3k5o Citations

Structural insight into translesion synthesis by DNA Pol II.

Cell 139 1279-89 (2009)
Related entries: 3k57, 3k58, 3k59, 3k5l, 3k5m, 3k5n, 3maq

Cited: 78 times
EuropePMC logo PMID: 20064374

Abstract

E. coli DNA Pol II and eukaryotic Rev3 are B-family polymerases that can extend primers past a damaged or mismatched site when the high-fidelity replicative polymerases in the same family are ineffective. We report here the biochemical and structural properties of DNA Pol II that facilitate this translesion synthesis. DNA Pol II can extend primers past lesions either directly or by template skipping, in which small protein cavities outside of the active site accommodate looped-out template nucleotides 1 or 2 bp upstream. Because of multiple looping-out alternatives, mutation spectra of bypass synthesis are complicated. Moreover, translesion synthesis is enhanced by altered partitioning of DNA substrate between the polymerase active site and the proofreading exonuclease site. Compared to the replicative B family polymerases, DNA Pol II has subtle amino acid changes remote from the active site that allow it to replicate normal DNA with high efficiency yet conduct translesion synthesis when needed.

Reviews - 3k5o mentioned but not cited (2)

Articles - 3k5o mentioned but not cited (3)

  1. Structural insight into translesion synthesis by DNA Pol II. Wang F, Yang W. Cell 139 1279-1289 (2009)
  2. Translesion DNA Synthesis. Vaisman A, McDonald JP, Woodgate R. EcoSal Plus 5 (2012)
  3. An archaeal family-B DNA polymerase variant able to replicate past DNA damage: occurrence of replicative and translesion synthesis polymerases within the B family. Jozwiakowski SK, Keith BJ, Gilroy L, Doherty AJ, Connolly BA. Nucleic Acids Res 42 9949-9963 (2014)


Reviews citing this publication (13)

  1. Translesion DNA polymerases. Goodman MF, Woodgate R. Cold Spring Harb Perspect Biol 5 a010363 (2013)
  2. The SOS system: A complex and tightly regulated response to DNA damage. Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ. Environ Mol Mutagen 60 368-384 (2019)
  3. An overview of Y-Family DNA polymerases and a case study of human DNA polymerase η. Yang W. Biochemistry 53 2793-2803 (2014)
  4. Translesion DNA synthesis and mutagenesis in prokaryotes. Fuchs RP, Fujii S. Cold Spring Harb Perspect Biol 5 a012682 (2013)
  5. DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair. Fijalkowska IJ, Schaaper RM, Jonczyk P. FEMS Microbiol Rev 36 1105-1121 (2012)
  6. Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Hove-Jensen B, Andersen KR, Kilstrup M, Martinussen J, Switzer RL, Willemoës M. Microbiol Mol Biol Rev 81 e00040-16 (2017)
  7. Fidelity of DNA replication-a matter of proofreading. Bębenek A, Ziuzia-Graczyk I. Curr Genet 64 985-996 (2018)
  8. DNA polymerases provide a canon of strategies for translesion synthesis past oxidatively generated lesions. Zahn KE, Wallace SS, Doublié S. Curr Opin Struct Biol 21 358-369 (2011)
  9. Specialised DNA polymerases in Escherichia coli: roles within multiple pathways. Henrikus SS, van Oijen AM, Robinson A. Curr Genet 64 1189-1196 (2018)
  10. Diversity and evolution of B-family DNA polymerases. Kazlauskas D, Krupovic M, Guglielmini J, Forterre P, Venclovas Č. Nucleic Acids Res 48 10142-10156 (2020)
  11. Structural insights into eukaryotic DNA replication. Doublié S, Zahn KE. Front Microbiol 5 444 (2014)
  12. The three-component helicase/primase complex of herpes simplex virus-1. Bermek O, Williams RS. Open Biol 11 210011 (2021)
  13. Etheno adducts: from tRNA modifications to DNA adducts and back to miscoding ribonucleotides. Guengerich FP, Ghodke PP. Genes Environ 43 24 (2021)

Articles citing this publication (60)

