3lg7 Citations

Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope.

Abstract

Broadly cross-reactive monoclonal antibodies define epitopes for vaccine development against HIV and other highly mutable viruses. Crystal structures are available for several such antibody-epitope complexes, but methods are needed to translate that structural information into immunogens that re-elicit similar antibodies. We describe a general computational method to design epitope-scaffolds in which contiguous structural epitopes are transplanted to scaffold proteins for conformational stabilization and immune presentation. Epitope-scaffolds designed for the poorly immunogenic but conserved HIV epitope 4E10 exhibited high epitope structural mimicry, bound with higher affinities to monoclonal antibody (mAb) 4E10 than the cognate peptide, and inhibited HIV neutralization by HIV+ sera. Rabbit immunization with an epitope-scaffold induced antibodies with structural specificity highly similar to mAb 4E10, an important advance toward elicitation of neutralizing activity. The results demonstrate that computationally designed epitope-scaffolds are valuable as structure-specific serological reagents and as immunogens to elicit antibodies with predetermined structural specificity.

Reviews citing this publication (47)

  1. HIV-1 neutralizing antibodies: understanding nature's pathways. Mascola JR, Haynes BF. Immunol Rev 254 225-244 (2013)
  2. A Blueprint for HIV Vaccine Discovery. Burton DR, Ahmed R, Barouch DH, Butera ST, Crotty S, Godzik A, Kaufmann DE, McElrath MJ, Nussenzweig MC, Pulendran B, Scanlan CN, Schief WR, Silvestri G, Streeck H, Walker BD, Walker LM, Ward AB, Wilson IA, Wyatt R. Cell Host Microbe 12 396-407 (2012)
  3. Modern subunit vaccines: development, components, and research opportunities. Moyle PM, Toth I. ChemMedChem 8 360-376 (2013)
  4. Computer-aided antibody design. Kuroda D, Shirai H, Jacobson MP, Nakamura H. Protein Eng Des Sel 25 507-521 (2012)
  5. Mucosal vaccine design and delivery. Woodrow KA, Bennett KM, Lo DD. Annu Rev Biomed Eng 14 17-46 (2012)
  6. Antibody responses to viral infections: a structural perspective across three different enveloped viruses. Murin CD, Wilson IA, Ward AB. Nat Microbiol 4 734-747 (2019)
  7. Dissecting the human immunologic memory for pathogens. Zielinski CE, Corti D, Mele F, Pinto D, Lanzavecchia A, Sallusto F. Immunol Rev 240 40-51 (2011)
  8. Advances in structure-based vaccine design. Kulp DW, Schief WR. Curr Opin Virol 3 322-331 (2013)
  9. How can HIV-type-1-Env immunogenicity be improved to facilitate antibody-based vaccine development? Klasse PJ, Sanders RW, Cerutti A, Moore JP. AIDS Res Hum Retroviruses 28 1-15 (2012)
  10. Protein folding and de novo protein design for biotechnological applications. Khoury GA, Smadbeck J, Kieslich CA, Floudas CA. Trends Biotechnol 32 99-109 (2014)
  11. Development of prophylactic vaccines against HIV-1. Schiffner T, Sattentau QJ, Dorrell L. Retrovirology 10 72 (2013)
  12. A global approach to HIV-1 vaccine development. Stephenson KE, Barouch DH. Immunol Rev 254 295-304 (2013)
  13. Advances in antiviral vaccine development. Graham BS. Immunol Rev 255 230-242 (2013)
  14. How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design. Pancera M, Changela A, Kwong PD. Curr Opin HIV AIDS 12 229-240 (2017)
  15. Passive immunotherapies targeting Aβ and tau in Alzheimer's disease. Plotkin SS, Cashman NR. Neurobiol Dis 144 105010 (2020)
  16. Coiled coil protein origami: from modular design principles towards biotechnological applications. Lapenta F, Aupič J, Strmšek Ž, Jerala R. Chem Soc Rev 47 3530-3542 (2018)
  17. Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens. Liljeroos L, Malito E, Ferlenghi I, Bottomley MJ. J Immunol Res 2015 156241 (2015)
  18. Computational tools for epitope vaccine design and evaluation. He L, Zhu J. Curr Opin Virol 11 103-112 (2015)
  19. Peptides for immunological purposes: design, strategies and applications. Gori A, Longhi R, Peri C, Colombo G. Amino Acids 45 257-268 (2013)
  20. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies. Sliepen K, Sanders RW. Expert Rev Vaccines 15 349-365 (2016)
