3kp8 Citations

Structure of a bacterial homologue of vitamin K epoxide reductase.

OpenAccess logo Nature 463 507-12 (2010)
Cited: 116 times
EuropePMC logo PMID: 20110994

Abstract

Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain gamma-carboxylation of many blood coagulation factors. Here, we report the 3.6 A crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an arrested state of electron transfer. The catalytic core of VKOR is a four transmembrane helix bundle that surrounds a quinone, connected through an additional transmembrane segment with the periplasmic thioredoxin-like domain. We propose a pathway for how VKOR uses electrons from cysteines of newly synthesized proteins to reduce a quinone, a mechanism confirmed by in vitro reconstitution of vitamin K-dependent disulphide bridge formation. Our results have implications for the mechanism of the mammalian VKOR and explain how mutations can cause resistance to the VKOR inhibitor warfarin, the most commonly used oral anticoagulant.

Reviews - 3kp8 mentioned but not cited (1)

  1. Macromolecular ab initio phasing enforcing secondary and tertiary structure. Millán C, Sammito M, Usón I. IUCrJ 2 95-105 (2015)

Articles - 3kp8 mentioned but not cited (2)

  1. Structure of a bacterial homologue of vitamin K epoxide reductase. Li W, Schulman S, Dutton RJ, Boyd D, Beckwith J, Rapoport TA. Nature 463 507-512 (2010)
  2. The geometry of Niggli reduction: SAUC - search of alternative unit cells. McGill KJ, Asadi M, Karakasheva MT, Andrews LC, Bernstein HJ. J Appl Crystallogr 47 360-364 (2014)


Reviews citing this publication (33)

  1. Glutathione peroxidases. Brigelius-Flohé R, Maiorino M. Biochim. Biophys. Acta 1830 3289-3303 (2013)
  2. Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Harms MJ, Thornton JW. Nat. Rev. Genet. 14 559-571 (2013)
  3. Protein disulfide isomerase in redox cell signaling and homeostasis. Laurindo FR, Pescatore LA, Fernandes Dde C. Free Radic. Biol. Med. 52 1954-1969 (2012)
  4. How proteins form disulfide bonds. Depuydt M, Messens J, Collet JF. Antioxid. Redox Signal. 15 49-66 (2011)
  5. Disulfide bonds in ER protein folding and homeostasis. Feige MJ, Hendershot LM. Curr. Opin. Cell Biol. 23 167-175 (2011)
  6. Structure and function of DsbA, a key bacterial oxidative folding catalyst. Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, Martin JL. Antioxid. Redox Signal. 14 1729-1760 (2011)
  7. Structure, mechanism, and evolution of Ero1 family enzymes. Araki K, Inaba K. Antioxid. Redox Signal. 16 790-799 (2012)
  8. Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead. Denoncin K, Collet JF. Antioxid. Redox Signal. 19 63-71 (2013)
  9. Disulfide bond formation network in the three biological kingdoms, bacteria, fungi and mammals. Sato Y, Inaba K. FEBS J. 279 2262-2271 (2012)
  10. The thioredoxin superfamily in oxidative protein folding. Lu J, Holmgren A. Antioxid. Redox Signal. 21 457-470 (2014)
  11. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Delic M, Göngrich R, Mattanovich D, Gasser B. Antioxid. Redox Signal. 21 414-437 (2014)
  12. Integrating protein homeostasis strategies in prokaryotes. Mogk A, Huber D, Bukau B. Cold Spring Harb Perspect Biol 3 (2011)
