3p3n Citations

Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor.

Abstract

The stability and activity of hypoxia-inducible factor (HIF) are regulated by the post-translational hydroxylation of specific prolyl and asparaginyl residues. We show that the HIF asparaginyl hydroxylase, factor inhibiting HIF (FIH), also catalyzes hydroxylation of highly conserved asparaginyl residues within ankyrin repeat (AR) domains (ARDs) of endogenous Notch receptors. AR hydroxylation decreases the extent of ARD binding to FIH while not affecting signaling through the canonical Notch pathway. ARD proteins were found to efficiently compete with HIF for FIH-dependent hydroxylation. Crystallographic analyses of the hydroxylated Notch ARD (2.35A) and of Notch peptides bound to FIH (2.4-2.6A) reveal the stereochemistry of hydroxylation on the AR and imply that significant conformational changes are required in the ARD fold in order to enable hydroxylation at the FIH active site. We propose that ARD proteins function as natural inhibitors of FIH and that the hydroxylation status of these proteins provides another oxygen-dependent interface that modulates HIF signaling.

Articles - 3p3n mentioned but not cited (2)

  1. Factor-inhibiting hypoxia-inducible factor (FIH) catalyses the post-translational hydroxylation of histidinyl residues within ankyrin repeat domains. Yang M, Chowdhury R, Ge W, Hamed RB, McDonough MA, Claridge TD, Kessler BM, Cockman ME, Ratcliffe PJ, Schofield CJ. FEBS J 278 1086-1097 (2011)
  2. Substrate positioning by Gln(239) stimulates turnover in factor inhibiting HIF, an αKG-dependent hydroxylase. Hangasky JA, Ivison GT, Knapp MJ. Biochemistry 53 5750-5758 (2014)


Reviews citing this publication (61)

  1. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Kaelin WG, Ratcliffe PJ. Mol Cell 30 393-402 (2008)
  2. Notch Signaling in Development, Tissue Homeostasis, and Disease. Siebel C, Lendahl U. Physiol Rev 97 1235-1294 (2017)
  3. The updated biology of hypoxia-inducible factor. Greer SN, Metcalf JL, Wang Y, Ohh M. EMBO J 31 2448-2460 (2012)
  4. The role of hypoxia in development of the Mammalian embryo. Dunwoodie SL. Dev Cell 17 755-773 (2009)
  5. Therapeutic modulation of Notch signalling--are we there yet? Andersson ER, Lendahl U. Nat Rev Drug Discov 13 357-378 (2014)
  6. Hypoxia: an alarm signal during intestinal inflammation. Colgan SP, Taylor CT. Nat Rev Gastroenterol Hepatol 7 281-287 (2010)
  7. Inhibition of 2-oxoglutarate dependent oxygenases. Rose NR, McDonough MA, King ON, Kawamura A, Schofield CJ. Chem Soc Rev 40 4364-4397 (2011)
  8. Generating specificity and diversity in the transcriptional response to hypoxia. Lendahl U, Lee KL, Yang H, Poellinger L. Nat Rev Genet 10 821-832 (2009)
  9. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Eltzschig HK, Bratton DL, Colgan SP. Nat Rev Drug Discov 13 852-869 (2014)
  10. Notch inhibitors for cancer treatment. Espinoza I, Miele L. Pharmacol Ther 139 95-110 (2013)
  11. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Loenarz C, Schofield CJ. Trends Biochem Sci 36 7-18 (2011)
  12. Structural studies on human 2-oxoglutarate dependent oxygenases. McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ. Curr Opin Struct Biol 20 659-672 (2010)
  13. The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1δ. Grassie ME, Moffat LD, Walsh MP, MacDonald JA. Arch Biochem Biophys 510 147-159 (2011)
  14. Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Webb JD, Coleman ML, Pugh CW. Cell Mol Life Sci 66 3539-3554 (2009)
