3paw Citations

Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization.

Nat Struct Mol Biol 18 316-22 (2011)
Related entries: 2wgh, 3hnc, 3hnd, 3hne, 3hnf

Cited: 109 times
EuropePMC logo PMID: 21336276

Abstract

Ribonucleotide reductase (RR) is an α(n)β(n) (RR1-RR2) complex that maintains balanced dNTP pools by reducing NDPs to dNDPs. RR1 is the catalytic subunit, and RR2 houses the free radical required for catalysis. RR is allosterically regulated by its activator ATP and its inhibitor dATP, which regulate RR activity by inducing oligomerization of RR1. Here, we report the first X-ray structures of human RR1 bound to TTP alone, dATP alone, TTP-GDP, TTP-ATP, and TTP-dATP. These structures provide insights into regulation of RR by ATP or dATP. At physiological dATP concentrations, RR1 forms inactive hexamers. We determined the first X-ray structure of the RR1-dATP hexamer and used single-particle electron microscopy to visualize the α(6)-ββ'-dATP holocomplex. Site-directed mutagenesis and functional assays confirm that hexamerization is a prerequisite for inhibition by dATP. Our data indicate a mechanism for regulating RR activity by dATP-induced oligomerization.

Reviews - 3paw mentioned but not cited (1)

  1. Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present. Huff SE, Winter JM, Dealwis CG. Biomolecules 12 815 (2022)

Articles - 3paw mentioned but not cited (5)

  1. Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. Fairman JW, Wijerathna SR, Ahmad MF, Xu H, Nakano R, Jha S, Prendergast J, Welin RM, Flodin S, Roos A, Nordlund P, Li Z, Walz T, Dealwis CG. Nat. Struct. Mol. Biol. 18 316-322 (2011)
  2. Allosteric Inhibition of Human Ribonucleotide Reductase by dATP Entails the Stabilization of a Hexamer. Ando N, Li H, Brignole EJ, Thompson S, McLaughlin MI, Page JE, Asturias FJ, Stubbe J, Drennan CL. Biochemistry 55 373-381 (2016)
  3. Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators. Ahmad MF, Huff SE, Pink J, Alam I, Zhang A, Perry K, Harris ME, Misko T, Porwal SK, Oleinick NL, Miyagi M, Viswanathan R, Dealwis CG. J. Med. Chem. 58 9498-9509 (2015)
  4. 3.3-Å resolution cryo-EM structure of human ribonucleotide reductase with substrate and allosteric regulators bound. Brignole EJ, Tsai KL, Chittuluru J, Li H, Aye Y, Penczek PA, Stubbe J, Drennan CL, Asturias F. Elife 7 (2018)
  5. A fluorimetric readout reporting the kinetics of nucleotide-induced human ribonucleotide reductase oligomerization. Fu Y, Lin H, Wisitpitthaya S, Blessing WA, Aye Y. Chembiochem 15 2598-2604 (2014)


Reviews citing this publication (23)