  21. Options and obstacles for designing a universal influenza vaccine. Jang YH, Seong BL. Viruses 6 3159-3180 (2014)
  22. Protein Crystallography in Vaccine Research and Development. Malito E, Carfi A, Bottomley MJ. Int J Mol Sci 16 13106-13140 (2015)
  23. Structure-based vaccine design in HIV: blind men and the elephant? Pejchal R, Wilson IA. Curr Pharm Des 16 3744-3753 (2010)
  24. Antibodies to combat viral infections: development strategies and progress. Pantaleo G, Correia B, Fenwick C, Joo VS, Perez L. Nat Rev Drug Discov 21 676-696 (2022)
  25. HIV vaccine design: the neutralizing antibody conundrum. Stamatatos L. Curr Opin Immunol 24 316-323 (2012)
  26. HIV-1 vaccine immunogen design strategies. Mann JK, Ndung'u T. Virol J 12 3 (2015)
  27. Immunologic Insights on the Membrane Proximal External Region: A Major Human Immunodeficiency Virus Type-1 Vaccine Target. Molinos-Albert LM, Clotet B, Blanco J, Carrillo J. Front Immunol 8 1154 (2017)
  28. Rotavirus vaccine efficacy: current status and areas for improvement. Carvalho MF, Gill D. Hum Vaccin Immunother 15 1237-1250 (2019)
  29. Emerging Vaccine Technologies. Loomis RJ, Johnson PR. Vaccines (Basel) 3 429-447 (2015)
  30. Protein Assembly by Design. Zhu J, Avakyan N, Kakkis A, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Chem Rev 121 13701-13796 (2021)
  31. Neutralizing antibodies and control of HIV: moves and countermoves. Hessell AJ, Haigwood NL. Curr HIV/AIDS Rep 9 64-72 (2012)
  32. Antibody-based candidate therapeutics against HIV-1: implications for virus eradication and vaccine design. Chen W, Ying T, Dimitrov DS. Expert Opin Biol Ther 13 657-671 (2013)
  33. Max Bergmann lecture protein epitope mimetics in the age of structural vaccinology. Robinson JA. J Pept Sci 19 127-140 (2013)
  34. Structure-based immunogen design-leading the way to the new age of precision vaccines. Sesterhenn F, Bonet J, Correia BE. Curr Opin Struct Biol 51 163-169 (2018)
  35. Vaccines based on structure-based design provide protection against infectious diseases. Thomas S, Luxon BA. Expert Rev Vaccines 12 1301-1311 (2013)
  36. Envelope Glycoprotein Trimers as HIV-1 Vaccine Immunogens. Sattentau QJ. Vaccines (Basel) 1 497-512 (2013)
  37. Genome- and proteome-wide screening strategies for antigen discovery and immunogen design. Schussek S, Trieu A, Doolan DL. Biotechnol Adv 32 403-414 (2014)
  38. The Status and Prospects of Epstein-Barr Virus Prophylactic Vaccine Development. Sun C, Chen XC, Kang YF, Zeng MS. Front Immunol 12 677027 (2021)
  39. An accurate binding interaction model in de novo computational protein design of interactions: if you build it, they will bind. London N, Ambroggio X. J Struct Biol 185 136-146 (2014)
  40. Protein engineering strategies for the development of viral vaccines and immunotherapeutics. Koellhoffer JF, Higgins CD, Lai JR. FEBS Lett 588 298-307 (2014)
  41. Targeting Viral Surface Proteins through Structure-Based Design. Narkhede YB, Gonzalez KJ, Strauch EM. Viruses 13 1320 (2021)
  42. Toward rational vaccine engineering. Vishweshwaraiah YL, Dokholyan NV. Adv Drug Deliv Rev 183 114142 (2022)
  43. Broadly Neutralizing Antibody-Guided Carbohydrate-Based HIV Vaccine Design: Challenges and Opportunities. Liu CC, Zheng XJ, Ye XS. ChemMedChem 11 357-362 (2016)
  44. Step-by-step design of proteins for small molecule interaction: A review on recent milestones. Pereira JM, Vieira M, Santos SM. Protein Sci 30 1502-1520 (2021)
  45. Computational Methods in Immunology and Vaccinology: Design and Development of Antibodies and Immunogens. Guarra F, Colombo G. J Chem Theory Comput 19 5315-5333 (2023)
  46. Protein-protein interaction prediction with deep learning: A comprehensive review. Soleymani F, Paquet E, Viktor H, Michalowski W, Spinello D. Comput Struct Biotechnol J 20 5316-5341 (2022)
  47. What Can De Novo Protein Design Bring to the Treatment of Hematological Disorders? Lu H, Cheng Z, Hu Y, Tang LV. Biology (Basel) 12 166 (2023)

Articles citing this publication (97)