  15. The molecular logic of Notch signaling--a structural and biochemical perspective. Gordon WR, Arnett KL, Blacklow SC. J Cell Sci 121 3109-3119 (2008)
  16. Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. Ratcliffe PJ. J Physiol 591 2027-2042 (2013)
  17. Turn me on: regulating HIF transcriptional activity. Lisy K, Peet DJ. Cell Death Differ 15 642-649 (2008)
  18. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Maxwell PH, Eckardt KU. Nat Rev Nephrol 12 157-168 (2016)
  19. The EGLN-HIF O2-Sensing System: Multiple Inputs and Feedbacks. Ivan M, Kaelin WG. Mol Cell 66 772-779 (2017)
  20. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH. Biochim Biophys Acta 1826 272-296 (2012)
  21. Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Colgan SP, Eltzschig HK. Annu Rev Physiol 74 153-175 (2012)
  22. Protein Hydroxylation Catalyzed by 2-Oxoglutarate-dependent Oxygenases. Markolovic S, Wilkins SE, Schofield CJ. J Biol Chem 290 20712-20722 (2015)
  23. Tankyrases: structure, function and therapeutic implications in cancer. Haikarainen T, Krauss S, Lehtio L. Curr Pharm Des 20 6472-6488 (2014)
  24. The ubiquitin ligase Siah2 and the hypoxia response. Nakayama K, Qi J, Ronai Z. Mol Cancer Res 7 443-451 (2009)
  25. Pharmacological targeting of the HIF hydroxylases--A new field in medicine development. Chan MC, Holt-Martyn JP, Schofield CJ, Ratcliffe PJ. Mol Aspects Med 47-48 54-75 (2016)
  26. Epigenetic regulation by histone demethylases in hypoxia. Hancock RL, Dunne K, Walport LJ, Flashman E, Kawamura A. Epigenomics 7 791-811 (2015)
  27. The human oxygen sensing machinery and its manipulation. Chowdhury R, Hardy A, Schofield CJ. Chem Soc Rev 37 1308-1319 (2008)
  28. NUMB inhibition of NOTCH signalling as a therapeutic target in prostate cancer. Belle VA, McDermott N, Meunier A, Marignol L. Nat Rev Urol 11 499-507 (2014)
  29. The hypoxia response pathway and β-cell function. Cantley J, Grey ST, Maxwell PH, Withers DJ. Diabetes Obes Metab 12 Suppl 2 159-167 (2010)
  30. The role of HIF prolyl hydroxylases in tumour growth. Jokilehto T, Jaakkola PM. J Cell Mol Med 14 758-770 (2010)
  31. Therapeutic manipulation of the HIF hydroxylases. Nagel S, Talbot NP, Mecinović J, Smith TG, Buchan AM, Schofield CJ. Antioxid Redox Signal 12 481-501 (2010)
  32. Hypoxia. Regulation of NFkappaB signalling during inflammation: the role of hydroxylases. Oliver KM, Taylor CT, Cummins EP. Arthritis Res Ther 11 215 (2009)
  33. FIH-dependent asparaginyl hydroxylation of ankyrin repeat domain-containing proteins. Cockman ME, Webb JD, Ratcliffe PJ. Ann N Y Acad Sci 1177 9-18 (2009)
  34. Modulating Notch signaling by pathway-intrinsic and pathway-extrinsic mechanisms. Poellinger L, Lendahl U. Curr Opin Genet Dev 18 449-454 (2008)
  35. From vessel sprouting to normalization: role of the prolyl hydroxylase domain protein/hypoxia-inducible factor oxygen-sensing machinery. Coulon C, Georgiadou M, Roncal C, De Bock K, Langenberg T, Carmeliet P. Arterioscler Thromb Vasc Biol 30 2331-2336 (2010)
  36. Targeting Protein-Protein Interactions in the HIF System. Wilkins SE, Abboud MI, Hancock RL, Schofield CJ. ChemMedChem 11 773-786 (2016)
  37. HIF prolyl hydroxylase inhibitors for anemia. Muchnik E, Kaplan J. Expert Opin Investig Drugs 20 645-656 (2011)
  38. Hypoxia Inducible Factor as a Central Regulator of Metabolism - Implications for the Development of Obesity. Gaspar JM, Velloso LA. Front Neurosci 12 813 (2018)
  39. The how's and why's of protein folding intermediates. Tsytlonok M, Itzhaki LS. Arch Biochem Biophys 531 14-23 (2013)
