, Stouffs K, Villmann C, O'Mara ML, Lynch JW, Harvey RJ. Front Mol Neurosci 15 886729 (2022)
  83. Mechanistic basis of ligand efficacy in the calcium-activated chloride channel TMEM16A. Lam AK, Dutzler R. EMBO J 42 e115030 (2023)
  84. Modulation of the Erwinia ligand-gated ion channel (ELIC) and the 5-HT3 receptor via a common vestibule site. Brams M, Govaerts C, Kambara K, Price KL, Spurny R, Gharpure A, Pardon E, Evans GL, Bertrand D, Lummis SC, Hibbs RE, Steyaert J, Ulens C. Elife 9 (2020)
  85. Molecular dynamics simulations of dihydro-β-erythroidine bound to the human α4β2 nicotinic acetylcholine receptor. Yu R, Tae HS, Xu Q, Craik DJ, Adams DJ, Jiang T, Kaas Q. Br J Pharmacol 176 2750-2763 (2019)
  86. Novel Functional Properties of Missense Mutations in the Glycine Receptor β Subunit in Startle Disease. Piro I, Eckes AL, Kasaragod VB, Sommer C, Harvey RJ, Schaefer N, Villmann C. Front Mol Neurosci 14 745275 (2021)
  87. PKA and PKC Modulators Affect Ion Channel Function and Internalization of Recombinant Alpha1 and Alpha1-Beta Glycine Receptors. Breitinger U, Bahnassawy LM, Janzen D, Roemer V, Becker CM, Villmann C, Breitinger HG. Front Mol Neurosci 11 154 (2018)
  88. Pentameric quaternary structure of the intracellular domain of serotonin type 3A receptors. Pandhare A, Grozdanov PN, Jansen M. Sci Rep 6 23921 (2016)
  89. Perturbation of Critical Prolines in Gloeobacter violaceus Ligand-gated Ion Channel (GLIC) Supports Conserved Gating Motions among Cys-loop Receptors. Rienzo M, Rocchi AR, Threatt SD, Dougherty DA, Lummis SC. J. Biol. Chem. 291 6272-6280 (2016)
  90. The GlyR Extracellular β8-β9 Loop - A Functional Determinant of Agonist Potency. Janzen D, Schaefer N, Delto C, Schindelin H, Villmann C. Front Mol Neurosci 10 322 (2017)
  91. The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site. Safar F, Hurdiss E, Erotocritou M, Greiner T, Lape R, Irvine MW, Fang G, Jane D, Yu R, Dämgen MA, Biggin PC, Sivilotti LG. J. Biol. Chem. 292 5031-5042 (2017)
  92. Thermophoretic analysis of ligand-specific conformational states of the inhibitory glycine receptor embedded in copolymer nanodiscs. Bernhard M, Laube B. Sci Rep 10 16569 (2020)
  93. Two-dimensional crystallization of the mouse serotonin 5-HT3A receptor. Rheinberger J, Hassaine G, Chami M, Stahlberg H, Vogel H, Li X. Micron 92 19-24 (2017)
  94. A Crucial Role for Side-Chain Conformation in the Versatile Charge Selectivity of Cys-Loop Receptors. Harpole TJ, Grosman C. Biophys J 116 1667-1681 (2019)
  95. A Single Mutation in the Outer Lipid-Facing Helix of a Pentameric Ligand-Gated Ion Channel Affects Channel Function Through a Radially-Propagating Mechanism. Crnjar A, Mesoy SM, Lummis SCR, Molteni C. Front Mol Biosci 8 644720 (2021)
  96. A System for Assessing Dual Action Modulators of Glycine Transporters and Glycine Receptors. Sheipouri D, Gallagher CI, Shimmon S, Rawling T, Vandenberg RJ. Biomolecules 10 (2020)
  97. A cost-effective protocol for the over-expression and purification of fully-functional and more stable Erwinia chrysanthemi ligand-gated ion channel. Elberson BW, Whisenant TE, Cortes DM, Cuello LG. Protein Expr. Purif. 133 177-186 (2017)
  98. A tale of ligands big and small: an update on how pentameric ligand-gated ion channels interact with agonists and proteins. Pless SA, Sivilotti LG. Curr Opin Physiol 2 19-26 (2019)