  1. Proof of principle for epitope-focused vaccine design. Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico C, Jardine JG, Rupert P, Correnti C, Kalyuzhniy O, Vittal V, Connell MJ, Stevens E, Schroeter A, Chen M, Macpherson S, Serra AM, Adachi Y, Holmes MA, Li Y, Klevit RE, Graham BS, Wyatt RT, Baker D, Strong RK, Crowe JE, Johnson PR, Schief WR. Nature 507 201-206 (2014)
  2. Principles for designing ideal protein structures. Koga N, Koga N, Tatsumi-Koga R, Liu G, Xiao R, Acton TB, Montelione GT, Baker D. Nature 491 222-227 (2012)
  3. Structural basis for germ-line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1 gp120. West AP, Diskin R, Nussenzweig MC, Bjorkman PJ. Proc Natl Acad Sci U S A 109 E2083-90 (2012)
  4. Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold. Azoitei ML, Correia BE, Ban YE, Carrico C, Kalyuzhniy O, Chen L, Schroeter A, Huang PS, McLellan JS, Kwong PD, Baker D, Strong RK, Schief WR. Science 334 373-376 (2011)
  5. Manipulating the selection forces during affinity maturation to generate cross-reactive HIV antibodies. Wang S, Mata-Fink J, Kriegsman B, Hanson M, Irvine DJ, Eisen HN, Burton DR, Wittrup KD, Kardar M, Chakraborty AK. Cell 160 785-797 (2015)
  6. Defining a protective epitope on factor H binding protein, a key meningococcal virulence factor and vaccine antigen. Malito E, Faleri A, Lo Surdo P, Veggi D, Maruggi G, Grassi E, Cartocci E, Bertoldi I, Genovese A, Santini L, Romagnoli G, Borgogni E, Brier S, Lo Passo C, Domina M, Castellino F, Felici F, van der Veen S, Johnson S, Lea SM, Tang CM, Pizza M, Savino S, Norais N, Rappuoli R, Bottomley MJ, Masignani V. Proc Natl Acad Sci U S A 110 3304-3309 (2013)
  7. A computationally designed inhibitor of an Epstein-Barr viral Bcl-2 protein induces apoptosis in infected cells. Procko E, Berguig GY, Shen BW, Song Y, Frayo S, Convertine AJ, Margineantu D, Booth G, Correia BE, Cheng Y, Schief WR, Hockenbery DM, Press OW, Stoddard BL, Stayton PS, Baker D. Cell 157 1644-1656 (2014)
  8. Structure of a major antigenic site on the respiratory syncytial virus fusion glycoprotein in complex with neutralizing antibody 101F. McLellan JS, Chen M, Chang JS, Yang Y, Kim A, Graham BS, Kwong PD. J Virol 84 12236-12244 (2010)
  9. Design and characterization of epitope-scaffold immunogens that present the motavizumab epitope from respiratory syncytial virus. McLellan JS, Correia BE, Chen M, Yang Y, Graham BS, Schief WR, Kwong PD. J Mol Biol 409 853-866 (2011)
  10. Comparison of antibody repertoires produced by HIV-1 infection, other chronic and acute infections, and systemic autoimmune disease. Breden F, Lepik C, Longo NS, Montero M, Lipsky PE, Scott JK. PLoS One 6 e16857 (2011)
  11. Immune tolerance negatively regulates B cells in knock-in mice expressing broadly neutralizing HIV antibody 4E10. Doyle-Cooper C, Hudson KE, Cooper AB, Ota T, Skog P, Dawson PE, Zwick MB, Schief WR, Burton DR, Nemazee D. J Immunol 191 3186-3191 (2013)
  12. De novo protein design enables the precise induction of RSV-neutralizing antibodies. Sesterhenn F, Yang C, Bonet J, Cramer JT, Wen X, Wang Y, Chiang CI, Abriata LA, Kucharska I, Castoro G, Vollers SS, Galloux M, Dheilly E, Rosset S, Corthésy P, Georgeon S, Villard M, Richard CA, Descamps D, Delgado T, Oricchio E, Rameix-Welti MA, Más V, Ervin S, Eléouët JF, Riffault S, Bates JT, Julien JP, Li Y, Jardetzky T, Krey T, Correia BE. Science 368 eaay5051 (2020)
  13. Heterologous epitope-scaffold prime:boosting immuno-focuses B cell responses to the HIV-1 gp41 2F5 neutralization determinant. Guenaga J, Dosenovic P, Ofek G, Baker D, Schief WR, Kwong PD, Karlsson Hedestam GB, Wyatt RT. PLoS One 6 e16074 (2011)
  14. Computational design of high-affinity epitope scaffolds by backbone grafting of a linear epitope. Azoitei ML, Ban YE, Julien JP, Bryson S, Schroeter A, Kalyuzhniy O, Porter JR, Adachi Y, Baker D, Pai EF, Schief WR. J Mol Biol 415 175-192 (2012)
  15. A virus-like particle that elicits cross-reactive antibodies to the conserved stem of influenza virus hemagglutinin. Schneemann A, Speir JA, Tan GS, Khayat R, Ekiert DC, Matsuoka Y, Wilson IA. J Virol 86 11686-11697 (2012)
  16. Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides. Hanson MC, Abraham W, Crespo MP, Chen SH, Liu H, Szeto GL, Kim M, Reinherz EL, Irvine DJ. Vaccine 33 861-868 (2015)