  40. Hypoxia: how does the monocyte-macrophage system respond to changes in oxygen availability? Strehl C, Fangradt M, Fearon U, Gaber T, Buttgereit F, Veale DJ. J Leukoc Biol 95 233-241 (2014)
  41. Tandem-repeat proteins: regularity plus modularity equals design-ability. Javadi Y, Itzhaki LS. Curr Opin Struct Biol 23 622-631 (2013)
  42. Hypoxia-Inducible Factor and Its Role in the Management of Anemia in Chronic Kidney Disease. Kaplan JM, Sharma N, Dikdan S. Int J Mol Sci 19 E389 (2018)
  43. New Insights into Protein Hydroxylation and Its Important Role in Human Diseases. Zurlo G, Guo J, Takada M, Wei W, Zhang Q. Biochim Biophys Acta 1866 208-220 (2016)
  44. The inflammatory tissue microenvironment in IBD. Colgan SP, Curtis VF, Campbell EL. Inflamm Bowel Dis 19 2238-2244 (2013)
  45. Signaling hypoxia by hypoxia-inducible factor protein hydroxylases: a historical overview and future perspectives. Bishop T, Ratcliffe PJ. Hypoxia (Auckl) 2 197-213 (2014)
  46. Notch signalling in ischaemia-induced angiogenesis. Al Haj Zen A, Madeddu P. Biochem Soc Trans 37 1221-1227 (2009)
  47. The interplay between the cellular hypoxic response and Notch signaling. Landor SK, Lendahl U. Exp Cell Res 356 146-151 (2017)
  48. Targeting Notch degradation system provides promise for breast cancer therapeutics. Liu J, Shen JX, Wen XF, Guo YX, Zhang GJ. Crit Rev Oncol Hematol 104 21-29 (2016)
  49. Complex role of the HIF system in cardiovascular biology. Czibik G. J Mol Med (Berl) 88 1101-1111 (2010)
  50. Endothelial oxygen sensors regulate tumor vessel abnormalization by instructing phalanx endothelial cells. De Bock K, De Smet F, Leite De Oliveira R, Anthonis K, Carmeliet P. J Mol Med (Berl) 87 561-569 (2009)
  51. Decoding the PTM-switchboard of Notch. Antfolk D, Antila C, Kemppainen K, Landor SK, Sahlgren C. Biochim Biophys Acta Mol Cell Res 1866 118507 (2019)
  52. The Role of a Neurovascular Signaling Pathway Involving Hypoxia-Inducible Factor and Notch in the Function of the Central Nervous System. Kim S, Lee M, Choi YK. Biomol Ther (Seoul) 28 45-57 (2020)
  53. Review article: How cells sense oxygen: lessons from and for the kidney. Gleadle JM. Nephrology (Carlton) 14 86-93 (2009)
  54. Folding and Stability of Ankyrin Repeats Control Biological Protein Function. Kumar A, Balbach J. Biomolecules 11 840 (2021)
  55. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease. Townley-Tilson WH, Pi X, Xie L. Oxid Med Cell Longev 2015 676893 (2015)
  56. Hypoxia-Inducible Lysine Methyltransferases: G9a and GLP Hypoxic Regulation, Non-histone Substrate Modification, and Pathological Relevance. Chopra A, Cho WC, Willmore WG, Biggar KK. Front Genet 11 579636 (2020)
  57. Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. O'Brien KA, Murray AJ, Simonson TS. Life (Basel) 12 437 (2022)
  58. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. Walport LJ, Schofield CJ. Chem Rec 18 1760-1781 (2018)
  59. Exploring links between 2-oxoglutarate-dependent oxygenases and Alzheimer's disease. Liu H, Xie Y, Wang X, Abboud MI, Ma C, Ge W, Schofield CJ. Alzheimers Dement 18 2637-2668 (2022)
  60. Notch signaling, hypoxia, and cancer. Guo M, Niu Y, Xie M, Liu X, Li X. Front Oncol 13 1078768 (2023)
  61. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Xie J, Zhang Z. Mol Neurobiol (2023)

Articles citing this publication (79)

  1. Expanding chemical biology of 2-oxoglutarate oxygenases. Loenarz C, Schofield CJ. Nat Chem Biol 4 152-156 (2008)
