3lzf Citations

Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus.

Science 328 357-60 (2010)
Cited: 421 times
EuropePMC logo PMID: 20339031

Abstract

The 2009 H1N1 swine flu is the first influenza pandemic in decades. The crystal structure of the hemagglutinin from the A/California/04/2009 H1N1 virus shows that its antigenic structure, particularly within the Sa antigenic site, is extremely similar to those of human H1N1 viruses circulating early in the 20th century. The cocrystal structure of the 1918 hemagglutinin with 2D1, an antibody from a survivor of the 1918 Spanish flu that neutralizes both 1918 and 2009 H1N1 viruses, reveals an epitope that is conserved in both pandemic viruses. Thus, antigenic similarity between the 2009 and 1918-like viruses provides an explanation for the age-related immunity to the current influenza pandemic.

Reviews - 3lzf mentioned but not cited (2)

Articles - 3lzf mentioned but not cited (17)



Reviews citing this publication (68)

  1. COVID-19 and the human innate immune system. Schultze JL, Aschenbrenner AC. Cell 184 1671-1692 (2021)
  2. Influenza A viruses: new research developments. Medina RA, García-Sastre A. Nat Rev Microbiol 9 590-603 (2011)
  3. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Burton DR, Poignard P, Stanfield RL, Wilson IA. Science 337 183-186 (2012)
  4. Exploitation of glycosylation in enveloped virus pathobiology. Watanabe Y, Bowden TA, Wilson IA, Crispin M. Biochim Biophys Acta Gen Subj 1863 1480-1497 (2019)
  5. Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses. Abdelrahman Z, Li M, Wang X. Front Immunol 11 552909 (2020)
  6. Continuing challenges in influenza. Webster RG, Govorkova EA. Ann N Y Acad Sci 1323 115-139 (2014)
  7. Virulence determinants of pandemic influenza viruses. Tscherne DM, García-Sastre A. J Clin Invest 121 6-13 (2011)
  8. Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Sriwilaijaroen N, Suzuki Y. Proc Jpn Acad Ser B Phys Biol Sci 88 226-249 (2012)
  9. Original Antigenic Sin: How First Exposure Shapes Lifelong Anti-Influenza Virus Immune Responses. Zhang A, Stacey HD, Mullarkey CE, Miller MS. J Immunol 202 335-340 (2019)
  10. Influenza vaccine immunology. Dormitzer PR, Galli G, Castellino F, Golding H, Khurana S, Del Giudice G, Rappuoli R. Immunol Rev 239 167-177 (2011)
  11. Two years after pandemic influenza A/2009/H1N1: what have we learned? Cheng VC, To KK, Tse H, Hung IF, Yuen KY. Clin Microbiol Rev 25 223-263 (2012)
  12. Influenza Hemagglutinin and Neuraminidase: Yin⁻Yang Proteins Coevolving to Thwart Immunity. Kosik I, Yewdell JW. Viruses 11 E346 (2019)
  13. M2e-Based Universal Influenza A Vaccines. Deng L, Cho KJ, Fiers W, Saelens X. Vaccines (Basel) 3 105-136 (2015)
  14. Current and future influenza vaccines. Yamayoshi S, Kawaoka Y. Nat Med 25 212-220 (2019)
  15. Transmission of influenza A viruses. Neumann G, Kawaoka Y. Virology 479-480 234-246 (2015)
  16. Tools to therapeutically harness the human antibody response. Wilson PC, Andrews SF. Nat Rev Immunol 12 709-719 (2012)
  17. Host Factors Impact Vaccine Efficacy: Implications for Seasonal and Universal Influenza Vaccine Programs. Dhakal S, Klein SL. J Virol 93 e00797-19 (2019)
  18. Structural characterization of viral epitopes recognized by broadly cross-reactive antibodies. Lee PS, Wilson IA. Curr Top Microbiol Immunol 386 323-341 (2015)
  19. Why do influenza virus subtypes die out? A hypothesis. Palese P, Wang TT. mBio 2 e00150-11 (2011)
  20. Structural insights into the design of novel anti-influenza therapies. Wu NC, Wilson IA. Nat Struct Mol Biol 25 115-121 (2018)