  17. Scaffolding to build a rational vaccine design strategy. Burton DR. Proc Natl Acad Sci U S A 107 17859-17860 (2010)
  18. Neutralizing epitopes in the membrane-proximal external region of HIV-1 gp41 are influenced by the transmembrane domain and the plasma membrane. Montero M, Gulzar N, Klaric KA, Donald JE, Lepik C, Wu S, Tsai S, Julien JP, Hessell AJ, Wang S, Lu S, Burton DR, Pai EF, Degrado WF, Scott JK. J Virol 86 2930-2941 (2012)
  19. Computational protein design using flexible backbone remodeling and resurfacing: case studies in structure-based antigen design. Correia BE, Ban YE, Friend DJ, Ellingson K, Xu H, Boni E, Bradley-Hewitt T, Bruhn-Johannsen JF, Stamatatos L, Strong RK, Schief WR. J Mol Biol 405 284-297 (2011)
  20. Location and length distribution of somatic hypermutation-associated DNA insertions and deletions reveals regions of antibody structural plasticity. Briney BS, Willis JR, Crowe JE. Genes Immun 13 523-529 (2012)
  21. Transplanting supersites of HIV-1 vulnerability. Zhou T, Zhu J, Yang Y, Gorman J, Ofek G, Srivatsan S, Druz A, Lees CR, Lu G, Soto C, Stuckey J, Burton DR, Koff WC, Connors M, Kwong PD. PLoS One 9 e99881 (2014)
  22. Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design. Irimia A, Serra AM, Sarkar A, Jacak R, Kalyuzhniy O, Sok D, Saye-Francisco KL, Schiffner T, Tingle R, Kubitz M, Adachi Y, Stanfield RL, Deller MC, Burton DR, Schief WR, Wilson IA. PLoS Pathog 13 e1006212 (2017)
  23. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. Berger S, Procko E, Margineantu D, Lee EF, Shen BW, Zelter A, Silva DA, Chawla K, Herold MJ, Garnier JM, Johnson R, MacCoss MJ, Lessene G, Davis TN, Stayton PS, Stoddard BL, Fairlie WD, Hockenbery DM, Baker D. Elife 5 e20352 (2016)
  24. Cross-clade HIV-1 neutralizing antibodies induced with V3-scaffold protein immunogens following priming with gp120 DNA. Zolla-Pazner S, Kong XP, Jiang X, Cardozo T, Nádas A, Cohen S, Totrov M, Seaman MS, Wang S, Lu S. J Virol 85 9887-9898 (2011)
  25. Simulation of B cell affinity maturation explains enhanced antibody cross-reactivity induced by the polyvalent malaria vaccine AMA1. Chaudhury S, Reifman J, Wallqvist A. J Immunol 193 2073-2086 (2014)
  26. Stapled HIV-1 peptides recapitulate antigenic structures and engage broadly neutralizing antibodies. Bird GH, Irimia A, Ofek G, Kwong PD, Wilson IA, Walensky LD. Nat Struct Mol Biol 21 1058-1067 (2014)
  27. Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding. He L, Cheng Y, Kong L, Azadnia P, Giang E, Kim J, Wood MR, Wilson IA, Law M, Zhu J. Sci Rep 5 12501 (2015)
  28. Longitudinal Analysis Reveals Early Development of Three MPER-Directed Neutralizing Antibody Lineages from an HIV-1-Infected Individual. Krebs SJ, Kwon YD, Schramm CA, Law WH, Donofrio G, Zhou KH, Gift S, Dussupt V, Georgiev IS, Schätzle S, McDaniel JR, Lai YT, Sastry M, Zhang B, Jarosinski MC, Ransier A, Chenine AL, Asokan M, Bailer RT, Bose M, Cagigi A, Cale EM, Chuang GY, Darko S, Driscoll JI, Druz A, Gorman J, Laboune F, Louder MK, McKee K, Mendez L, Moody MA, O'Sullivan AM, Owen C, Peng D, Rawi R, Sanders-Buell E, Shen CH, Shiakolas AR, Stephens T, Tsybovsky Y, Tucker C, Verardi R, Wang K, Zhou J, Zhou T, Georgiou G, Alam SM, Haynes BF, Rolland M, Matyas GR, Polonis VR, McDermott AB, Douek DC, Shapiro L, Tovanabutra S, Michael NL, Mascola JR, Robb ML, Kwong PD, Doria-Rose NA. Immunity 50 677-691.e13 (2019)
  29. Autoreactivity and exceptional CDR plasticity (but not unusual polyspecificity) hinder elicitation of the anti-HIV antibody 4E10. Finton KA, Larimore K, Larman HB, Friend D, Correnti C, Rupert PB, Elledge SJ, Greenberg PD, Strong RK. PLoS Pathog 9 e1003639 (2013)
  30. Computational Protein Design with Deep Learning Neural Networks. Wang J, Cao H, Zhang JZH, Qi Y. Sci Rep 8 6349 (2018)
  31. Multimeric scaffolds displaying the HIV-1 envelope MPER induce MPER-specific antibodies and cross-neutralizing antibodies when co-immunized with gp160 DNA. Krebs SJ, McBurney SP, Kovarik DN, Waddell CD, Jaworski JP, Sutton WF, Gomes MM, Trovato M, Waagmeester G, Barnett SJ, DeBerardinis P, Haigwood NL. PLoS One 9 e113463 (2014)