  2. Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Zheng X, Linke S, Dias JM, Zheng X, Gradin K, Wallis TP, Hamilton BR, Gustafsson M, Ruas JL, Wilkins S, Bilton RL, Brismar K, Whitelaw ML, Pereira T, Gorman JJ, Ericson J, Peet DJ, Lendahl U, Poellinger L. Proc Natl Acad Sci U S A 105 3368-3373 (2008)
  3. The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism. Zhang N, Fu Z, Linke S, Chicher J, Gorman JJ, Visk D, Haddad GG, Poellinger L, Peet DJ, Powell F, Johnson RS. Cell Metab 11 364-378 (2010)
  4. Differential sensitivity of hypoxia inducible factor hydroxylation sites to hypoxia and hydroxylase inhibitors. Tian YM, Yeoh KK, Lee MK, Eriksson T, Kessler BM, Kramer HB, Edelmann MJ, Willam C, Pugh CW, Schofield CJ, Ratcliffe PJ. J Biol Chem 286 13041-13051 (2011)
  5. Proteomics-based identification of novel factor inhibiting hypoxia-inducible factor (FIH) substrates indicates widespread asparaginyl hydroxylation of ankyrin repeat domain-containing proteins. Cockman ME, Webb JD, Kramer HB, Kessler BM, Ratcliffe PJ. Mol Cell Proteomics 8 535-546 (2009)
  6. PHF8, a gene associated with cleft lip/palate and mental retardation, encodes for an Nepsilon-dimethyl lysine demethylase. Loenarz C, Ge W, Coleman ML, Rose NR, Cooper CD, Klose RJ, Ratcliffe PJ, Schofield CJ. Hum Mol Genet 19 217-222 (2010)
  7. Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and prolyl hydroxylase domain 2) on ascorbate and other reducing agents. Flashman E, Davies SL, Yeoh KK, Schofield CJ. Biochem J 427 135-142 (2010)
  8. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Yeh TL, Leissing TM, Abboud MI, Thinnes CC, Atasoylu O, Holt-Martyn JP, Zhang D, Tumber A, Lippl K, Lohans CT, Leung IKH, Morcrette H, Clifton IJ, Claridge TDW, Kawamura A, Flashman E, Lu X, Ratcliffe PJ, Chowdhury R, Pugh CW, Schofield CJ. Chem Sci 8 7651-7668 (2017)
  9. Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Bernhardt WM, Gottmann U, Doyon F, Buchholz B, Campean V, Schödel J, Reisenbuechler A, Klaus S, Arend M, Flippin L, Willam C, Wiesener MS, Yard B, Warnecke C, Eckardt KU. Proc Natl Acad Sci U S A 106 21276-21281 (2009)
  10. Epidithiodiketopiperazines block the interaction between hypoxia-inducible factor-1alpha (HIF-1alpha) and p300 by a zinc ejection mechanism. Cook KM, Hilton ST, Mecinovic J, Motherwell WB, Figg WD, Schofield CJ. J Biol Chem 284 26831-26838 (2009)
  11. microRNA-31/factor-inhibiting hypoxia-inducible factor 1 nexus regulates keratinocyte differentiation. Peng H, Kaplan N, Hamanaka RB, Katsnelson J, Blatt H, Yang W, Hao L, Bryar PJ, Johnson RS, Getsios S, Chandel NS, Lavker RM. Proc Natl Acad Sci U S A 109 14030-14034 (2012)
  12. Optimal translational termination requires C4 lysyl hydroxylation of eRF1. Feng T, Yamamoto A, Wilkins SE, Sokolova E, Yates LA, Münzel M, Singh P, Hopkinson RJ, Fischer R, Cockman ME, Shelley J, Trudgian DC, Schödel J, McCullagh JS, Ge W, Kessler BM, Gilbert RJ, Frolova LY, Alkalaeva E, Ratcliffe PJ, Schofield CJ, Coleman ML. Mol Cell 53 645-654 (2014)
  13. Crystal structure of the 2-oxoglutarate- and Fe(II)-dependent lysyl hydroxylase JMJD6. Mantri M, Krojer T, Bagg EA, Webby CJ, Butler DS, Kochan G, Kavanagh KL, Oppermann U, McDonough MA, Schofield CJ. J Mol Biol 401 211-222 (2010)
  14. Notch-1 mediates hypoxia-induced angiogenesis in rheumatoid arthritis. Gao W, Sweeney C, Connolly M, Kennedy A, Ng CT, McCormick J, Veale DJ, Fearon U. Arthritis Rheum 64 2104-2113 (2012)
  15. Post-translational modifications of connexin26 revealed by mass spectrometry. Locke D, Bian S, Li H, Harris AL. Biochem J 424 385-398 (2009)