  1. DNA building blocks: keeping control of manufacture. Hofer A, Crona M, Logan DT, Sjöberg BM. Crit. Rev. Biochem. Mol. Biol. 47 50-63 (2012)
  2. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Aye Y, Li M, Long MJ, Weiss RS. Oncogene 34 2011-2021 (2015)
  3. Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Cotruvo JA, Stubbe J. Annu. Rev. Biochem. 80 733-767 (2011)
  4. ERCC1 and RRM1: ready for prime time? Besse B, Olaussen KA, Soria JC. J. Clin. Oncol. 31 1050-1060 (2013)
  5. Deoxyribonucleotide metabolism, mutagenesis and cancer. Mathews CK. Nat. Rev. Cancer 15 528-539 (2015)
  6. Dynamic dissociating homo-oligomers and the control of protein function. Selwood T, Jaffe EK. Arch. Biochem. Biophys. 519 131-143 (2012)
  7. Cellular regulation of ribonucleotide reductase in eukaryotes. Guarino E, Salguero I, Kearsey SE. Semin. Cell Dev. Biol. 30 97-103 (2014)
  8. The origin and evolution of ribonucleotide reduction. Lundin D, Berggren G, Logan DT, Sjöberg BM. Life (Basel) 5 604-636 (2015)
  9. Targeting ribonucleotide reductase for cancer therapy. Shao J, Liu X, Zhu L, Yen Y. Expert Opin. Ther. Targets 17 1423-1437 (2013)
  10. Prognostic and predictive biomarkers in early stage non-small cell lung cancer: tumor based approaches including gene signatures. Carnio S, Novello S, Papotti M, Loiacono M, Scagliotti GV. Transl Lung Cancer Res 2 372-381 (2013)
  11. The structural basis for the allosteric regulation of ribonucleotide reductase. Ahmad MF, Dealwis CG. Prog Mol Biol Transl Sci 117 389-410 (2013)
  12. X-ray Scattering Studies of Protein Structural Dynamics. Meisburger SP, Thomas WC, Watkins MB, Ando N. Chem. Rev. 117 7615-7672 (2017)
  13. The fall and rise of pharmacology--(re-)defining the discipline? Winquist RJ, Mullane K, Williams M. Biochem. Pharmacol. 87 4-24 (2014)
  14. The prototypic class Ia ribonucleotide reductase from Escherichia coli: still surprising after all these years. Brignole EJ, Ando N, Zimanyi CM, Drennan CL. Biochem. Soc. Trans. 40 523-530 (2012)
  15. Clinical pharmacology and clinical trials of ribonucleotide reductase inhibitors: is it a viable cancer therapy? Mannargudi MB, Deb S. J. Cancer Res. Clin. Oncol. 143 1499-1529 (2017)
  16. Deoxyribonucleotide Triphosphate Metabolism in Cancer and Metabolic Disease. Buj R, Aird KM. Front Endocrinol (Lausanne) 9 177 (2018)
  17. Hydroxyurea-The Good, the Bad and the Ugly. Musiałek MW, Rybaczek D. Genes (Basel) 12 1096 (2021)
  18. The more the merrier: how homo-oligomerization alters the interactome and function of ribonucleotide reductase. Long MJC, Van Hall-Beauvais A, Aye Y. Curr Opin Chem Biol 54 10-18 (2020)
  19. Breaking the Fourth Wall: Modulating Quaternary Associations for Protein Regulation and Drug Discovery. Long MJC, Hnedzko D, Kim BK, Aye Y. Chembiochem 20 1091-1104 (2019)
  20. Mechanistic cross-talk between DNA/RNA polymerase enzyme kinetics and nucleotide substrate availability in cells: Implications for polymerase inhibitor discovery. Coggins SA, Mahboubi B, Schinazi RF, Kim B. J Biol Chem 295 13432-13443 (2020)
  21. Nucleotide Pool Imbalance and Antibody Gene Diversification. Azhar A, Begum NA, Husain A. Vaccines (Basel) 9 1050 (2021)
  22. Regulatory Role of Ribonucleotide Reductase Subunit M2 in Hepatocyte Growth and Pathogenesis of Hepatitis C Virus. Kitab B, Tsukiyama-Kohara K. Int J Mol Sci 24 2619 (2023)
  23. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Long MJC, Ly P, Aye Y. Subcell Biochem 99 155-197 (2022)

Articles citing this publication (80)