  32. Forcefield_NCAA: ab initio charge parameters to aid in the discovery and design of therapeutic proteins and peptides with unnatural amino acids and their application to complement inhibitors of the compstatin family. Khoury GA, Smadbeck J, Tamamis P, Vandris AC, Kieslich CA, Floudas CA. ACS Synth Biol 3 855-869 (2014)
  33. Basic research in HIV vaccinology is hampered by reductionist thinking. Van Regenmortel MH. Front Immunol 3 194 (2012)
  34. Induction of HIV neutralizing antibodies against the MPER of the HIV envelope protein by HA/gp41 chimeric protein-based DNA and VLP vaccines. Ye L, Wen Z, Dong K, Wang X, Bu Z, Zhang H, Compans RW, Yang C. PLoS One 6 e14813 (2011)
  35. An MPER antibody neutralizes HIV-1 using germline features shared among donors. Zhang L, Irimia A, He L, Landais E, Rantalainen K, Leaman DP, Vollbrecht T, Stano A, Sands DI, Kim AS, IAVI Protocol G Investigators, Poignard P, Burton DR, Murrell B, Ward AB, Zhu J, Wilson IA, Zwick MB. Nat Commun 10 5389 (2019)
  36. Protect, modify, deprotect (PMD): A strategy for creating vaccines to elicit antibodies targeting a specific epitope. Weidenbacher PA, Kim PS. Proc Natl Acad Sci U S A 116 9947-9952 (2019)
  37. The Atomic Structure of the HIV-1 gp41 Transmembrane Domain and Its Connection to the Immunogenic Membrane-proximal External Region. Apellániz B, Rujas E, Serrano S, Morante K, Tsumoto K, Caaveiro JM, Jiménez MÁ, Nieva JL. J Biol Chem 290 12999-13015 (2015)
  38. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design. Kong L, Sattentau QJ. J AIDS Clin Res S8 3 (2012)
  39. Bottom-up de novo design of functional proteins with complex structural features. Yang C, Sesterhenn F, Bonet J, van Aalen EA, Scheller L, Abriata LA, Cramer JT, Wen X, Rosset S, Georgeon S, Jardetzky T, Krey T, Fussenegger M, Merkx M, Correia BE. Nat Chem Biol 17 492-500 (2021)
  40. Engineering, expression, purification, and characterization of stable clade A/B recombinant soluble heterotrimeric gp140 proteins. Sellhorn G, Kraft Z, Caldwell Z, Ellingson K, Mineart C, Seaman MS, Montefiori DC, Lagerquist E, Stamatatos L. J Virol 86 128-142 (2012)
  41. First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor. Moody JD, Levy S, Mathieu J, Xing Y, Kim W, Dong C, Tempel W, Robitaille AM, Dang LT, Ferreccio A, Detraux D, Sidhu S, Zhu L, Carter L, Xu C, Valensisi C, Wang Y, Hawkins RD, Min J, Moon RT, Orkin SH, Baker D, Ruohola-Baker H. Proc Natl Acad Sci U S A 114 10125-10130 (2017)
  42. Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers. Morris CD, Azadnia P, de Val N, Vora N, Honda A, Giang E, Saye-Francisco K, Cheng Y, Lin X, Mann CJ, Tang J, Sok D, Burton DR, Law M, Ward AB, He L, Zhu J. mBio 8 e00036-17 (2017)
  43. Design of an Escherichia coli expressed HIV-1 gp120 fragment immunogen that binds to b12 and induces broad and potent neutralizing antibodies. Bhattacharyya S, Singh P, Rathore U, Purwar M, Wagner D, Arendt H, DeStefano J, LaBranche CC, Montefiori DC, Phogat S, Varadarajan R. J Biol Chem 288 9815-9825 (2013)
  44. Rosetta FunFolDes - A general framework for the computational design of functional proteins. Bonet J, Wehrle S, Schriever K, Yang C, Billet A, Sesterhenn F, Scheck A, Sverrisson F, Veselkova B, Vollers S, Lourman R, Villard M, Rosset S, Krey T, Correia BE. PLoS Comput Biol 14 e1006623 (2018)
  45. An immunogen containing four tandem 10E8 epitope repeats with exposed key residues induces antibodies that neutralize HIV-1 and activates an ADCC reporter gene. Sun Z, Zhu Y, Wang Q, Ye L, Dai Y, Su S, Yu F, Ying T, Yang C, Jiang S, Lu L. Emerg Microbes Infect 5 e65 (2016)
  46. Ontogeny of recognition specificity and functionality for the broadly neutralizing anti-HIV antibody 4E10. Finton KA, Friend D, Jaffe J, Gewe M, Holmes MA, Larman HB, Stuart A, Larimore K, Greenberg PD, Elledge SJ, Stamatatos L, Strong RK. PLoS Pathog 10 e1004403 (2014)
  47. Structure-based design of a protein immunogen that displays an HIV-1 gp41 neutralizing epitope. Stanfield RL, Julien JP, Pejchal R, Gach JS, Zwick MB, Wilson IA. J Mol Biol 414 460-476 (2011)
  48. Structure-based design of chimeric antigens for multivalent protein vaccines. Hollingshead S, Jongerius I, Exley RM, Johnson S, Lea SM, Tang CM. Nat Commun 9 1051 (2018)