  21. Protective Antibodies Against Influenza Proteins. Padilla-Quirarte HO, Lopez-Guerrero DV, Gutierrez-Xicotencatl L, Esquivel-Guadarrama F. Front Immunol 10 1677 (2019)
  22. The first influenza pandemic of the new millennium. Neumann G, Kawaoka Y. Influenza Other Respir Viruses 5 157-166 (2011)
  23. Development of a Universal Influenza Vaccine. Estrada LD, Schultz-Cherry S. J Immunol 202 392-398 (2019)
  24. Principles of Broad and Potent Antiviral Human Antibodies: Insights for Vaccine Design. Crowe JE. Cell Host Microbe 22 193-206 (2017)
  25. Immunity to seasonal and pandemic influenza A viruses. Valkenburg SA, Rutigliano JA, Ellebedy AH, Doherty PC, Thomas PG, Kedzierska K. Microbes Infect 13 489-501 (2011)
  26. Targeting B cell responses in universal influenza vaccine design. Kaur K, Sullivan M, Wilson PC. Trends Immunol 32 524-531 (2011)
  27. N-linked glycosylation in the hemagglutinin of influenza A viruses. Kim JI, Park MS. Yonsei Med J 53 886-893 (2012)
  28. Capturing the dynamics of pathogens with many strains. Kucharski AJ, Andreasen V, Gog JR. J Math Biol 72 1-24 (2016)
  29. Pandemic (H1N1) 2009 virus revisited: an evolutionary retrospective. Christman MC, Kedwaii A, Xu J, Donis RO, Lu G. Infect Genet Evol 11 803-811 (2011)
  30. Preventing and treating secondary bacterial infections with antiviral agents. McCullers JA. Antivir Ther 16 123-135 (2011)
  31. Options and obstacles for designing a universal influenza vaccine. Jang YH, Seong BL. Viruses 6 3159-3180 (2014)
  32. B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat. Guthmiller JJ, Utset HA, Wilson PC. Viruses 13 965 (2021)
  33. Human T Cell Memory: A Dynamic View. Macallan DC, Borghans JA, Asquith B. Vaccines (Basel) 5 E5 (2017)
  34. Reconstruction of the 1918 influenza virus: unexpected rewards from the past. Taubenberger JK, Baltimore D, Doherty PC, Markel H, Morens DM, Webster RG, Wilson IA. mBio 3 e00201-12 (2012)
  35. Receptor-binding domains of spike proteins of emerging or re-emerging viruses as targets for development of antiviral vaccines. Jiang S, Lu L, Liu Q, Xu W, Du L. Emerg Microbes Infect 1 e13 (2012)
  36. Mutations associated with severity of the pandemic influenza A(H1N1)pdm09 in humans: a systematic review and meta-analysis of epidemiological evidence. Goka EA, Vallely PJ, Mutton KJ, Klapper PE. Arch Virol 159 3167-3183 (2014)
  37. Influenza virus antigenicity and broadly neutralizing epitopes. Air GM. Curr Opin Virol 11 113-121 (2015)
  38. Prospects of HA-based universal influenza vaccine. Hashem AM. Biomed Res Int 2015 414637 (2015)
  39. Targeting the skin for microneedle delivery of influenza vaccine. Koutsonanos DG, Compans RW, Skountzou I. Adv Exp Med Biol 785 121-132 (2013)
  40. Neutralizing Antibodies Targeting the Conserved Stem Region of Influenza Hemagglutinin. Nath Neerukonda S, Vassell R, Weiss CD. Vaccines (Basel) 8 E382 (2020)
  41. Amplifying immunogenicity of prospective Covid-19 vaccines by glycoengineering the coronavirus glycan-shield to present α-gal epitopes. Galili U. Vaccine 38 6487-6499 (2020)
  42. Characterization of Hemagglutinin Antigens on Influenza Virus and within Vaccines Using Electron Microscopy. Gallagher JR, McCraw DM, Torian U, Gulati NM, Myers ML, Conlon MT, Harris AK. Vaccines (Basel) 6 E31 (2018)
  43. Epitope-focused vaccine design against influenza A and B viruses. Ren H, Zhou P. Curr Opin Immunol 42 83-90 (2016)
  44. The specificity of the influenza B virus hemagglutinin receptor binding pocket: what does it bind to? Velkov T. J Mol Recognit 26 439-449 (2013)
  45. Innate Immunity and Influenza A Virus Pathogenesis: Lessons for COVID-19. Hartshorn KL. Front Cell Infect Microbiol 10 563850 (2020)
  46. Antigenic characterization of influenza and SARS-CoV-2 viruses. Wang Y, Tang CY, Wan XF. Anal Bioanal Chem 414 2841-2881 (2022)