  1. Structural interconversions modulate activity of Escherichia coli ribonucleotide reductase. Ando N, Brignole EJ, Zimanyi CM, Funk MA, Yokoyama K, Asturias FJ, Stubbe J, Drennan CL. Proc. Natl. Acad. Sci. U.S.A. 108 21046-21051 (2011)
  2. Clofarabine 5'-di and -triphosphates inhibit human ribonucleotide reductase by altering the quaternary structure of its large subunit. Aye Y, Stubbe J. Proc. Natl. Acad. Sci. U.S.A. 108 9815-9820 (2011)
  3. Investigation of in vivo diferric tyrosyl radical formation in Saccharomyces cerevisiae Rnr2 protein: requirement of Rnr4 and contribution of Grx3/4 AND Dre2 proteins. Zhang Y, Liu L, Wu X, An X, Stubbe J, Huang M. J. Biol. Chem. 286 41499-41509 (2011)
  4. Nucleoside salvage pathway kinases regulate hematopoiesis by linking nucleotide metabolism with replication stress. Austin WR, Armijo AL, Campbell DO, Singh AS, Hsieh T, Nathanson D, Herschman HR, Phelps ME, Witte ON, Czernin J, Radu CG. J. Exp. Med. 209 2215-2228 (2012)
  5. Tangled up in knots: structures of inactivated forms of E. coli class Ia ribonucleotide reductase. Zimanyi CM, Ando N, Brignole EJ, Asturias FJ, Stubbe J, Drennan CL. Structure 20 1374-1383 (2012)
  6. Conserved electron donor complex Dre2-Tah18 is required for ribonucleotide reductase metallocofactor assembly and DNA synthesis. Zhang Y, Li H, Zhang C, An X, Liu L, Stubbe J, Huang M. Proc. Natl. Acad. Sci. U.S.A. 111 E1695-704 (2014)
  7. Clofarabine targets the large subunit (α) of human ribonucleotide reductase in live cells by assembly into persistent hexamers. Aye Y, Brignole EJ, Long MJ, Chittuluru J, Drennan CL, Asturias FJ, Stubbe J. Chem. Biol. 19 799-805 (2012)
  8. Enzyme regulation. IRBIT is a novel regulator of ribonucleotide reductase in higher eukaryotes. Arnaoutov A, Dasso M. Science 345 1512-1515 (2014)
  9. Novel mutator mutants of E. coli nrdAB ribonucleotide reductase: insight into allosteric regulation and control of mutation rates. Ahluwalia D, Bienstock RJ, Schaaper RM. DNA Repair (Amst.) 11 480-487 (2012)
  10. Bcl2 induces DNA replication stress by inhibiting ribonucleotide reductase. Xie M, Yen Y, Owonikoko TK, Ramalingam SS, Khuri FR, Curran WJ, Doetsch PW, Deng X. Cancer Res. 74 212-223 (2014)
  11. Diversity in Overall Activity Regulation of Ribonucleotide Reductase. Jonna VR, Crona M, Rofougaran R, Lundin D, Johansson S, Brännström K, Sjöberg BM, Hofer A. J. Biol. Chem. 290 17339-17348 (2015)
  12. Proton Coupled Electron Transfer and Redox Active Tyrosines: Structure and Function of the Tyrosyl Radicals in Ribonucleotide Reductase and Photosystem II. Barry BA, Chen J, Keough J, Jenson D, Offenbacher A, Pagba C. J Phys Chem Lett 3 543-554 (2012)
  13. Cladribine and Fludarabine Nucleotides Induce Distinct Hexamers Defining a Common Mode of Reversible RNR Inhibition. Wisitpitthaya S, Zhao Y, Long MJ, Li M, Fletcher EA, Blessing WA, Weiss RS, Aye Y. ACS Chem. Biol. 11 2021-2032 (2016)
  14. Elevated ribonucleotide reductase levels associate with suppressed radiochemotherapy response in human cervical cancers. Kunos CA, Radivoyevitch T, Kresak A, Dawson D, Jacobberger J, Yang B, Abdul-Karim FW. Int. J. Gynecol. Cancer 22 1463-1469 (2012)
  15. Revertant mutants modify, but do not rescue, the gating defect of the cystic fibrosis mutant G551D-CFTR. Xu Z, Pissarra LS, Farinha CM, Liu J, Cai Z, Thibodeau PH, Amaral MD, Sheppard DN. J. Physiol. (Lond.) 592 1931-1947 (2014)
  16. Ribonucleotide reductase-mediated increase in dATP improves cardiac performance via myosin activation in a large animal model of heart failure. Kadota S, Carey J, Reinecke H, Leggett J, Teichman S, Laflamme MA, Murry CE, Regnier M, Mahairas GG. Eur. J. Heart Fail. 17 772-781 (2015)
