3p1l Citations

Crystal structure of Escherichia coli BamB, a lipoprotein component of the β-barrel assembly machinery complex.

J Mol Biol 406 667-78 (2011)
Cited: 57 times
EuropePMC logo PMID: 21168416

Abstract

In Gram-negative bacteria, the BAM (β-barrel assembly machinery) complex catalyzes the essential process of assembling outer membrane proteins. The BAM complex in Escherichia coli consists of five proteins: one β-barrel membrane protein, BamA, and four lipoproteins, BamB, BamC, BamD, and BamE. Despite their role in outer membrane protein biogenesis, there is currently a lack of functional and structural information on the lipoprotein components of the BAM complex. Here, we report the first crystal structure of BamB, the largest and most functionally characterized lipoprotein component of the BAM complex. The crystal structure shows that BamB has an eight-bladed β-propeller structure, with four β-strands making up each blade. Mapping onto the structure the residues previously shown to be important for BamA interaction reveals that these residues, despite being far apart in the amino acid sequence, are localized to form a continuous solvent-exposed surface on one side of the β-propeller. Found on the same side of the β-propeller is a cluster of residues conserved among BamB homologs. Interestingly, our structural comparison study suggests that other proteins with a BamB-like fold often participate in protein or ligand binding, and that the binding interface on these proteins is located on the surface that is topologically equivalent to where the conserved residues and the residues that are important for BamA interaction are found on BamB. Our structural and bioinformatic analyses, together with previous biochemical data, provide clues to where the BamA and possibly a substrate interaction interface may be located on BamB.

Reviews - 3p1l mentioned but not cited (6)

  1. The Bam machine: a molecular cooper. Ricci DP, Silhavy TJ. Biochim. Biophys. Acta 1818 1067-1084 (2012)
  2. Fitting the Pieces of the β-Barrel Assembly Machinery Complex. O'Neil PK, Rollauer SE, Noinaj N, Buchanan SK. Biochemistry 54 6303-6311 (2015)
  3. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? McMorran LM, Brockwell DJ, Radford SE. Arch. Biochem. Biophys. 564 265-280 (2014)
  4. The big BAM theory: An open and closed case? Wu R, Stephenson R, Gichaba A, Noinaj N. Biochim Biophys Acta Biomembr 1862 183062 (2020)
  5. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. Diederichs KA, Buchanan SK, Botos I. J Mol Biol 433 166894 (2021)
  6. Structural snapshots of the β-barrel assembly machinery. Bakelar J, Buchanan SK, Noinaj N. FEBS J. 284 1778-1786 (2017)

Articles - 3p1l mentioned but not cited (2)



Reviews citing this publication (15)

  1. The structural biology of β-barrel membrane proteins: a summary of recent reports. Fairman JW, Noinaj N, Buchanan SK. Curr. Opin. Struct. Biol. 21 523-531 (2011)
  2. Evolution of the β-barrel assembly machinery. Webb CT, Heinz E, Lithgow T. Trends Microbiol. 20 612-620 (2012)
  3. Protein traffic in Gram-negative bacteria--how exported and secreted proteins find their way. Dalbey RE, Kuhn A. FEMS Microbiol. Rev. 36 1023-1045 (2012)
  4. The bacterial outer membrane β-barrel assembly machinery. Kim KH, Aulakh S, Paetzel M. Protein Sci. 21 751-768 (2012)
  5. Making a beta-barrel: assembly of outer membrane proteins in Gram-negative bacteria. Rigel NW, Silhavy TJ. Curr. Opin. Microbiol. 15 189-193 (2012)
  6. The β-barrel membrane protein insertase machinery from Gram-negative bacteria. Noinaj N, Rollauer SE, Buchanan SK. Curr. Opin. Struct. Biol. 31 35-42 (2015)
  7. Assembly of β-barrel proteins into bacterial outer membranes. Selkrig J, Leyton DL, Webb CT, Lithgow T. Biochim. Biophys. Acta 1843 1542-1550 (2014)
  8. The β-barrel assembly machinery in motion. Noinaj N, Gumbart JC, Buchanan SK. Nat. Rev. Microbiol. 15 197-204 (2017)
  9. Outer membrane protein biogenesis in Gram-negative bacteria. Rollauer SE, Sooreshjani MA, Noinaj N, Buchanan SK. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 370 (2015)
  10. Outer Membrane Biogenesis. Konovalova A, Kahne DE, Silhavy TJ. Annu. Rev. Microbiol. 71 539-556 (2017)
  11. Assembly of the β-Barrel Outer Membrane Proteins in Gram-Negative Bacteria, Mitochondria, and Chloroplasts. Misra R. ISRN Mol Biol 2012 708203 (2012)
  12. Countering Gram-Negative Antibiotic Resistance: Recent Progress in Disrupting the Outer Membrane with Novel Therapeutics. Lehman KM, Grabowicz M. Antibiotics (Basel) 8 (2019)
  13. ATP-independent assembly machinery of bacterial outer membranes: BAM complex structure and function set the stage for next-generation therapeutics. George A, Patil AG, Mahalakshmi R. Protein Sci 33 e4896 (2024)
  14. Pyrroloquinoline quinone-dependent dehydrogenases of acetic acid bacteria. Matsutani M, Yakushi T. Appl. Microbiol. Biotechnol. 102 9531-9540 (2018)
  15. β-Barrel Assembly Machinery (BAM) Complex as Novel Antibacterial Drug Target. Xu Q, Guo M, Yu F. Molecules 28 3758 (2023)