  1. Synthetic genetic polymers capable of heredity and evolution. Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew SY, McLaughlin SH, Herdewijn P, Holliger P. Science 336 341-344 (2012)
  2. Structure and mechanism of human DNA polymerase eta. Biertümpfel C, Zhao Y, Kondo Y, Ramón-Maiques S, Gregory M, Lee JY, Masutani C, Lehmann AR, Hanaoka F, Yang W. Nature 465 1044-1048 (2010)
  3. Watching DNA polymerase η make a phosphodiester bond. Nakamura T, Zhao Y, Yamagata Y, Hua YJ, Yang W. Nature 487 196-201 (2012)
  4. Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass. Lee YS, Gregory MT, Yang W. Proc Natl Acad Sci U S A 111 2954-2959 (2014)
  5. Structural basis of human DNA polymerase η-mediated chemoresistance to cisplatin. Zhao Y, Biertümpfel C, Gregory MT, Hua YJ, Hanaoka F, Yang W. Proc Natl Acad Sci U S A 109 7269-7274 (2012)
  6. Capture of a third Mg²⁺ is essential for catalyzing DNA synthesis. Gao Y, Yang W. Science 352 1334-1337 (2016)
  7. Mechanism for priming DNA synthesis by yeast DNA polymerase α. Perera RL, Torella R, Klinge S, Kilkenny ML, Maman JD, Pellegrini L. Elife 2 e00482 (2013)
  8. Structural basis for inhibition of DNA replication by aphidicolin. Baranovskiy AG, Babayeva ND, Suwa Y, Gu J, Pavlov YI, Tahirov TH. Nucleic Acids Res 42 14013-14021 (2014)
  9. Mechanism of somatic hypermutation at the WA motif by human DNA polymerase η. Zhao Y, Gregory MT, Biertümpfel C, Hua YJ, Hanaoka F, Yang W. Proc Natl Acad Sci U S A 110 8146-8151 (2013)
  10. cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ. Fernandez-Leiro R, Conrad J, Scheres SH, Lamers MH. Elife 4 e11134 (2015)
  11. tRNA(His) guanylyltransferase (THG1), a unique 3'-5' nucleotidyl transferase, shares unexpected structural homology with canonical 5'-3' DNA polymerases. Hyde SJ, Eckenroth BE, Smith BA, Eberley WA, Heintz NH, Jackman JE, Doublié S. Proc Natl Acad Sci U S A 107 20305-20310 (2010)
  12. Nucleotide excision repair of 2-acetylaminofluorene- and 2-aminofluorene-(C8)-guanine adducts: molecular dynamics simulations elucidate how lesion structure and base sequence context impact repair efficiencies. Mu H, Kropachev K, Wang L, Zhang L, Kolbanovskiy A, Kolbanovskiy M, Geacintov NE, Broyde S. Nucleic Acids Res 40 9675-9690 (2012)
  13. Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli. Corzett CH, Goodman MF, Finkel SE. Genetics 194 409-420 (2013)
  14. Escherichia coli DNA polymerase IV (Pol IV), but not Pol II, dynamically switches with a stalled Pol III* replicase. Heltzel JM, Maul RW, Wolff DW, Sutton MD. J Bacteriol 194 3589-3600 (2012)
  15. Architecture of the Pol III-clamp-exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair. Toste Rêgo A, Holding AN, Kent H, Lamers MH. EMBO J 32 1334-1343 (2013)
  16. Replisome-mediated translesion synthesis and leading strand template lesion skipping are competing bypass mechanisms. Gabbai CB, Yeeles JT, Marians KJ. J Biol Chem 289 32811-32823 (2014)
  17. Exchange between Escherichia coli polymerases II and III on a processivity clamp. Kath JE, Chang S, Scotland MK, Wilbertz JH, Jergic S, Dixon NE, Sutton MD, Loparo JJ. Nucleic Acids Res 44 1681-1690 (2016)
  18. How a homolog of high-fidelity replicases conducts mutagenic DNA synthesis. Lee YS, Gao Y, Yang W. Nat Struct Mol Biol 22 298-303 (2015)
  19. Structure and mechanism of B-family DNA polymerase ζ specialized for translesion DNA synthesis. Malik R, Kopylov M, Gomez-Llorente Y, Jain R, Johnson RE, Prakash L, Prakash S, Ubarretxena-Belandia I, Aggarwal AK. Nat Struct Mol Biol 27 913-924 (2020)
  20. DNA conformational changes at the primer-template junction regulate the fidelity of replication by DNA polymerase. Datta K, Johnson NP, von Hippel PH. Proc Natl Acad Sci U S A 107 17980-17985 (2010)