  49. Computational design of a synthetic PD-1 agonist. Bryan CM, Rocklin GJ, Bick MJ, Ford A, Majri-Morrison S, Kroll AV, Miller CJ, Carter L, Goreshnik I, Kang A, DiMaio F, Tarbell KV, Baker D. Proc Natl Acad Sci U S A 118 e2102164118 (2021)
  50. Peptides designed to spatially depict the Epstein-Barr virus major virion glycoprotein gp350 neutralization epitope elicit antibodies that block virus-neutralizing antibody 72A1 interaction with the native gp350 molecule. Tanner JE, Coinçon M, Leblond V, Hu J, Fang JM, Sygusch J, Alfieri C. J Virol 89 4932-4941 (2015)
  51. Synthesis and analysis of the membrane proximal external region epitopes of HIV-1. Ingale S, Gach JS, Zwick MB, Dawson PE. J Pept Sci 16 716-722 (2010)
  52. Boosting subdominant neutralizing antibody responses with a computationally designed epitope-focused immunogen. Sesterhenn F, Galloux M, Vollers SS, Csepregi L, Yang C, Descamps D, Bonet J, Friedensohn S, Gainza P, Corthésy P, Chen M, Rosset S, Rameix-Welti MA, Éléouët JF, Reddy ST, Graham BS, Riffault S, Correia BE. PLoS Biol 17 e3000164 (2019)
  53. Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause deadly disease. Zhou P, Song G, Liu H, Yuan M, He WT, Beutler N, Zhu X, Tse LV, Martinez DR, Schäfer A, Anzanello F, Yong P, Peng L, Dueker K, Musharrafieh R, Callaghan S, Capozzola T, Limbo O, Parren M, Garcia E, Rawlings SA, Smith DM, Nemazee D, Jardine JG, Safonova Y, Briney B, Rogers TF, Wilson IA, Baric RS, Gralinski LE, Burton DR, Andrabi R. Immunity 56 669-686.e7 (2023)
  54. Generation of Long-Lived Bone Marrow Plasma Cells Secreting Antibodies Specific for the HIV-1 gp41 Membrane-Proximal External Region in the Absence of Polyreactivity. Donius LR, Cheng Y, Choi J, Sun ZY, Hanson M, Zhang M, Gierahn TM, Marquez S, Uduman M, Kleinstein SH, Irvine D, Love JC, Reinherz EL, Kim M. J Virol 90 8875-8890 (2016)
  55. Multiple B-cell epitope vaccine induces a Staphylococcus enterotoxin B-specific IgG1 protective response against MRSA infection. Zhao Z, Sun HQ, Wei SS, Li B, Feng Q, Zhu J, Zeng H, Zou QM, Wu C. Sci Rep 5 12371 (2015)
  56. A Rationally Designed TNF-α Epitope-Scaffold Immunogen Induces Sustained Antibody Response and Alleviates Collagen-Induced Arthritis in Mice. Zhang L, Wang J, Xu A, Zhong C, Lu W, Deng L, Li R. PLoS One 11 e0163080 (2016)
  57. Computational design of protein antigens that interact with the CDR H3 loop of HIV broadly neutralizing antibody 2F5. Azoitei ML, Ban YA, Kalyuzhny O, Guenaga J, Schroeter A, Porter J, Wyatt R, Schief WR. Proteins 82 2770-2782 (2014)
  58. Developing strategies to enhance and focus humoral immune responses using filamentous phage as a model antigen. Henry KA, Murira A, van Houten NE, Scott JK. Bioeng Bugs 2 275-283 (2011)
  59. Evaluation of a novel multi-immunogen vaccine strategy for targeting 4E10/10E8 neutralizing epitopes on HIV-1 gp41 membrane proximal external region. Banerjee S, Shi H, Banasik M, Moon H, Lees W, Qin Y, Harley A, Shepherd A, Cho MW. Virology 505 113-126 (2017)
  60. Fragments of the V1/V2 domain of HIV-1 glycoprotein 120 engineered for improved binding to the broadly neutralizing PG9 antibody. Morales JF, Yu B, Perez G, Mesa KA, Alexander DL, Berman PW. Mol Immunol 77 14-25 (2016)
  61. Immunogens Modeling a Fusion-Intermediate Conformation of gp41 Elicit Antibodies to the Membrane Proximal External Region of the HIV Envelope Glycoprotein. Vassell R, He Y, Vennakalanti P, Dey AK, Zhuang M, Wang W, Sun Y, Biron-Sorek Z, Srivastava IK, LaBranche CC, Montefiori DC, Barnett SW, Weiss CD. PLoS One 10 e0128562 (2015)
  62. Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure. Banerjee S, Shi H, Habte HH, Qin Y, Cho MW. Virology 490 17-26 (2016)
  63. Anti-idiotypic monobodies derived from a fibronectin scaffold. Sullivan MA, Brooks LR, Weidenborner P, Domm W, Mattiacio J, Xu Q, Tiberio M, Wentworth T, Kobie J, Bryk P, Zheng B, Murphy M, Sanz I, Dewhurst S. Biochemistry 52 1802-1813 (2013)
  64. Modeling Immunity with Rosetta: Methods for Antibody and Antigen Design. Schoeder CT, Schmitz S, Adolf-Bryfogle J, Sevy AM, Finn JA, Sauer MF, Bozhanova NG, Mueller BK, Sangha AK, Bonet J, Sheehan JH, Kuenze G, Marlow B, Smith ST, Woods H, Bender BJ, Martina CE, Del Alamo D, Kodali P, Gulsevin A, Schief WR, Correia BE, Crowe JE, Meiler J, Moretti R. Biochemistry 60 825-846 (2021)