  13. Structural and functional insights into enzymes of the vitamin K cycle. Tie JK, Stafford DW. J. Thromb. Haemost. 14 236-247 (2016)
  14. Disulfide-Bond-Forming Pathways in Gram-Positive Bacteria. Reardon-Robinson ME, Ton-That H. J. Bacteriol. 198 746-754 (2015)
  15. Oxidative folding in chloroplasts. Kieselbach T. Antioxid. Redox Signal. 19 72-82 (2013)
  16. Structural and functional insights into human vitamin K epoxide reductase and vitamin K epoxide reductase-like1. Van Horn WD. Crit. Rev. Biochem. Mol. Biol. 48 357-372 (2013)
  17. Cellular disulfide bond formation in bioactive peptides and proteins. Patil NA, Tailhades J, Hughes RA, Separovic F, Wade JD, Hossain MA. Int J Mol Sci 16 1791-1805 (2015)
  18. Disulfide bond formation in the cytoplasm. Saaranen MJ, Ruddock LW. Antioxid. Redox Signal. 19 46-53 (2013)
  19. The oxidative protein folding machinery in plant cells. Aller I, Meyer AJ. Protoplasma 250 799-816 (2013)
  20. Genotype-based dosing algorithms for warfarin therapy: data review and recommendations. Johnson EG, Horne BD, Carlquist JF, Anderson JL. Mol Diagn Ther 15 255-264 (2011)
  21. Oxidative protein folding: selective pressure for prolamin evolution in rice. Onda Y, Kawagoe Y. Plant Signal Behav 6 1966-1972 (2011)
  22. Oxidative protein-folding systems in plant cells. Onda Y. Int J Cell Biol 2013 585431 (2013)
  23. Chemistry and Enzymology of Disulfide Cross-Linking in Proteins. Fass D, Thorpe C. Chem. Rev. 118 1169-1198 (2018)
  24. Disulfide bond formation in prokaryotes. Landeta C, Boyd D, Beckwith J. Nat Microbiol 3 270-280 (2018)
  25. VKORC1 and VKORC1L1: Why do Vertebrates Have Two Vitamin K 2,3-Epoxide Reductases? Oldenburg J, Watzka M, Bevans CG. Nutrients 7 6250-6280 (2015)
  26. Antivitamins for Medicinal Applications. Zelder F, Sonnay M, Prieto L. Chembiochem 16 1264-1278 (2015)
  27. Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems. Bocian-Ostrzycka KM, Grzeszczuk MJ, Dziewit L, Jagusztyn-Krynicka EK. Front Microbiol 6 570 (2015)
  28. Structural Modeling Insights into Human VKORC1 Phenotypes. Czogalla KJ, Watzka M, Oldenburg J. Nutrients 7 6837-6851 (2015)
  29. Membrane properties that shape the evolution of membrane enzymes. Sanders CR, Hutchison JM. Curr. Opin. Struct. Biol. 51 80-91 (2018)
  30. Structural basis for catalysis at the membrane-water interface. Dufrisne MB, Petrou VI, Clarke OB, Mancia F. Biochim Biophys Acta Mol Cell Biol Lipids 1862 1368-1385 (2017)
  31. New Aspects of Vitamin K Research with Synthetic Ligands: Transcriptional Activity via SXR and Neural Differentiation Activity. Hirota Y, Suhara Y. Int J Mol Sci 20 (2019)
  32. Protein Disulfide Exchange by the Intramembrane Enzymes DsbB, DsbD, and CcdA. Bushweller JH. J Mol Biol 432 5091-5103 (2020)
  33. VKORC1L1, An Enzyme Mediating the Effect of Vitamin K in Liver and Extrahepatic Tissues. Lacombe J, Ferron M. Nutrients 10 (2018)

Articles citing this publication (80)

  1. Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin. Zito E, Melo EP, Yang Y, Wahlander Å, Neubert TA, Ron D. Mol. Cell 40 787-797 (2010)
  2. Vitamin K epoxide reductase prefers ER membrane-anchored thioredoxin-like redox partners. Schulman S, Wang B, Li W, Rapoport TA. Proc. Natl. Acad. Sci. U.S.A. 107 15027-15032 (2010)