  21. Self-correcting mismatches during high-fidelity DNA replication. Fernandez-Leiro R, Conrad J, Yang JC, Freund SM, Scheres SH, Lamers MH. Nat Struct Mol Biol 24 140-143 (2017)
  22. Mechanism of error-free and semitargeted mutagenic bypass of an aromatic amine lesion by Y-family polymerase Dpo4. Rechkoblit O, Kolbanovskiy A, Malinina L, Geacintov NE, Broyde S, Patel DJ. Nat Struct Mol Biol 17 379-388 (2010)
  23. Plant organellar DNA polymerases are replicative and translesion DNA synthesis polymerases. Baruch-Torres N, Brieba LG. Nucleic Acids Res 45 10751-10763 (2017)
  24. Preferred WMSA catalytic mechanism of the nucleotidyl transfer reaction in human DNA polymerase κ elucidates error-free bypass of a bulky DNA lesion. Lior-Hoffmann L, Wang L, Wang S, Geacintov NE, Broyde S, Zhang Y. Nucleic Acids Res 40 9193-9205 (2012)
  25. Structure of the 2-aminopurine-cytosine base pair formed in the polymerase active site of the RB69 Y567A-DNA polymerase. Reha-Krantz LJ, Hariharan C, Subuddhi U, Xia S, Zhao C, Beckman J, Christian T, Konigsberg W. Biochemistry 50 10136-10149 (2011)
  26. 5-Formylcytosine mediated DNA-protein cross-links block DNA replication and induce mutations in human cells. Ji S, Fu I, Naldiga S, Shao H, Basu AK, Broyde S, Tretyakova NY. Nucleic Acids Res 46 6455-6469 (2018)
  27. Human replicative DNA polymerase δ can bypass T-T (6-4) ultraviolet photoproducts on template strands. Narita T, Tsurimoto T, Yamamoto J, Nishihara K, Ogawa K, Ohashi E, Evans T, Iwai S, Takeda S, Hirota K. Genes Cells 15 1228-1239 (2010)
  28. Crystal structures of ternary complexes of archaeal B-family DNA polymerases. Kropp HM, Betz K, Wirth J, Diederichs K, Marx A. PLoS One 12 e0188005 (2017)
  29. Evolution of Inosine-Specific Endonuclease V from Bacterial DNase to Eukaryotic RNase. Wu J, Samara NL, Kuraoka I, Yang W. Mol Cell 76 44-56.e3 (2019)
  30. Genetic requirement for mutagenesis of the G[8,5-Me]T cross-link in Escherichia coli: DNA polymerases IV and V compete for error-prone bypass. Raychaudhury P, Basu AK. Biochemistry 50 2330-2338 (2011)
  31. The vaccinia virus DNA polymerase structure provides insights into the mode of processivity factor binding. Tarbouriech N, Ducournau C, Hutin S, Mas PJ, Man P, Forest E, Hart DJ, Peyrefitte CN, Burmeister WP, Iseni F. Nat Commun 8 1455 (2017)
  32. DNA polymerase from temperate phage Bam35 is endowed with processive polymerization and abasic sites translesion synthesis capacity. Berjón-Otero M, Villar L, de Vega M, Salas M, Redrejo-Rodríguez M. Proc Natl Acad Sci U S A 112 E3476-84 (2015)
  33. The mechanism of Single strand binding protein-RecG binding: Implications for SSB interactome function. Ding W, Tan HY, Zhang JX, Wilczek LA, Hsieh KR, Mulkin JA, Bianco PR. Protein Sci 29 1211-1227 (2020)
  34. Directed evolution of Escherichia coli with lower-than-natural plasmid mutation rates. Deatherage DE, Leon D, Rodriguez ÁE, Omar SK, Barrick JE. Nucleic Acids Res 46 9236-9250 (2018)
  35. Identification of a new motif in family B DNA polymerases by mutational analyses of the bacteriophage t4 DNA polymerase. Li V, Hogg M, Reha-Krantz LJ. J Mol Biol 400 295-308 (2010)
  36. Probing minor groove hydrogen bonding interactions between RB69 DNA polymerase and DNA. Xia S, Christian TD, Wang J, Konigsberg WH. Biochemistry 51 4343-4353 (2012)
  37. A gatekeeping function of the replicative polymerase controls pathway choice in the resolution of lesion-stalled replisomes. Chang S, Naiman K, Thrall ES, Kath JE, Jergic S, Dixon NE, Fuchs RP, Loparo JJ. Proc Natl Acad Sci U S A 116 25591-25601 (2019)
  38. Contribution of partial charge interactions and base stacking to the efficiency of primer extension at and beyond abasic sites in DNA. Xia S, Vashishtha A, Bulkley D, Eom SH, Wang J, Konigsberg WH. Biochemistry 51 4922-4931 (2012)
  39. A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota. Feng X, Liu X, Xu R, Zhao R, Feng W, Liao J, Han W, She Q. Front Microbiol 11 1585 (2020)