  99. Allosteric potentiation of a ligand-gated ion channel is mediated by access to a deep membrane-facing cavity. Heusser SA, Lycksell M, Wang X, McComas SE, Howard RJ, Lindahl E. Proc. Natl. Acad. Sci. U.S.A. 115 10672-10677 (2018)
  100. Amino acid sensor conserved from bacteria to humans. Gumerov VM, Andrianova EP, Matilla MA, Page KM, Monteagudo-Cascales E, Dolphin AC, Krell T, Zhulin IB. Proc Natl Acad Sci U S A 119 e2110415119 (2022)
  101. Aminomethanesulfonic acid illuminates the boundary between full and partial agonists of the pentameric glycine receptor. Ivica J, Zhu H, Lape R, Gouaux E, Sivilotti LG. Elife 11 e79148 (2022)
  102. Asymmetric gating of a human hetero-pentameric glycine receptor. Liu X, Wang W. Nat Commun 14 6377 (2023)
  103. CRELD1 is an evolutionarily-conserved maturational enhancer of ionotropic acetylcholine receptors. D'Alessandro M, Richard M, Stigloher C, Gache V, Boulin T, Richmond JE, Bessereau JL. Elife 7 (2018)
  104. Cesium activates the neurotransmitter receptor for glycine. Fricke S, Harnau M, Hetsch F, Liu H, Leonhard J, Eylmann A, Knauff P, Sun H, Semtner M, Meier JC. Front Mol Neurosci 16 1018530 (2023)
  105. Conformational transitions and allosteric modulation in a heteromeric glycine receptor. Gibbs E, Klemm E, Seiferth D, Kumar A, Ilca SL, Biggin PC, Chakrapani S. Nat Commun 14 1363 (2023)
  106. Cryo-electron microscopy structure of a human PRMT5:MEP50 complex. Timm DE, Bowman V, Madsen R, Rauch C. PLoS ONE 13 e0193205 (2018)
  107. Delineation of the functional properties exhibited by the Zinc-Activated Channel (ZAC) and its high-frequency Thr128Ala variant (rs2257020) in Xenopus oocytes. Madjroh N, Davies PA, Smalley JL, Kristiansen U, Söderhielm PC, Jensen AA. Pharmacol Res 169 105653 (2021)
  108. Direct visualization of ion-channel gating in a native environment. Gicheru Y, Chakrapani S. Proc. Natl. Acad. Sci. U.S.A. 115 10198-10200 (2018)
  109. Disruption of a putative intersubunit electrostatic bond enhances agonist efficacy at the human α1 glycine receptor. Welsh BT, Todorovic J, Kirson D, Allen HM, Bayly MD, Mihic SJ. Brain Res. 1657 148-155 (2017)
  110. Drosophila functional screening of de novo variants in autism uncovers damaging variants and facilitates discovery of rare neurodevelopmental diseases. Marcogliese PC, Deal SL, Andrews J, Harnish JM, Bhavana VH, Graves HK, Jangam S, Luo X, Liu N, Bei D, Chao YH, Hull B, Lee PT, Pan H, Bhadane P, Huang MC, Longley CM, Chao HT, Chung HL, Haelterman NA, Kanca O, Manivannan SN, Rossetti LZ, German RJ, Gerard A, Schwaibold EMC, Fehr S, Guerrini R, Vetro A, England E, Murali CN, Barakat TS, van Dooren MF, Wilke M, van Slegtenhorst M, Lesca G, Sabatier I, Chatron N, Brownstein CA, Madden JA, Agrawal PB, Keren B, Courtin T, Perrin L, Brugger M, Roser T, Leiz S, Mau-Them FT, Delanne J, Sukarova-Angelovska E, Trajkova S, Rosenhahn E, Strehlow V, Platzer K, Keller R, Pavinato L, Brusco A, Rosenfeld JA, Marom R, Wangler MF, Yamamoto S. Cell Rep 38 110517 (2022)
  111. Effects of Interleukin-1β in Glycinergic Transmission at the Central Amygdala. Solorza J, Oliva CA, Castillo K, Amestica G, Maldifassi MC, López-Cortés XA, Barra R, Stehberg J, Piesche M, Sáez-Briones P, González W, Arenas-Salinas M, Mariqueo TA. Front Pharmacol 12 613105 (2021)