Articles citing this publication (34)

  1. Lateral opening and exit pore formation are required for BamA function. Noinaj N, Kuszak AJ, Balusek C, Gumbart JC, Buchanan SK. Structure 22 1055-1062 (2014)
  2. Sequential and spatially restricted interactions of assembly factors with an autotransporter beta domain. Ieva R, Tian P, Peterson JH, Bernstein HD. Proc. Natl. Acad. Sci. U.S.A. 108 E383-91 (2011)
  3. The structure of the β-barrel assembly machinery complex. Bakelar J, Buchanan SK, Noinaj N. Science 351 180-186 (2016)
  4. Structural basis of outer membrane protein insertion by the BAM complex. Gu Y, Li H, Dong H, Zeng Y, Zhang Z, Paterson NG, Stansfeld PJ, Wang Z, Zhang Y, Wang W, Dong C. Nature 531 64-69 (2016)
  5. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, Cao B, Zhou H, Ni D, Lou J, Zhao Y, Huang Y. Nat. Struct. Mol. Biol. 23 192-196 (2016)
  6. Crystal structure of BamD: an essential component of the β-Barrel assembly machinery of gram-negative bacteria. Sandoval CM, Baker SL, Jansen K, Metzner SI, Sousa MC. J. Mol. Biol. 409 348-357 (2011)
  7. Structural basis of outer membrane protein biogenesis in bacteria. Albrecht R, Zeth K. J. Biol. Chem. 286 27792-27803 (2011)
  8. Structure of BamA, an essential factor in outer membrane protein biogenesis. Albrecht R, Schütz M, Oberhettinger P, Faulstich M, Bermejo I, Rudel T, Diederichs K, Zeth K. Acta Crystallogr. D Biol. Crystallogr. 70 1779-1789 (2014)
  9. TP0326, a Treponema pallidum β-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Desrosiers DC, Anand A, Luthra A, Dunham-Ems SM, LeDoyt M, Cummings MA, Eshghi A, Cameron CE, Cruz AR, Salazar JC, Caimano MJ, Radolf JD. Mol. Microbiol. 80 1496-1515 (2011)
  10. Crystal structure of β-barrel assembly machinery BamCD protein complex. Kim KH, Aulakh S, Paetzel M. J. Biol. Chem. 286 39116-39121 (2011)
  11. Inhibition of the β-barrel assembly machine by a peptide that binds BamD. Hagan CL, Wzorek JS, Kahne D. Proc. Natl. Acad. Sci. U.S.A. 112 2011-2016 (2015)
  12. The reconstituted Escherichia coli Bam complex catalyzes multiple rounds of β-barrel assembly. Hagan CL, Kahne D. Biochemistry 50 7444-7446 (2011)
  13. Substitutions in the BamA β-barrel domain overcome the conditional lethal phenotype of a ΔbamB ΔbamE strain of Escherichia coli. Tellez R, Misra R. J. Bacteriol. 194 317-324 (2012)
  14. A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Heinz E, Lithgow T. Front Microbiol 5 370 (2014)
  15. bam Lipoproteins Assemble BamA in vitro. Hagan CL, Westwood DB, Kahne D. Biochemistry 52 6108-6113 (2013)
  16. The fimbrial usher FimD follows the SurA-BamB pathway for its assembly in the outer membrane of Escherichia coli. Palomino C, Marín E, Fernández LÁ. J. Bacteriol. 193 5222-5230 (2011)
  17. The evolution of new lipoprotein subunits of the bacterial outer membrane BAM complex. Anwari K, Webb CT, Poggio S, Perry AJ, Belousoff M, Celik N, Ramm G, Lovering A, Sockett RE, Smit J, Jacobs-Wagner C, Lithgow T. Mol. Microbiol. 84 832-844 (2012)
  18. BamA POTRA Domain Interacts with a Native Lipid Membrane Surface. Fleming PJ, Patel DS, Wu EL, Qi Y, Yeom MS, Sousa MC, Fleming KG, Im W. Biophys. J. 110 2698-2709 (2016)