  3. Thirteen novel VKORC1 mutations associated with oral anticoagulant resistance: insights into improved patient diagnosis and treatment. Watzka M, Geisen C, Bevans CG, Sittinger K, Spohn G, Rost S, Seifried E, Müller CR, Oldenburg J. J. Thromb. Haemost. 9 109-118 (2011)
  4. Novel insight into the mechanism of the vitamin K oxidoreductase (VKOR): electron relay through Cys43 and Cys51 reduces VKOR to allow vitamin K reduction and facilitation of vitamin K-dependent protein carboxylation. Rishavy MA, Usubalieva A, Hallgren KW, Berkner KL. J. Biol. Chem. 286 7267-7278 (2011)
  5. Lumen Thiol Oxidoreductase1, a disulfide bond-forming catalyst, is required for the assembly of photosystem II in Arabidopsis. Karamoko M, Cline S, Redding K, Ruiz N, Hamel PP. Plant Cell 23 4462-4475 (2011)
  6. Vitamin K epoxide reductase contributes to protein disulfide formation and redox homeostasis within the endoplasmic reticulum. Rutkevich LA, Williams DB. Mol. Biol. Cell 23 2017-2027 (2012)
  7. Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1) mediates vitamin K-dependent intracellular antioxidant function. Westhofen P, Watzka M, Marinova M, Hass M, Kirfel G, Müller J, Bevans CG, Müller CR, Oldenburg J. J. Biol. Chem. 286 15085-15094 (2011)
  8. Molecular bases of cyclic and specific disulfide interchange between human ERO1alpha protein and protein-disulfide isomerase (PDI). Masui S, Vavassori S, Fagioli C, Sitia R, Inaba K. J. Biol. Chem. 286 16261-16271 (2011)
  9. Membrane topology and mutational analysis of Mycobacterium tuberculosis VKOR, a protein involved in disulfide bond formation and a homologue of human vitamin K epoxide reductase. Wang X, Dutton RJ, Beckwith J, Boyd D. Antioxid. Redox Signal. 14 1413-1420 (2011)
  10. Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells. Tie JK, Jin DY, Tie K, Stafford DW. J. Thromb. Haemost. 11 1556-1564 (2013)
  11. Biochemical characterization of spontaneous mutants of rat VKORC1 involved in the resistance to antivitamin K anticoagulants. Hodroge A, Longin-Sauvageon C, Fourel I, Benoit E, Lattard V. Arch. Biochem. Biophys. 515 14-20 (2011)
  12. High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE, Nieuwkoop AJ, Gennis RB, Rienstra CM. J. Biomol. NMR 51 227-233 (2011)
  13. Human vitamin K epoxide reductase and its bacterial homologue have different membrane topologies and reaction mechanisms. Tie JK, Jin DY, Stafford DW. J. Biol. Chem. 287 33945-33955 (2012)
  14. VKORC1 mutations detected in patients resistant to vitamin K antagonists are not all associated with a resistant VKOR activity. Hodroge A, Matagrin B, Moreau C, Fourel I, Hammed A, Benoit E, Lattard V. J. Thromb. Haemost. 10 2535-2543 (2012)
  15. A bimodular oxidoreductase mediates the specific reduction of phylloquinone (vitamin K₁) in chloroplasts. Furt F, Oostende Cv, Widhalm JR, Dale MA, Wertz J, Basset GJ. Plant J. 64 38-46 (2010)
  16. A new cell culture-based assay quantifies vitamin K 2,3-epoxide reductase complex subunit 1 function and reveals warfarin resistance phenotypes not shown by the dithiothreitol-driven VKOR assay. Fregin A, Czogalla KJ, Gansler J, Rost S, Taverna M, Watzka M, Bevans CG, Müller CR, Oldenburg J. J. Thromb. Haemost. 11 872-880 (2013)