  112. Electrostatics, proton sensor, and networks governing the gating transition in GLIC, a proton-gated pentameric ion channel. Hu H, Ataka K, Menny A, Fourati Z, Sauguet L, Corringer PJ, Koehl P, Heberle J, Delarue M. Proc. Natl. Acad. Sci. U.S.A. 115 E12172-E12181 (2018)
  113. Full and partial agonists evoke distinct structural changes in opening the muscle acetylcholine receptor channel. Mukhtasimova N, Sine SM. J. Gen. Physiol. 150 713-729 (2018)
  114. Functional Consequences of the Postnatal Switch From Neonatal to Mutant Adult Glycine Receptor α1 Subunits in the Shaky Mouse Model of Startle Disease. Schaefer N, Zheng F, van Brederode J, Berger A, Leacock S, Hirata H, Paige CJ, Harvey RJ, Alzheimer C, Villmann C. Front Mol Neurosci 11 167 (2018)
  115. Functional characterization of neurotransmitter activation and modulation in a nematode model ligand-gated ion channel. Heusser SA, Yoluk Ö, Klement G, Riederer EA, Lindahl E, Howard RJ. J. Neurochem. 138 243-253 (2016)
  116. Genetic Code Expansion and Click-Chemistry Labeling to Visualize GABA-A Receptors by Super-Resolution Microscopy. Kuhlemann A, Beliu G, Janzen D, Petrini EM, Taban D, Helmerich DA, Doose S, Bruno M, Barberis A, Villmann C, Sauer M, Werner C. Front Synaptic Neurosci 13 727406 (2021)
  117. Glycine Receptor β-Targeting Autoantibodies Contribute to the Pathology of Autoimmune Diseases. Wiessler AL, Talucci I, Piro I, Seefried S, Hörlin V, Baykan BB, Tüzün E, Schaefer N, Maric HM, Sommer C, Villmann C. Neurol Neuroimmunol Neuroinflamm 11 e200187 (2024)
  118. Glycine receptor autoantibody binding to the extracellular domain is independent from receptor glycosylation. Rauschenberger V, Piro I, Kasaragod VB, Hörlin V, Eckes AL, Kluck CJ, Schindelin H, Meinck HM, Wickel J, Geis C, Tüzün E, Doppler K, Sommer C, Villmann C. Front Mol Neurosci 16 1089101 (2023)
  119. Hippocampal Characteristics and Invariant Sequence Elements Distribution of GLRA2 and GLRA3 C-to-U Editing. Schaefermeier P, Heinze S. Mol Syndromol 8 85-92 (2017)
  120. Identification of the hypertension drug niflumic acid as a glycine receptor inhibitor. Ito D, Kawazoe Y, Sato A, Uesugi M, Hirata H. Sci Rep 10 13999 (2020)
  121. Illumination of a progressive allosteric mechanism mediating the glycine receptor activation. Shi S, Lefebvre SN, Peverini L, Cerdan AH, Milán Rodríguez P, Gielen M, Changeux JP, Cecchini M, Corringer PJ. Nat Commun 14 795 (2023)
  122. Mobility of Lower MA-Helices for Ion Conduction through Lateral Portals in 5-HT3A Receptors. Stuebler AG, Jansen M. Biophys J 119 2593-2603 (2020)
  123. Modeling and Mutational Analysis of the Binding Mode for the Multimodal Antidepressant Drug Vortioxetine to the Human 5-HT3A Receptor. Ladefoged LK, Munro L, Pedersen AJ, Lummis SCR, Bang-Andersen B, Balle T, Schiøtt B, Kristensen AS. Mol Pharmacol 94 1421-1434 (2018)
  124. Modulation of Glycine Receptor-Mediated Pain Signaling in vitro and in vivo by Glucose. Hussein RA, Ahmed M, Breitinger HG, Breitinger U. Front Mol Neurosci 12 280 (2019)
  125. Molecular mechanism of setron-mediated inhibition of full-length 5-HT3A receptor. Basak S, Gicheru Y, Kapoor A, Mayer ML, Filizola M, Chakrapani S. Nat Commun 10 3225 (2019)
  126. Multiple regions in the extracellular domain of the glycine receptor determine receptor activity. Tang B, Lummis SCR. J. Biol. Chem. 293 13889-13896 (2018)