  16. Asparagine and aspartate hydroxylation of the cytoskeletal ankyrin family is catalyzed by factor-inhibiting hypoxia-inducible factor. Yang M, Ge W, Chowdhury R, Claridge TD, Kramer HB, Schmierer B, McDonough MA, Gong L, Kessler BM, Ratcliffe PJ, Coleman ML, Schofield CJ. J Biol Chem 286 7648-7660 (2011)
  17. Kinetic Investigations of the Role of Factor Inhibiting Hypoxia-inducible Factor (FIH) as an Oxygen Sensor. Tarhonskaya H, Hardy AP, Howe EA, Loik ND, Kramer HB, McCullagh JS, Schofield CJ, Flashman E. J Biol Chem 290 19726-19742 (2015)
  18. Mint3 enhances the activity of hypoxia-inducible factor-1 (HIF-1) in macrophages by suppressing the activity of factor inhibiting HIF-1. Sakamoto T, Seiki M. J Biol Chem 284 30350-30359 (2009)
  19. MicroRNA-31 contributes to colorectal cancer development by targeting factor inhibiting HIF-1α (FIH-1). Chen T, Yao LQ, Shi Q, Ren Z, Ye LC, Xu JM, Zhou PH, Zhong YS. Cancer Biol Ther 15 516-523 (2014)
  20. MicroRNA-31 targets FIH-1 to positively regulate corneal epithelial glycogen metabolism. Peng H, Hamanaka RB, Katsnelson J, Hao LL, Yang W, Chandel NS, Lavker RM. FASEB J 26 3140-3147 (2012)
  21. Differences in hydroxylation and binding of Notch and HIF-1alpha demonstrate substrate selectivity for factor inhibiting HIF-1 (FIH-1). Wilkins SE, Hyvärinen J, Chicher J, Gorman JJ, Peet DJ, Bilton RL, Koivunen P. Int J Biochem Cell Biol 41 1563-1571 (2009)
  22. The 2-oxoglutarate-dependent oxygenase JMJD6 catalyses oxidation of lysine residues to give 5S-hydroxylysine residues. Mantri M, Loik ND, Hamed RB, Claridge TD, McCullagh JS, Schofield CJ. Chembiochem 12 531-534 (2011)
  23. Asparagine beta-hydroxylation stabilizes the ankyrin repeat domain fold. Kelly L, McDonough MA, Coleman ML, Ratcliffe PJ, Schofield CJ. Mol Biosyst 5 52-58 (2009)
  24. Identification of non-histone substrates for JMJD2A-C histone demethylases. Ponnaluri VK, Vavilala DT, Putty S, Gutheil WG, Mukherji M. Biochem Biophys Res Commun 390 280-284 (2009)
  25. Induction of ectopic Myc target gene JAG2 augments hypoxic growth and tumorigenesis in a human B-cell model. Yustein JT, Liu YC, Gao P, Jie C, Le A, Vuica-Ross M, Chng WJ, Eberhart CG, Bergsagel PL, Dang CV. Proc Natl Acad Sci U S A 107 3534-3539 (2010)
  26. Aspartyl-(asparaginyl) beta-hydroxylase, hypoxia-inducible factor-alpha and Notch cross-talk in regulating neuronal motility. Lawton M, Tong M, Gundogan F, Wands JR, de la Monte SM. Oxid Med Cell Longev 3 347-356 (2010)
  27. Submersion and hypoxia inhibit ciliated cell differentiation in a notch-dependent manner. Gerovac BJ, Valencia M, Baumlin N, Salathe M, Conner GE, Fregien NL. Am J Respir Cell Mol Biol 51 516-525 (2014)
  28. Hypoxia-dependent sequestration of an oxygen sensor by a widespread structural motif can shape the hypoxic response--a predictive kinetic model. Schmierer B, Novák B, Schofield CJ. BMC Syst Biol 4 139 (2010)
  29. Expression and DNA methylation levels of prolyl hydroxylases PHD1, PHD2, PHD3 and asparaginyl hydroxylase FIH in colorectal cancer. Rawluszko AA, Bujnicka KE, Horbacka K, Krokowicz P, Jagodziński PP. BMC Cancer 13 526 (2013)
  30. Factor inhibiting HIF limits the expression of hypoxia-inducible genes in podocytes and distal tubular cells. Schödel J, Bohr D, Klanke B, Schley G, Schlötzer-Schrehardt U, Warnecke C, Kurtz A, Amann K, Eckardt KU, Willam C. Kidney Int 78 857-867 (2010)
  31. Asparaginyl beta-hydroxylation of proteins containing ankyrin repeat domains influences their stability and function. Hardy AP, Prokes I, Kelly L, Campbell ID, Schofield CJ. J Mol Biol 392 994-1006 (2009)