  40. A polar filter in DNA polymerases prevents ribonucleotide incorporation. Johnson MK, Kottur J, Nair DT. Nucleic Acids Res 47 10693-10705 (2019)
  41. Alteration in the cavity size adjacent to the active site of RB69 DNA polymerase changes its conformational dynamics. Xia S, Wood M, Bradley MJ, De La Cruz EM, Konigsberg WH. Nucleic Acids Res 41 9077-9089 (2013)
  42. Bypassing a 8,5'-cyclo-2'-deoxyadenosine lesion by human DNA polymerase η at atomic resolution. Weng PJ, Gao Y, Gregory MT, Wang P, Wang Y, Yang W. Proc Natl Acad Sci U S A 115 10660-10665 (2018)
  43. Mechanisms of feedback inhibition and sequential firing of active sites in plant aspartate transcarbamoylase. Bellin L, Del Caño-Ochoa F, Velázquez-Campoy A, Möhlmann T, Ramón-Maiques S. Nat Commun 12 947 (2021)
  44. Herpesviral helicase-primase subunit UL8 is inactivated B-family polymerase. Kazlauskas D, Venclovas C. Bioinformatics 30 2093-2097 (2014)
  45. The A-Rule and Deletion Formation During Abasic and Oxidized Abasic Site Bypass by DNA Polymerase θ. Laverty DJ, Averill AM, Doublié S, Greenberg MM. ACS Chem Biol 12 1584-1592 (2017)
  46. Architecture of y-family DNA polymerases relevant to translesion DNA synthesis as revealed in structural and molecular modeling studies. Chandani S, Jacobs C, Loechler EL. J Nucleic Acids 2010 784081 (2010)
  47. Comparative Molecular Dynamics Studies of Human DNA Polymerase η. Ucisik MN, Hammes-Schiffer S. J Chem Inf Model 55 2672-2681 (2015)
  48. Multiple deprotonation paths of the nucleophile 3'-OH in the DNA synthesis reaction. Gregory MT, Gao Y, Cui Q, Yang W. Proc Natl Acad Sci U S A 118 e2103990118 (2021)
  49. Polymorphism of apyrimidinic DNA structures in the nucleosome. Osakabe A, Arimura Y, Matsumoto S, Horikoshi N, Sugasawa K, Kurumizaka H. Sci Rep 7 41783 (2017)
  50. Structural basis for polymerase η-promoted resistance to the anticancer nucleoside analog cytarabine. Rechkoblit O, Choudhury JR, Buku A, Prakash L, Prakash S, Aggarwal AK. Sci Rep 8 12702 (2018)
  51. Structure and thermodynamic insights on acetylaminofluorene-modified deletion DNA duplexes as models for frameshift mutagenesis. Sandineni A, Lin B, MacKerell AD, Cho BP. Chem Res Toxicol 26 937-951 (2013)
  52. Effects of DNA3'pp5'G capping on 3' end repair reactions and of an embedded pyrophosphate-linked guanylate on ribonucleotide surveillance. Chauleau M, Das U, Shuman S. Nucleic Acids Res 43 3197-3207 (2015)
  53. How a B family DNA polymerase has been evolved to copy RNA. Choi WS, He P, Pothukuchy A, Gollihar J, Ellington AD, Yang W. Proc Natl Acad Sci U S A 117 21274-21280 (2020)
  54. 2.0 Å resolution crystal structure of human polκ reveals a new catalytic function of N-clasp in DNA replication. Jha V, Ling H. Sci Rep 8 15125 (2018)
  55. Flexibility of telomerase in binding the RNA template and DNA telomeric repeat. Choi WS, Weng PJ, Yang W. Proc Natl Acad Sci U S A 119 e2116159118 (2022)
  56. Insights into DNA polymerase δ's mechanism for accurate DNA replication. Foley MC, Couto L, Rauf S, Boyke A. J Mol Model 25 80 (2019)
  57. Rev7, the regulatory subunit of Polζ, undergoes UV-induced and Cul4-dependent degradation. Bhat A, Qin Z, Wang G, Chen W, Xiao W. FEBS J 284 1790-1803 (2017)
  58. DNA Polymerase II Supports the Replicative Bypass of N2-Alkyl-2'-deoxyguanosine Lesions in Escherichia coli Cells. Wang Y, Wu J, Wu J, Wang Y. Chem Res Toxicol 34 695-698 (2021)
  59. In crystallo observation of active site dynamics and transient metal ion binding within DNA polymerases. Chang C, Zhou G, Gao Y. Struct Dyn 10 034702 (2023)
  60. Primer terminal ribonucleotide alters the active site dynamics of DNA polymerase η and reduces DNA synthesis fidelity. Chang C, Lee Luo C, Eleraky S, Lin A, Zhou G, Gao Y. J Biol Chem 299 102938 (2023)