  127. Mutational analysis to explore long-range allosteric couplings involved in a pentameric channel receptor pre-activation and activation. Lefebvre SN, Taly A, Menny A, Medjebeur K, Corringer PJ. Elife 10 e60682 (2021)
  128. Mutations causing congenital myasthenia reveal principal coupling pathway in the acetylcholine receptor ε-subunit. Shen XM, Brengman JM, Shen S, Durmus H, Preethish-Kumar V, Yuceyar N, Vengalil S, Nalini A, Deymeer F, Sine SM, Engel AG. JCI Insight 3 (2018)
  129. Neuroprotection elicited by taurine in sporadic Alzheimer-like disease: benefits on memory and control of neuroinflammation in the hippocampus of rats. Huf F, Gutierres JM, da Silva GN, Zago AM, Koenig LFC, Fernandes MC. Mol Cell Biochem (2023)
  130. Patch-clamp studies and cell viability assays suggest a distinct site for viroporin inhibitors on the E protein of SARS-CoV-2. Breitinger U, Sedky CA, Sticht H, Breitinger HG. Virol J 20 142 (2023)
  131. Rotational Dynamics of The Transmembrane Domains Play an Important Role in Peptide Dynamics of Viral Fusion and Ion Channel Forming Proteins-A Molecular Dynamics Simulation Study. Wang CW, Fischer WB. Viruses 14 699 (2022)
  132. Signal transduction through Cys-loop receptors is mediated by the nonspecific bumping of closely apposed domains. Cymes GD, Grosman C. Proc Natl Acad Sci U S A 118 e2021016118 (2021)
  133. Sterol derivative binding to the orthosteric site causes conformational changes in an invertebrate Cys-loop receptor. De Gieter S, Gallagher CI, Wijckmans E, Pasini D, Ulens C, Efremov RG. Elife 12 e86029 (2023)
  134. Structural Elucidation of Ivermectin Binding to α7nAChR and the Induced Channel Desensitization. Bondarenko V, Chen Q, Singewald K, Haloi N, Tillman TS, Howard RJ, Lindahl E, Xu Y, Tang P. ACS Chem Neurosci 14 1156-1165 (2023)
  135. Structural basis for cannabinoid-induced potentiation of alpha1-glycine receptors in lipid nanodiscs. Kumar A, Kindig K, Rao S, Zaki AM, Basak S, Sansom MSP, Biggin PC, Chakrapani S. Nat Commun 13 4862 (2022)
  136. Structural basis for partial agonism in 5-HT3A receptors. Felt K, Stauffer M, Salas-Estrada L, Guzzo PR, Xie D, Huang J, Filizola M, Chakrapani S. Nat Struct Mol Biol (2024)
  137. Subunit-Specific Photocontrol of Glycine Receptors by Azobenzene-Nitrazepam Photoswitcher. Maleeva G, Nin-Hill A, Rustler K, Petukhova E, Ponomareva D, Mukhametova E, Gomila AM, Wutz D, Alfonso-Prieto M, König B, Gorostiza P, Bregestovski P. eNeuro 8 (2021)
  138. Taurine Suppression of Central Amygdala GABAergic Inhibitory Signaling via Glycine Receptors Is Disrupted in Alcohol Dependence. Kirson D, Oleata CS, Roberto M. Alcohol Clin Exp Res 44 445-454 (2020)
  139. The Glycine Receptor Allosteric Ligands Library (GRALL). Cerdan AH, Sisquellas M, Pereira G, Barreto Gomes DE, Changeux JP, Cecchini M. Bioinformatics 36 3379-3384 (2020)
  140. The Haemonchus contortus LGC-39 subunit is a novel subtype of an acetylcholine-gated chloride channel. Habibi S, Nazareth K, Nichols J, Varley S, Forrester SG. Int J Parasitol Drugs Drug Resist 22 20-26 (2023)
  141. The neural γ2α1β2α1β2 gamma amino butyric acid ion channel receptor: structural analysis of the effects of the ivermectin molecule and disulfide bridges. Ayan M, Essiz S. J Mol Model 24 206 (2018)
  142. X-Ray Crystallographic Studies for Revealing Binding Sites of General Anesthetics in Pentameric Ligand-Gated Ion Channels. Chen Q, Xu Y, Tang P. Meth. Enzymol. 603 21-47 (2018)