  32. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain. Chan MC, Atasoylu O, Hodson E, Tumber A, Leung IK, Chowdhury R, Gómez-Pérez V, Demetriades M, Rydzik AM, Holt-Martyn J, Tian YM, Bishop T, Claridge TD, Kawamura A, Pugh CW, Ratcliffe PJ, Schofield CJ. PLoS One 10 e0132004 (2015)
  33. Interactions between Notch- and hypoxia-induced transcriptomes in embryonic stem cells. Main H, Lee KL, Yang H, Haapa-Paananen S, Edgren H, Jin S, Sahlgren C, Kallioniemi O, Poellinger L, Lim B, Lendahl U. Exp Cell Res 316 1610-1624 (2010)
  34. Factor inhibiting HIF (FIH-1) promotes renal cancer cell survival by protecting cells from HIF-1α-mediated apoptosis. Khan MN, Bhattacharyya T, Andrikopoulos P, Esteban MA, Barod R, Connor T, Ashcroft M, Maxwell PH, Kiriakidis S. Br J Cancer 104 1151-1159 (2011)
  35. Inhibitor of nuclear factor-kappaB alpha derepresses hypoxia-inducible factor-1 during moderate hypoxia by sequestering factor inhibiting hypoxia-inducible factor from hypoxia-inducible factor 1alpha. Shin DH, Li SH, Yang SW, Lee BL, Lee MK, Park JW. FEBS J 276 3470-3480 (2009)
  36. Factor inhibiting HIF (FIH) recognizes distinct molecular features within hypoxia-inducible factor-α (HIF-α) versus ankyrin repeat substrates. Wilkins SE, Karttunen S, Hampton-Smith RJ, Murchland I, Chapman-Smith A, Peet DJ. J Biol Chem 287 8769-8781 (2012)
  37. Factor inhibiting HIF1α (FIH-1) functions as a tumor suppressor in human colorectal cancer by repressing HIF1α pathway. Chen T, Ren Z, Ye LC, Zhou PH, Xu JM, Shi Q, Yao LQ, Zhong YS. Cancer Biol Ther 16 244-252 (2015)
  38. New classes of mind bomb-interacting proteins identified from yeast two-hybrid screens. Tseng LC, Zhang C, Cheng CM, Xu H, Hsu CH, Jiang YJ. PLoS One 9 e93394 (2014)
  39. Hypoxia-induced arterial differentiation requires adrenomedullin and notch signaling. Lanner F, Lee KL, Ortega GC, Sohl M, Li X, Jin S, Hansson EM, Claesson-Welsh L, Poellinger L, Lendahl U, Farnebo F. Stem Cells Dev 22 1360-1369 (2013)
  40. Onconeuronal cerebellar degeneration-related antigen, Cdr2, is strongly expressed in papillary renal cell carcinoma and leads to attenuated hypoxic response. Balamurugan K, Luu VD, Kaufmann MR, Hofmann VS, Boysen G, Barth S, Bordoli MR, Stiehl DP, Moch H, Schraml P, Wenger RH, Camenisch G. Oncogene 28 3274-3285 (2009)
  41. Overexpression of factor inhibiting HIF-1 enhances vessel maturation and tumor growth via platelet-derived growth factor-C. Kuzmanov A, Wielockx B, Rezaei M, Kettelhake A, Breier G. Int J Cancer 131 E603-13 (2012)
  42. Complex energy landscape of a giant repeat protein. Tsytlonok M, Craig PO, Sivertsson E, Serquera D, Perrett S, Best RB, Wolynes PG, Itzhaki LS. Structure 21 1954-1965 (2013)
  43. MYPT1, the targeting subunit of smooth-muscle myosin phosphatase, is a substrate for the asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor (FIH). Webb JD, Murányi A, Pugh CW, Ratcliffe PJ, Coleman ML. Biochem J 420 327-333 (2009)
  44. Network Analysis of UBE3A/E6AP-Associated Proteins Provides Connections to Several Distinct Cellular Processes. Martínez-Noël G, Luck K, Kühnle S, Desbuleux A, Szajner P, Galligan JT, Rodriguez D, Zheng L, Boyland K, Leclere F, Zhong Q, Hill DE, Vidal M, Howley PM. J Mol Biol 430 1024-1050 (2018)
  45. Substrate selectivity analyses of factor inhibiting hypoxia-inducible factor. Yang M, Hardy AP, Chowdhury R, Loik ND, Scotti JS, McCullagh JS, Claridge TD, McDonough MA, Ge W, Schofield CJ. Angew Chem Int Ed Engl 52 1700-1704 (2013)
  46. Thymosin beta4 induces angiogenesis through Notch signaling in endothelial cells. Lv S, Cheng G, Zhou Y, Xu G. Mol Cell Biochem 381 283-290 (2013)