  17. A protein oxidase catalysing disulfide bond formation is localized to the chloroplast thylakoids. Feng WK, Wang L, Lu Y, Wang XY. FEBS J. 278 3419-3430 (2011)
  18. Cancer-Associated Oxidase ERO1-α Regulates the Expression of MHC Class I Molecule via Oxidative Folding. Kukita K, Tamura Y, Tanaka T, Kajiwara T, Kutomi G, Saito K, Okuya K, Takaya A, Kanaseki T, Tsukahara T, Hirohashi Y, Torigoe T, Furuhata T, Hirata K, Sato N. J Immunol 194 4988-4996 (2015)
  19. Human VKORC1 mutations cause variable degrees of 4-hydroxycoumarin resistance and affect putative warfarin binding interfaces. Czogalla KJ, Biswas A, Wendeln AC, Westhofen P, Müller CR, Watzka M, Oldenburg J. Blood 122 2743-2750 (2013)
  20. Structure of the disulfide bond generating membrane protein DsbB in the lipid bilayer. Tang M, Nesbitt AE, Sperling LJ, Berthold DA, Schwieters CD, Gennis RB, Rienstra CM. J. Mol. Biol. 425 1670-1682 (2013)
  21. Distribution and frequency of VKORC1 sequence variants conferring resistance to anticoagulants in Mus musculus. Pelz HJ, Rost S, Müller E, Esther A, Ulrich RG, Müller CR. Pest Manag. Sci. 68 254-259 (2012)
  22. Structural and biochemical characterization of the essential DsbA-like disulfide bond forming protein from Mycobacterium tuberculosis. Chim N, Harmston CA, Guzman DJ, Goulding CW. BMC Struct. Biol. 13 23 (2013)
  23. Structures of an intramembrane vitamin K epoxide reductase homolog reveal control mechanisms for electron transfer. Liu S, Cheng W, Fowle Grider R, Shen G, Li W. Nat Commun 5 3110 (2014)
  24. Conserved loop cysteines of vitamin K epoxide reductase complex subunit 1-like 1 (VKORC1L1) are involved in its active site regeneration. Tie JK, Jin DY, Stafford DW. J. Biol. Chem. 289 9396-9407 (2014)
  25. Depletion of cyclophilins B and C leads to dysregulation of endoplasmic reticulum redox homeostasis. Stocki P, Chapman DC, Beach LA, Williams DB. J. Biol. Chem. 289 23086-23096 (2014)
  26. Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria. Landeta C, Blazyk JL, Hatahet F, Meehan BM, Eser M, Myrick A, Bronstain L, Minami S, Arnold H, Ke N, Rubin EJ, Furie BC, Furie B, Beckwith J, Dutton R, Boyd D. Nat. Chem. Biol. 11 292-298 (2015)
  27. Mycobacterium tuberculosis vitamin K epoxide reductase homologue supports vitamin K-dependent carboxylation in mammalian cells. Tie JK, Jin DY, Stafford DW. Antioxid. Redox Signal. 16 329-338 (2012)
  28. The vitamin K oxidoreductase is a multimer that efficiently reduces vitamin K epoxide to hydroquinone to allow vitamin K-dependent protein carboxylation. Rishavy MA, Hallgren KW, Wilson LA, Usubalieva A, Runge KW, Berkner KL. J. Biol. Chem. 288 31556-31566 (2013)
  29. Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer. Shen G, Cui W, Zhang H, Zhou F, Huang W, Liu Q, Yang Y, Li S, Bowman GR, Sadler JE, Gross ML, Li W. Nat. Struct. Mol. Biol. 24 69-76 (2017)
  30. The Arg98Trp mutation in human VKORC1 causing VKCFD2 disrupts a di-arginine-based ER retention motif. Czogalla KJ, Biswas A, Rost S, Watzka M, Oldenburg J. Blood 124 1354-1362 (2014)
  31. Operation of trans-thylakoid thiol-metabolizing pathways in photosynthesis. Karamoko M, Gabilly ST, Hamel PP. Front Plant Sci 4 476 (2013)