  17. Spectroscopic studies of the iron and manganese reconstituted tyrosyl radical in Bacillus cereus ribonucleotide reductase R2 protein. Tomter AB, Zoppellaro G, Bell CB, Barra AL, Andersen NH, Solomon EI, Andersson KK. PLoS ONE 7 e33436 (2012)
  18. Dissecting Dynamic Allosteric Pathways Using Chemically Related Small-Molecule Activators. Lisi GP, Manley GA, Hendrickson H, Rivalta I, Batista VS, Loria JP. Structure 24 1155-1166 (2016)
  19. Ribonucleotide reductase subunit M2 predicts survival in subgroups of patients with non-small cell lung carcinoma: effects of gender and smoking status. Mah V, Alavi M, Márquez-Garbán DC, Maresh EL, Kim SR, Horvath S, Bagryanova L, Huerta-Yepez S, Chia D, Pietras R, Goodglick L. PLoS ONE 10 e0127600 (2015)
  20. Role of arginine 293 and glutamine 288 in communication between catalytic and allosteric sites in yeast ribonucleotide reductase. Ahmad MF, Kaushal PS, Wan Q, Wijerathna SR, An X, Huang M, Dealwis CG. J. Mol. Biol. 419 315-329 (2012)
  21. Structural Mechanism of Allosteric Activity Regulation in a Ribonucleotide Reductase with Double ATP Cones. Johansson R, Jonna VR, Kumar R, Nayeri N, Lundin D, Sjöberg BM, Hofer A, Logan DT. Structure 24 906-917 (2016)
  22. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase. Wei Y, Li B, Prakash D, Ferry JG, Elliott SJ, Stubbe J. Biochemistry 54 7019-7028 (2015)
  23. Novel ATP-cone-driven allosteric regulation of ribonucleotide reductase via the radical-generating subunit. Rozman Grinberg I, Lundin D, Hasan M, Crona M, Jonna VR, Loderer C, Sahlin M, Markova N, Borovok I, Berggren G, Hofer A, Logan DT, Sjöberg BM. Elife 7 (2018)
  24. Uncoupling of allosteric and oligomeric regulation in a functional hybrid enzyme constructed from Escherichia coli and human ribonucleotide reductase. Fu Y, Long MJ, Rigney M, Parvez S, Blessing WA, Aye Y. Biochemistry 52 7050-7059 (2013)
  25. Functional determinants of protein assembly into homomeric complexes. Bergendahl LT, Marsh JA. Sci Rep 7 4932 (2017)
  26. HF-EPR, Raman, UV/VIS light spectroscopic, and DFT studies of the ribonucleotide reductase R2 tyrosyl radical from Epstein-Barr virus. Tomter AB, Zoppellaro G, Schmitzberger F, Andersen NH, Barra AL, Engman H, Nordlund P, Andersson KK. PLoS ONE 6 e25022 (2011)
  27. A rare combination of ribonucleotide reductases in the social amoeba Dictyostelium discoideum. Crona M, Avesson L, Sahlin M, Lundin D, Hinas A, Klose R, Söderbom F, Sjöberg BM. J. Biol. Chem. 288 8198-8208 (2013)
  28. AAV6-mediated Cardiac-specific Overexpression of Ribonucleotide Reductase Enhances Myocardial Contractility. Kolwicz SC, Odom GL, Nowakowski SG, Moussavi-Harami F, Chen X, Reinecke H, Hauschka SD, Murry CE, Mahairas GG, Regnier M. Mol. Ther. 24 240-250 (2016)
  29. Investigation of in vivo roles of the C-terminal tails of the small subunit (ββ') of Saccharomyces cerevisiae ribonucleotide reductase: contribution to cofactor formation and intersubunit association within the active holoenzyme. Zhang Y, An X, Stubbe J, Huang M. J. Biol. Chem. 288 13951-13959 (2013)
  30. Phase I trial of daily triapine in combination with cisplatin chemotherapy for advanced-stage malignancies. Kunos CA, Chu E, Beumer JH, Sznol M, Ivy SP. Cancer Chemother. Pharmacol. 79 201-207 (2017)
  31. Bacillus subtilis class Ib ribonucleotide reductase: high activity and dynamic subunit interactions. Parker MJ, Zhu X, Stubbe J. Biochemistry 53 766-776 (2014)