  47. Factor-inhibiting HIF-1 (FIH-1) is required for human vascular endothelial cell survival. Kiriakidis S, Henze AT, Kruszynska-Ziaja I, Skobridis K, Theodorou V, Paleolog EM, Mazzone M. FASEB J 29 2814-2827 (2015)
  48. FIH-1-Mint3 axis does not control HIF-1 transcriptional activity in nucleus pulposus cells. Hirose Y, Johnson ZI, Schoepflin ZR, Markova DZ, Chiba K, Toyama Y, Shapiro IM, Risbud MV. J Biol Chem 289 20594-20605 (2014)
  49. Inverse solvent isotope effects arising from substrate triggering in the factor inhibiting hypoxia inducible factor. Hangasky JA, Saban E, Knapp MJ. Biochemistry 52 1594-1602 (2013)
  50. Biochemical and structural investigations clarify the substrate selectivity of the 2-oxoglutarate oxygenase JMJD6. Islam MS, McDonough MA, Chowdhury R, Gault J, Khan A, Pires E, Schofield CJ. J Biol Chem 294 11637-11652 (2019)
  51. Consequences of IkappaB alpha hydroxylation by the factor inhibiting HIF (FIH). Devries IL, Hampton-Smith RJ, Mulvihill MM, Alverdi V, Peet DJ, Komives EA. FEBS Lett 584 4725-4730 (2010)
  52. Quantitative mass spectrometry reveals dynamics of factor-inhibiting hypoxia-inducible factor-catalyzed hydroxylation. Singleton RS, Trudgian DC, Fischer R, Kessler BM, Ratcliffe PJ, Cockman ME. J Biol Chem 286 33784-33794 (2011)
  53. Interaction of the Ankyrin H Core Effector of Legionella with the Host LARP7 Component of the 7SK snRNP Complex. Von Dwingelo J, Chung IYW, Price CT, Li L, Jones S, Cygler M, Abu Kwaik Y. mBio 10 e01942-19 (2019)
  54. FIH-1/c-kit signaling: a novel contributor to corneal epithelial glycogen metabolism. Peng H, Katsnelson J, Yang W, Brown MA, Lavker RM. Invest Ophthalmol Vis Sci 54 2781-2786 (2013)
  55. Ankyrin Repeat Proteins of Orf Virus Influence the Cellular Hypoxia Response Pathway. Chen DY, Fabrizio JA, Wilkins SE, Dave KA, Gorman JJ, Gleadle JM, Fleming SB, Peet DJ, Mercer AA. J Virol 91 e01430-16 (2017)
  56. Kinetic parameters of human aspartate/asparagine-β-hydroxylase suggest that it has a possible function in oxygen sensing. Brewitz L, Tumber A, Schofield CJ. J Biol Chem 295 7826-7838 (2020)
  57. Structural investigations of the nickel-induced inhibition of truncated constructs of the JMJD2 family of histone demethylases using X-ray absorption spectroscopy. Giri NC, Passantino L, Sun H, Zoroddu MA, Costa M, Maroney MJ. Biochemistry 52 4168-4183 (2013)
  58. Biological regulation via ankyrin repeat folding. Barrick D. ACS Chem Biol 4 19-22 (2009)
  59. Crystal Structure of the 2-Oxoglutarate- and Fe(II)-Dependent Lysyl Hydroxylase JMJD6. Mantri M, Krojer T, Bagg EA, Webby CA, Butler DS, Kochan G, Kavanagh KL, Oppermann U, McDonough MA, Schofield CJ. J Mol Biol (2010)
  60. Predicting repeat protein folding kinetics from an experimentally determined folding energy landscape. Street TO, Barrick D. Protein Sci 18 58-68 (2009)
  61. Prevention of apoptosis by the interaction between FIH1 and Bax. Yan B, Kong M, Chen YH. Mol Cell Biochem 348 1-9 (2011)
  62. Pseudohypoxic HIF pathway activation dysregulates collagen structure-function in human lung fibrosis. Brereton CJ, Yao L, Davies ER, Zhou Y, Vukmirovic M, Bell JA, Wang S, Ridley RA, Dean LSN, Andriotis OG, Conforti F, Brewitz L, Mohammed S, Wallis T, Tavassoli A, Ewing RM, Alzetani A, Marshall BG, Fletcher SV, Thurner PJ, Fabre A, Kaminski N, Richeldi L, Bhaskar A, Schofield CJ, Loxham M, Davies DE, Wang Y, Jones MG. Elife 11 e69348 (2022)
  63. The facial triad in the α-ketoglutarate dependent oxygenase FIH: A role for sterics in linking substrate binding to O2 activation. Hangasky JA, Taabazuing CY, Martin CB, Eron SJ, Knapp MJ. J Inorg Biochem 166 26-33 (2017)