  65. Adding energy minimization strategy to peptide-design algorithm enables better search for RNA-binding peptides: Redesigned λ N peptide binds boxB RNA. Xiao X, Hung ME, Leonard JN, Hall CK. J Comput Chem 37 2423-2435 (2016)
  66. Immunogenic properties of a trimeric gp41-based immunogen containing an exposed membrane-proximal external region. Habte HH, Banerjee S, Shi H, Qin Y, Cho MW. Virology 486 187-197 (2015)
  67. Addressing viral resistance through vaccines. Laughlin C, Schleif A, Heilman CA. Future Virol 10 1011-1022 (2015)
  68. Directed evolution of a yeast-displayed HIV-1 SOSIP gp140 spike protein toward improved expression and affinity for conformational antibodies. Grimm SK, Battles MB, Ackerman ME. PLoS One 10 e0117227 (2015)
  69. Induction of Fc-Mediated Effector Functions Against a Stabilized Inner Domain of HIV-1 gp120 Designed to Selectively Harbor the A32 Epitope Region. Visciano ML, Gohain N, Sherburn R, Orlandi C, Flinko R, Dashti A, Lewis GK, Tolbert WD, Pazgier M. Front Immunol 10 677 (2019)
  70. One-step sequence and structure-guided optimization of HIV-1 envelope gp140. Malladi SK, Schreiber D, Pramanick I, Sridevi MA, Goldenzweig A, Dutta S, Fleishman SJ, Varadarajan R. Curr Res Struct Biol 2 45-55 (2020)
  71. The stem of vesicular stomatitis virus G can be replaced with the HIV-1 Env membrane-proximal external region without loss of G function or membrane-proximal external region antigenic properties. Lorenz IC, Nguyen HT, Kemelman M, Lindsay RW, Yuan M, Wright KJ, Arendt H, Back JW, DeStefano J, Hoffenberg S, Morrow G, Jurgens CK, Phogat SK, Zamb TJ, Parks CL. AIDS Res Hum Retroviruses 30 1130-1144 (2014)
  72. Understanding the molecular determinants driving the immunological specificity of the protective pilus 2a backbone protein of group B streptococcus. Nuccitelli A, Rinaudo CD, Brogioni B, Cozzi R, Ferrer-Navarro M, Yero D, Telford JL, Grandi G, Daura X, Zacharias M, Maione D. PLoS Comput Biol 9 e1003115 (2013)
  73. Vaccine focusing to cross-subtype HIV-1 gp120 variable loop epitopes. Cardozo T, Wang S, Jiang X, Kong XP, Hioe C, Krachmarov C. Vaccine 32 4916-4924 (2014)
  74. Adaptation-proof SARS-CoV-2 vaccine design. Vishweshwaraiah YL, Hnath B, Rackley B, Wang J, Gontu A, Chandler M, Afonin KA, Kuchipudi SV, Christensen N, Yennawar NH, Dokholyan NV. Adv Funct Mater 32 2206055 (2022)
  75. Designer proteins that competitively inhibit Gαq by targeting its effector site. Hussain M, Cummins MC, Endo-Streeter S, Sondek J, Kuhlman B. J Biol Chem 297 101348 (2021)
  76. Human Rhinovirus Presenting 4E10 Epitope of HIV-1 MPER Elicits Neutralizing Antibodies in Human ICAM-1 Transgenic Mice. Yi G, Tu X, Bharaj P, Guo H, Zhang J, Shankar P, Manjunath N. Mol Ther 23 1663-1670 (2015)
  77. Vaccine design reaches the atomic level. Kwong PD, Shapiro L. Sci Transl Med 3 91ps29 (2011)
  78. Design of novel granulopoietic proteins by topological rescaffolding. Hernandez Alvarez B, Skokowa J, Coles M, Mir P, Nasri M, Maksymenko K, Weidmann L, Rogers KW, Welte K, Lupas AN, Müller P, ElGamacy M. PLoS Biol 18 e3000919 (2020)
  79. High-resolution structure prediction of a circular permutation loop. Correia BE, Holmes MA, Huang PS, Strong RK, Schief WR. Protein Sci 20 1929-1934 (2011)
  80. Congress Report of the Cent Gardes HIV Vaccine Conference: The B-cell Response to HIV. Part 1: Broadly Neutralizing Antibodies Fondation Mérieux Conference Center, Veyrier du Lac, France, 5-7 November 2012. Girard MP, Picot V, Longuet C, Nabel GJ. Vaccine 31 2979-2983 (2013)
  81. Structure and design of broadly-neutralizing antibodies against HIV. Ryu SE, Hendrickson WA. Mol Cells 34 231-237 (2012)
  82. De novo design of protein interactions with learned surface fingerprints. Gainza P, Wehrle S, Van Hall-Beauvais A, Marchand A, Scheck A, Harteveld Z, Buckley S, Ni D, Tan S, Sverrisson F, Goverde C, Turelli P, Raclot C, Teslenko A, Pacesa M, Rosset S, Georgeon S, Marsden J, Petruzzella A, Liu K, Xu Z, Chai Y, Han P, Gao GF, Oricchio E, Fierz B, Trono D, Stahlberg H, Bronstein M, Correia BE. Nature 617 176-184 (2023)