  32. Warfarin and vitamin K compete for binding to Phe55 in human VKOR. Czogalla KJ, Biswas A, Höning K, Hornung V, Liphardt K, Watzka M, Oldenburg J. Nat. Struct. Mol. Biol. 24 77-85 (2017)
  33. Laser-Initiated Radical Trifluoromethylation of Peptides and Proteins: Application to Mass-Spectrometry-Based Protein Footprinting. Cheng M, Zhang B, Cui W, Gross ML. Angew. Chem. Int. Ed. Engl. 56 14007-14010 (2017)
  34. A hetero-dimer model for concerted action of vitamin K carboxylase and vitamin K reductase in vitamin K cycle. Wu S, Liu S, Davis CH, Stafford DW, Kulman JD, Pedersen LG. J. Theor. Biol. 279 143-149 (2011)
  35. Confirmation of warfarin resistance of naturally occurring VKORC1 variants by coexpression with coagulation factor IX and in silico protein modelling. Müller E, Keller A, Fregin A, Müller CR, Rost S. BMC Genet. 15 17 (2014)
  36. Enzyme structure captures four cysteines aligned for disulfide relay. Gat Y, Vardi-Kilshtain A, Grossman I, Major DT, Fass D. Protein Sci. 23 1102-1112 (2014)
  37. How I treat poisoning with vitamin K antagonists. Schulman S, Furie B. Blood 125 438-442 (2015)
  38. Functional Study of the Vitamin K Cycle Enzymes in Live Cells. Tie JK, Stafford DW. Meth. Enzymol. 584 349-394 (2017)
  39. Structure analysis of the extracellular domain reveals disulfide bond forming-protein properties of Mycobacterium tuberculosis Rv2969c. Wang L, Li J, Wang X, Liu W, Zhang XC, Li X, Rao Z. Protein Cell 4 628-640 (2013)
  40. Altered Escherichia coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase. Hatahet F, Blazyk JL, Martineau E, Mandela E, Zhao Y, Campbell RE, Beckwith J, Boyd D. Proc. Natl. Acad. Sci. U.S.A. 112 15184-15189 (2015)
  41. Biochemical and pharmacological evaluation of 4-hydroxychromen-2-ones bearing polar C-3 substituents as anticoagulants. Mladenović M, Mihailović M, Bogojević D, Vuković N, Sukdolak S, Matić S, Nićiforović N, Mihailović V, Mašković P, Vrvić MM, Solujić S. Eur J Med Chem 54 144-158 (2012)
  42. Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain. Bocian-Ostrzycka KM, Łasica AM, Dunin-Horkawicz S, Grzeszczuk MJ, Drabik K, Dobosz AM, Godlewska R, Nowak E, Collet JF, Jagusztyn-Krynicka EK. Front Microbiol 6 1065 (2015)
  43. Identification and characterization of SlVKOR, a disulfide bond formation protein from Solanum lycopersicum, and bioinformatic analysis of plant VKORs. Wan CM, Yang XJ, Du JJ, Lu Y, Yu ZB, Feng YG, Wang XY. Biochemistry (Mosc) 79 440-449 (2014)
  44. Inhibition of Pseudomonas aeruginosa and Mycobacterium tuberculosis disulfide bond forming enzymes. Landeta C, McPartland L, Tran NQ, Meehan BM, Zhang Y, Tanweer Z, Wakabayashi S, Rock J, Kim T, Balasubramanian D, Audette R, Toosky M, Pinkham J, Rubin EJ, Lory S, Pier G, Boyd D, Beckwith J. Mol Microbiol 111 918-937 (2019)
  45. Phylogenetics and enzymology of plant quiescin sulfhydryl oxidase. Limor-Waisberg K, Alon A, Mehlman T, Fass D. FEBS Lett. 586 4119-4125 (2012)
  46. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family. Bevans CG, Krettler C, Reinhart C, Watzka M, Oldenburg J. Nutrients 7 6224-6249 (2015)
  47. Structural basis of antagonizing the vitamin K catalytic cycle for anticoagulation. Liu S, Li S, Shen G, Sukumar N, Krezel AM, Li W. Science 371 eabc5667 (2021)