  47. Host Immunological Factors Enhancing Mortality of Young Adults during the 1918 Influenza Pandemic. McAuley JL, Kedzierska K, Brown LE, Shanks GD. Front Immunol 6 419 (2015)
  48. Beyond clinical trials: Evolutionary and epidemiological considerations for development of a universal influenza vaccine. Viboud C, Gostic K, Nelson MI, Price GE, Perofsky A, Sun K, Sequeira Trovão N, Cowling BJ, Epstein SL, Spiro DJ. PLoS Pathog 16 e1008583 (2020)
  49. The "original antigenic sin" and its relevance for SARS-CoV-2 (COVID-19) vaccination. Rijkers GT, van Overveld FJ. Clin Immunol Commun 1 13-16 (2021)
  50. How glycobiology can help us treat and beat the COVID-19 pandemic. Lardone RD, Garay YC, Parodi P, de la Fuente S, Angeloni G, Bravo EO, Schmider AK, Irazoqui FJ. J Biol Chem 296 100375 (2021)
  51. Influenza immune escape under heterogeneous host immune histories. Oidtman RJ, Arevalo P, Bi Q, McGough L, Russo CJ, Vera Cruz D, Costa Vieira M, Gostic KM. Trends Microbiol 29 1072-1082 (2021)
  52. Predicting vaccine responsiveness. Boyd SD, Jackson KJL. Cell Host Microbe 17 301-307 (2015)
  53. Molecular basis of a pandemic of avian-type influenza virus. Sriwilaijaroen N, Suzuki Y. Methods Mol Biol 1200 447-480 (2014)
  54. Co-evolution of immunity and seasonal influenza viruses. Han AX, de Jong SPJ, Russell CA. Nat Rev Microbiol 21 805-817 (2023)
  55. M2e-Based Influenza Vaccines with Nucleoprotein: A Review. Tan MP, Tan WS, Mohamed Alitheen NB, Yap WB. Vaccines (Basel) 9 739 (2021)
  56. Alternative approaches to antiviral treatments: focusing on glycosylation as a target for antiviral therapy. Merry T, Astrautsova S. Biotechnol Appl Biochem 56 103-109 (2010)
  57. Influenza Virus-Specific Human Antibody Repertoire Studies. Crowe JE. J Immunol 202 368-373 (2019)
  58. The therapeutic potential of sialylated Fc domains of human IgG. Pleass RJ. MAbs 13 1953220 (2021)
  59. A Complex Dance: Measuring the Multidimensional Worlds of Influenza Virus Evolution and Anti-Influenza Immune Responses. Wang J, Wiltse A, Zand MS. Pathogens 8 E238 (2019)
  60. Broad Reactivity Single Domain Antibodies against Influenza Virus and Their Applications to Vaccine Potency Testing and Immunotherapy. Tung Yep A, Takeuchi Y, Engelhardt OG, Hufton SE. Biomolecules 11 407 (2021)
  61. Seasoned adaptive antibody immunity for highly pathogenic pandemic influenza in humans. Lynch GW, Selleck P, Church WB, Sullivan JS. Immunol Cell Biol 90 149-158 (2012)
  62. A Portrait of the Sialyl Glycan Receptor Specificity of the H10 Influenza Virus Hemagglutinin-A Picture of an Avian Virus on the Verge of Becoming a Pandemic? Schneider EK, Li J, Velkov T. Vaccines (Basel) 5 E51 (2017)
  63. Heterogeneity of memory T cells in aging. Jain A, Sturmlechner I, Weyand CM, Goronzy JJ. Front Immunol 14 1250916 (2023)
  64. The Symmetry of Viral Sialic Acid Binding Sites-Implications for Antiviral Strategies. Rustmeier NH, Strebl M, Stehle T. Viruses 11 E947 (2019)
  65. How undifferentiated arthritis evolves into chronic arthritis. van der Woude D, Toes RE, Scherer HU. Best Pract Res Clin Rheumatol 28 551-564 (2014)
  66. Zoonotic diseases and human health: the human influenza example. Schoub BD. Onderstepoort J Vet Res 79 489 (2012)
  67. Importance of 1918 virus reconstruction to current assessments of pandemic risk. Belser JA, Maines TR, Tumpey TM. Virology 524 45-55 (2018)
  68. Targeting the Host Response: Can We Manipulate Extracellular Matrix Metalloproteinase Activity to Improve Influenza Virus Infection Outcomes? Pedrina J, Stambas J. Front Mol Biosci 8 703456 (2021)

Articles citing this publication (334)