  83. Epitope-focused immunogen design based on the ebolavirus glycoprotein HR2-MPER region. Schoeder CT, Gilchuk P, Sangha AK, Ledwitch KV, Malherbe DC, Zhang X, Binshtein E, Williamson LE, Martina CE, Dong J, Armstrong E, Sutton R, Nargi R, Rodriguez J, Kuzmina N, Fiala B, King NP, Bukreyev A, Crowe JE, Meiler J. PLoS Pathog 18 e1010518 (2022)
  84. Optimizing Epitope Conformational Ensembles Using α-Synuclein Cyclic Peptide "Glycindel" Scaffolds: A Customized Immunogen Method for Generating Oligomer-Selective Antibodies for Parkinson's Disease. Hsueh SCC, Aina A, Roman AY, Cashman NR, Peng X, Plotkin SS. ACS Chem Neurosci 13 2261-2280 (2022)
  85. Potent neutralization activity against type O foot-and-mouth disease virus elicited by a conserved type O neutralizing epitope displayed on bovine parvovirus virus-like particles. Chang J, Zhang Y, Yang D, Jiang Z, Wang F, Yu L. J Gen Virol 100 187-198 (2019)
  86. Structure-Guided Design of a Synthetic Mimic of an Endothelial Protein C Receptor-Binding PfEMP1 Protein. Barber NM, Lau CKY, Turner L, Watson G, Thrane S, Lusingu JPA, Lavstsen T, Higgins MK. mSphere 6 e01081-20 (2021)
  87. Letter The Broadly Neutralizing, Anti-HIV Antibody 4E10: an Open and Shut Case? Strong RK, Finton KA. J Virol 90 3274-3275 (2016)
  88. A novel computationally engineered collagenase reduces the force required for tooth extraction in an ex-situ porcine jaw model. Ansbacher T, Tohar R, Cohen A, Cohen O, Levartovsky S, Arieli A, Matalon S, Bar DZ, Gal M, Weinberg E. J Biol Eng 17 47 (2023)
  89. Accurate and efficient protein sequence design through learning concise local environment of residues. Huang B, Fan T, Wang K, Zhang H, Yu C, Nie S, Qi Y, Zheng WM, Han J, Fan Z, Sun S, Ye S, Yang H, Bu D. Bioinformatics 39 btad122 (2023)
  90. An antibody tag-team: driving neutralization through escape. Alter G, Ackerman ME. Trends Immunol 35 403-405 (2014)
  91. Cholera toxin B scaffolded, focused SIV V2 epitope elicits antibodies that influence the risk of SIVmac251 acquisition in macaques. Rahman MA, Becerra-Flores M, Patskovsky Y, Silva de Castro I, Bissa M, Basu S, Shen X, Williams LD, Sarkis S, N'guessan KF, LaBranche C, Tomaras GD, Aye PP, Veazey R, Paquin-Proulx D, Rao M, Franchini G, Cardozo T. Front Immunol 14 1139402 (2023)
  92. Engineered immunogens to elicit antibodies against conserved coronavirus epitopes. Kapingidza AB, Marston DJ, Harris C, Wrapp D, Winters K, Mielke D, Xiaozhi L, Yin Q, Foulger A, Parks R, Barr M, Newman A, Schäfer A, Eaton A, Flores JM, Harner A, Catanzaro NJ, Mallory ML, Mattocks MD, Beverly C, Rhodes B, Mansouri K, Van Itallie E, Vure P, Dunn B, Keyes T, Stanfield-Oakley S, Woods CW, Petzold EA, Walter EB, Wiehe K, Edwards RJ, Montefiori DC, Ferrari G, Baric R, Cain DW, Saunders KO, Haynes BF, Azoitei ML. Nat Commun 14 7897 (2023)
  93. Exploiting Natural Cross-reactivity between Human Immunodeficiency Virus (HIV)-1 p17 Protein and Anti-gp41 2F5 Antibody to Induce HIV-1 Neutralizing Responses In Vivo. Verrier B, Paul S, Terrat C, Bastide L, Ensinas A, Phelip C, Chanut B, Bulens-Grassigny L, Jospin F, Guillon C. Front Immunol 8 770 (2017)
  94. Identification of variant HIV envelope proteins with enhanced affinities for precursors to anti-gp41 broadly neutralizing antibodies. Zhu H, Mathew E, Connelly SM, Zuber J, Sullivan M, Piepenbrink MS, Kobie JJ, Dumont ME. PLoS One 14 e0221550 (2019)
  95. Inadequate structural constraint on Fab approach rather than paratope elicitation limits HIV-1 MPER vaccine utility. Tan K, Chen J, Kaku Y, Wang Y, Donius L, Khan RA, Li X, Richter H, Seaman MS, Walz T, Hwang W, Reinherz EL, Kim M. Nat Commun 14 7218 (2023)
  96. RosettaSurf-A surface-centric computational design approach. Scheck A, Rosset S, Defferrard M, Loukas A, Bonet J, Vandergheynst P, Correia BE. PLoS Comput Biol 18 e1009178 (2022)
  97. The Structural and Immunological Properties of Chimeric Proteins Containing HIV-1 MPER Sites. Rudometov AP, Rudometova NB, Shcherbakov DN, Lomzov AA, Kaplina ON, Shcherbakova NS, Ilyichev AA, Bakulina AY, Karpenko LI. Acta Naturae 11 56-65 (2019)