  48. The conservative cysteines in transmembrane domain of AtVKOR/LTO1 are critical for photosynthetic growth and photosystem II activity in Arabidopsis. Du JJ, Zhan CY, Lu Y, Cui HR, Wang XY. Front Plant Sci 6 238 (2015)
  49. Coumatetralyl resistance of Rattus tanezumi infesting oil palm plantations in Indonesia. Andru J, Cosson JF, Caliman JP, Benoit E. Ecotoxicology 22 377-386 (2013)
  50. Electron Transport Chain Is Biochemically Linked to Pilus Assembly Required for Polymicrobial Interactions and Biofilm Formation in the Gram-Positive Actinobacterium Actinomyces oris. Sanchez BC, Chang C, Wu C, Tran B, Ton-That H. MBio 8 (2017)
  51. Intramembrane Thiol Oxidoreductases: Evolutionary Convergence and Structural Controversy. Li S, Shen G, Li W. Biochemistry 57 258-266 (2018)
  52. VKOR paralog VKORC1L1 supports vitamin K-dependent protein carboxylation in vivo. Lacombe J, Rishavy MA, Berkner KL, Ferron M. JCI Insight 3 (2018)
  53. A novel mutation in VKORC1 and its effect on enzymatic activity in Japanese warfarin-resistant rats. Tanaka KD, Kawai YK, Ikenaka Y, Harunari T, Tanikawa T, Fujita S, Ishizuka M. J Vet Med Sci 75 135-139 (2013)
  54. Free-Radical Membrane Protein Footprinting by Photolysis of Perfluoroisopropyl Iodide Partitioned to Detergent Micelle by Sonication. Cheng M, Guo C, Li W, Gross ML. Angew Chem Int Ed Engl 60 8867-8873 (2021)
  55. Oxidative folding: recent developments. Szarka A, Bánhegyi G. Biomol Concepts 2 379-390 (2011)
  56. Structural and Biochemical Features of Eimeria tenella Dihydroorotate Dehydrogenase, a Potential Drug Target. Sato D, Hartuti ED, Inaoka DK, Sakura T, Amalia E, Nagahama M, Yoshioka Y, Tsuji N, Nozaki T, Kita K, Harada S, Matsubayashi M, Shiba T. Genes (Basel) 11 E1468 (2020)
  57. VKORC1 and VKORC1L1 have distinctly different oral anticoagulant dose-response characteristics and binding sites. Czogalla KJ, Liphardt K, Höning K, Hornung V, Biswas A, Watzka M, Oldenburg J. Blood Adv 2 691-702 (2018)
  58. Warfarin alters vitamin K metabolism: a surprising mechanism of VKORC1 uncoupling necessitates an additional reductase. Rishavy MA, Hallgren KW, Wilson L, Singh S, Runge KW, Berkner KL. Blood 131 2826-2835 (2018)
  59. Membrane Protein Structure in Live Cells: Methodology for Studying Drug Interaction by Mass Spectrometry-Based Footprinting. Shen G, Li S, Cui W, Liu S, Yang Y, Gross M, Li W. Biochemistry 57 286-294 (2018)
  60. Stabilization of warfarin-binding pocket of VKORC1 and VKORL1 by a peripheral region determines their different sensitivity to warfarin inhibition. Shen G, Li S, Cui W, Liu S, Liu Q, Yang Y, Gross M, Li W. J. Thromb. Haemost. 16 1164-1175 (2018)
  61. The in silico mechanism of hVKOR interaction with acetaminophen and its metabolite, as well as N-acetyl cysteine: caution on application in COVID-19 patients. Hashemi SA, Kyani A, Bathaie SZ. J Biomol Struct Dyn 1-12 (2021)
  62. Vitamin K epoxide reductase and its paralogous enzyme have different structures and functions. Sinhadri BCS, Jin DY, Stafford DW, Tie JK. Sci Rep 7 17632 (2017)
  63. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition. Wu S, Chen X, Jin DY, Stafford DW, Pedersen LG, Tie JK. Blood 132 647-657 (2018)