  64. A novel HIF1AN substrate KANK3 plays a tumor-suppressive role in hepatocellular carcinoma. Kim I, Kang J, Gee HY, Park JW. Cell Biol Int 42 303-312 (2018)
  65. Congress The expanding universe of hypoxia. Zhang H, Semenza GL. J Mol Med (Berl) 86 739-746 (2008)
  66. Nuclear entry and export of FIH are mediated by HIF1α and exportin1, respectively. Wang Y, Zhong S, Schofield CJ, Ratcliffe PJ, Lu X. J Cell Sci 131 jcs219782 (2018)
  67. Synthesis and conformational analysis of cyclic analogues of inverse gamma-turns. Kaewpet M, Odell B, King MA, Banerji B, Schofield CJ, Claridge TD. Org Biomol Chem 6 3476-3485 (2008)
  68. 2-Oxoglutarate derivatives can selectively enhance or inhibit the activity of human oxygenases. Nakashima Y, Brewitz L, Tumber A, Salah E, Schofield CJ. Nat Commun 12 6478 (2021)
  69. Comment Mitochondria, oxygen sensing, and the regulation of HIF-2alpha. Focus on "Induction of HIF-2alpha is dependent on mitochondrial O2 consumption in an O2-sensitive adrenomedullary chromaffin cell line". Taylor CT. Am J Physiol Cell Physiol 294 C1300-2 (2008)
  70. Investigations on the role of a solvent tunnel in the α-ketoglutarate dependent oxygenase factor inhibiting HIF (FIH). Chaplin VD, Valliere MA, Hangasky JA, Knapp MJ. J Inorg Biochem 178 63-69 (2018)
  71. Molecular response and association analysis of Megalobrama amblycephala fih-1 with hypoxia. Zhang B, Chen N, Huang C, Huang C, Chen B, Liu H, Wang W, Gul Y, Wang H. Mol Genet Genomics 291 1615-1624 (2016)
  72. A human protein hydroxylase that accepts D-residues. Choi H, Hardy AP, Leissing TM, Chowdhury R, Nakashima Y, Ge W, Markoulides M, Scotti JS, Gerken PA, Thorbjornsrud H, Kang D, Hong S, Lee J, McDonough MA, Park H, Schofield CJ. Commun Chem 3 52 (2020)
  73. Factor inhibiting HIF can catalyze two asparaginyl hydroxylations in VNVN motifs of ankyrin fold proteins. Leissing TM, Hardy AP, Chan H, Wang Y, Tumber A, Chowdhury R, Feng T, Coleman ML, Cockman ME, Kramer HB, Berridge G, Fischer R, Kessler BM, Ratcliffe PJ, Lu X, Schofield CJ. J Biol Chem 298 102020 (2022)
  74. Factor-inhibiting HIF (FIH) promotes lung cancer progression. García-Del Río A, Prieto-Fernández E, Egia-Mendikute L, Antoñana-Vildosola A, Jimenez-Lasheras B, Lee SY, Barreira-Manrique A, Zanetti SR, de Blas A, Velasco-Beltrán P, Bosch A, Aransay AM, Palazon A. JCI Insight 8 e167394 (2023)
  75. Hydroxylation of the NOTCH1 intracellular domain regulates Notch signaling dynamics. Ferrante F, Giaimo BD, Friedrich T, Sugino T, Mertens D, Kugler S, Gahr BM, Just S, Pan L, Bartkuhn M, Potente M, Oswald F, Borggrefe T. Cell Death Dis 13 600 (2022)
  76. Sirtuin1 meditated modification of Notch1 intracellular domain regulates nucleolar localization and activation of distinct signaling cascades. Saini N, Bheeshmachar G, Sarin A. Front Cell Dev Biol 10 988816 (2022)
  77. The conservation and functionality of the oxygen-sensing enzyme Factor Inhibiting HIF (FIH) in non-vertebrates. Hampton-Smith RJ, Davenport BA, Nagarajan Y, Peet DJ. PLoS One 14 e0216134 (2019)
  78. Combined proteomic and biochemical analyses redefine the consensus sequence requirement for epidermal growth factor-like domain hydroxylation. Brewitz L, Onisko BC, Schofield CJ. J Biol Chem 298 102129 (2022)
  79. Structure-guided optimisation of N-hydroxythiazole-derived inhibitors of factor inhibiting hypoxia-inducible factor-α. Corner TP, Teo RZR, Wu Y, Salah E, Nakashima Y, Fiorini G, Tumber A, Brasnett A, Holt-Martyn JP, Figg WD, Zhang X, Brewitz L, Schofield CJ. Chem Sci 14 12098-12120 (2023)