  19. Crystal structure of BamB bound to a periplasmic domain fragment of BamA, the central component of the β-barrel assembly machine. Jansen KB, Baker SL, Sousa MC. J. Biol. Chem. 290 2126-2136 (2015)
  20. Structure and conservation of the periplasmic targeting factor Tic22 protein from plants and cyanobacteria. Tripp J, Hahn A, Koenig P, Flinner N, Bublak D, Brouwer EM, Ertel F, Mirus O, Sinning I, Tews I, Schleiff E. J. Biol. Chem. 287 24164-24173 (2012)
  21. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import. Paila YD, Richardson LG, Inoue H, Parks ES, McMahon J, Inoue K, Schnell DJ. Elife 5 (2016)
  22. The virulence factor PEB4 (Cj0596) and the periplasmic protein Cj1289 are two structurally related SurA-like chaperones in the human pathogen Campylobacter jejuni. Kale A, Phansopa C, Suwannachart C, Craven CJ, Rafferty JB, Kelly DJ. J. Biol. Chem. 286 21254-21265 (2011)
  23. In vivo roles of BamA, BamB and BamD in the biogenesis of BamA, a core protein of the β-barrel assembly machine of Escherichia coli. Misra R, Stikeleather R, Gabriele R. J. Mol. Biol. 427 1061-1074 (2015)
  24. Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy. Morgado L, Zeth K, Burmann BM, Maier T, Hiller S. J. Biomol. NMR 61 333-345 (2015)
  25. Characterization of the β-barrel assembly machine accessory lipoproteins from Borrelia burgdorferi. Dunn JP, Kenedy MR, Iqbal H, Akins DR. BMC Microbiol. 15 70 (2015)
  26. Genetic, biochemical, and molecular characterization of the polypeptide transport-associated domain of Escherichia coli BamA. Workman P, Heide K, Giuliano N, Lee N, Mar J, Vuong P, Bennion D, Misra R. J. Bacteriol. 194 3512-3521 (2012)
  27. The Structure of a BamA-BamD Fusion Illuminates the Architecture of the β-Barrel Assembly Machine Core. Bergal HT, Hopkins AH, Metzner SI, Sousa MC. Structure 24 243-251 (2016)
  28. Deciphering the roles of BamB and its interaction with BamA in outer membrane biogenesis, T3SS expression and virulence in Salmonella. Namdari F, Hurtado-Escobar GA, Abed N, Trotereau J, Fardini Y, Giraud E, Velge P, Virlogeux-Payant I. PLoS ONE 7 e46050 (2012)
  29. Structural and functional insights into the role of BamD and BamE within the β-barrel assembly machinery in Neisseria gonorrhoeae. Sikora AE, Wierzbicki IH, Zielke RA, Ryner RF, Korotkov KV, Buchanan SK, Noinaj N. J. Biol. Chem. 293 1106-1119 (2018)
  30. Structural basis for the interaction of BamB with the POTRA3-4 domains of BamA. Chen Z, Zhan LH, Hou HF, Gao ZQ, Xu JH, Dong C, Dong YH. Acta Crystallogr D Struct Biol 72 236-244 (2016)
  31. New β-Propellers Are Continuously Amplified From Single Blades in all Major Lineages of the β-Propeller Superfamily. Pereira J, Lupas AN. Front Mol Biosci 9 895496 (2022)
  32. Plant growth-promoting activity of beta-propeller protein YxaL secreted from Bacillus velezensis strain GH1-13. Kim YH, Choi Y, Oh YY, Ha NC, Song J. PLoS ONE 14 e0207968 (2019)
  33. Scaffold size-dependent effect on the enhanced uptake of antibiotics and other compounds by Escherichia coli and Pseudomonas aeruginosa. Yamamoto K, Yamamoto N, Ayukawa S, Yasutake Y, Ishiya K, Nakashima N. Sci Rep 12 5609 (2022)
  34. The transmembrane supercomplex mediating the biogenesis of OMPs in Gram-negative bacteria assumes a circular conformational change upon activation. Jin F. FEBS Open Bio 10 1698-1715 (2020)