  64. Case Reports A case of pulmonary embolism with bad warfarin anticoagulant effects caused by E. coli infection. Huang W, Cai Q, Huo Y, Tang J, Chen Y, Fang Y, Lu Y. Open Life Sci 18 20220539 (2023)
  65. Biochemical Studies of Mitochondrial Malate: Quinone Oxidoreductase from Toxoplasma gondii. Acharjee R, Talaam KK, Hartuti ED, Matsuo Y, Sakura T, Gloria BM, Hidano S, Kido Y, Mori M, Shiomi K, Sekijima M, Nozaki T, Umeda K, Nishikawa Y, Hamano S, Kita K, Inaoka DK. Int J Mol Sci 22 7830 (2021)
  66. Characterization of Warfarin Inhibition Kinetics Requires Stabilization of Intramembrane Vitamin K Epoxide Reductases. Li S, Liu S, Yang Y, Li W. J Mol Biol 432 5197-5208 (2020)
  67. Competitive tight-binding inhibition of VKORC1 underlies warfarin dosage variation and antidotal efficacy. Li S, Liu S, Liu XR, Zhang MM, Li W. Blood Adv 4 2202-2212 (2020)
  68. Diethylpyrocarbonate Footprints a Membrane Protein in Micelles. Guo C, Cheng M, Li W, Gross ML. J Am Soc Mass Spectrom 32 2636-2643 (2021)
  69. Distinct enzymatic strategies for de novo generation of disulfide bonds in membranes. Li W. Crit Rev Biochem Mol Biol 58 36-49 (2023)
  70. Flipping the sidedness of disulfide bond formation. Slotboom DJ. J. Mol. Biol. 425 3265-3267 (2013)
  71. Genera specific distribution of DEAD-box RNA helicases in cyanobacteria. Whitford DS, Whitman BT, Owttrim GW. Microb Genom 7 (2021)
  72. Identification of the Thioredoxin Partner of Vitamin K Epoxide Reductase in Mycobacterial Disulfide Bond Formation. Ke N, Landeta C, Wang X, Boyd D, Eser M, Beckwith J. J. Bacteriol. 200 (2018)
  73. Introducing an Arabidopsis thaliana Thylakoid Thiol/Disulfide-Modulating Protein Into Synechocystis Increases the Efficiency of Photosystem II Photochemistry. Wessendorf RL, Lu Y. Front Plant Sci 10 1284 (2019)
  74. Low warfarin resistance frequency in Norway rats in two cities in China after 30 years of usage of anticoagulant rodenticides. Ma X, Wang D, Li N, Liu L, Tian L, Luo C, Cong L, Feng Z, Liu XH, Song Y. Pest Manag. Sci. 74 2555-2560 (2018)
  75. Multiplexed measurement of variant abundance and activity reveals VKOR topology, active site and human variant impact. Chiasson MA, Rollins NJ, Stephany JJ, Sitko KA, Matreyek KA, Verby M, Sun S, Roth FP, DeSloover D, Marks DS, Rettie AE, Fowler DM. Elife 9 (2020)
  76. Nanoparticles and photochemistry for native-like transmembrane protein footprinting. Sun J, Liu XR, Li S, He P, Li W, Gross ML. Nat Commun 12 7270 (2021)
  77. New pieces to an old puzzle: identifying the warfarin-binding site that prevents clotting. Hilton JK, Van Horn WD. Nat. Struct. Mol. Biol. 24 5-6 (2017)
  78. Structural Insights into Phylloquinone (Vitamin K1), Menaquinone (MK4, MK7), and Menadione (Vitamin K3) Binding to VKORC1. Chatron N, Hammed A, Benoît E, Lattard V. Nutrients 11 (2019)
  79. Structural features determining the vitamin K epoxide reduction activity in the VKOR family of membrane oxidoreductases. Shen G, Li C, Cao Q, Megta AK, Li S, Gao M, Liu H, Shen Y, Chen Y, Yu H, Li S, Li W. FEBS J 289 4564-4579 (2022)
  80. The catalytic mechanism of vitamin K epoxide reduction in a cellular environment. Shen G, Cui W, Cao Q, Gao M, Liu H, Su G, Gross ML, Li W. J Biol Chem 296 100145 (2021)