  32. The Most Interesting Enzyme in the World. Mathews CK. Structure 24 843-844 (2016)
  33. Comment Closing the circle on ribonucleotide reductases. Logan DT. Nat. Struct. Mol. Biol. 18 251-253 (2011)
  34. Evaluating the therapeutic potential of a non-natural nucleotide that inhibits human ribonucleotide reductase. Ahmad MF, Wan Q, Jha S, Motea E, Berdis A, Dealwis C. Mol. Cancer Ther. 11 2077-2086 (2012)
  35. Pan-pathway based interaction profiling of FDA-approved nucleoside and nucleobase analogs with enzymes of the human nucleotide metabolism. Egeblad L, Welin M, Flodin S, Gräslund S, Wang L, Balzarini J, Eriksson S, Nordlund P. PLoS ONE 7 e37724 (2012)
  36. Phase I and extension study of clofarabine plus cyclophosphamide in patients with relapsed/refractory acute lymphoblastic leukemia. Faderl S, Balakrishnan K, Thomas DA, Ravandi F, Borthakur G, Burger J, Ferrajoli A, Cortes J, O'Brien S, Kadia T, Feliu J, Plunkett W, Gandhi V, Kantarjian HM. Clin Lymphoma Myeloma Leuk 14 231-238 (2014)
  37. Targeting the Large Subunit of Human Ribonucleotide Reductase for Cancer Chemotherapy. Wijerathna SR, Ahmad MF, Xu H, Fairman JW, Zhang A, Kaushal PS, Wan Q, Kiser J, Dealwis CG. Pharmaceuticals (Basel) 4 1328-1354 (2011)
  38. The Crystal Structure of Thermotoga maritima Class III Ribonucleotide Reductase Lacks a Radical Cysteine Pre-Positioned in the Active Site. Aurelius O, Johansson R, Bågenholm V, Lundin D, Tholander F, Balhuizen A, Beck T, Sahlin M, Sjöberg BM, Mulliez E, Logan DT. PLoS ONE 10 e0128199 (2015)
  39. A ribonucleotide reductase inhibitor with deoxyribonucleoside-reversible cytotoxicity. Crona M, Codó P, Jonna VR, Hofer A, Fernandes AP, Tholander F. Mol Oncol 10 1375-1386 (2016)
  40. Disruption of an oligomeric interface prevents allosteric inhibition of Escherichia coli class Ia ribonucleotide reductase. Chen PY, Funk MA, Brignole EJ, Drennan CL. J. Biol. Chem. 293 10404-10412 (2018)
  41. Molecular Strategies of Deoxynucleotide Triphosphate Supply Inhibition Used in the Treatment of Gynecologic Malignancies. Kunos CA, Radivoyevitch T. Gynecol Obstet (Sunnyvale) Suppl 4 001 (2011)
  42. Potent competitive inhibition of human ribonucleotide reductase by a nonnucleoside small molecule. Ahmad MF, Alam I, Huff SE, Pink J, Flanagan SA, Shewach D, Misko TA, Oleinick NL, Harte WE, Viswanathan R, Harris ME, Dealwis CG. Proc. Natl. Acad. Sci. U.S.A. 114 8241-8246 (2017)
  43. Assigning functionality to cysteines by base editing of cancer dependency genes. Li H, Ma T, Remsberg JR, Won SJ, DeMeester KE, Njomen E, Ogasawara D, Zhao KT, Huang TP, Lu B, Simon GM, Melillo B, Schreiber SL, Lykke-Andersen J, Liu DR, Cravatt BF. Nat Chem Biol 19 1320-1330 (2023)
  44. Direct Measurement of the Radical Translocation Distance in the Class I Ribonucleotide Reductase from Chlamydia trachomatis. Livada J, Martinie RJ, Dassama LM, Krebs C, Bollinger JM, Silakov A. J Phys Chem B 119 13777-13784 (2015)
  45. On model ensemble analyses of nonmonotonic data. Radivoyevitch T, Kunos CA. Nucleosides Nucleotides Nucleic Acids 31 147-156 (2012)
  46. Structure-Guided Synthesis and Mechanistic Studies Reveal Sweetspots on Naphthyl Salicyl Hydrazone Scaffold as Non-Nucleosidic Competitive, Reversible Inhibitors of Human Ribonucleotide Reductase. Huff SE, Mohammed FA, Yang M, Agrawal P, Pink J, Harris ME, Dealwis CG, Viswanathan R. J. Med. Chem. 61 666-680 (2018)
  47. A genetic screen pinpoints ribonucleotide reductase residues that sustain dNTP homeostasis and specifies a highly mutagenic type of dNTP imbalance. Schmidt TT, Sharma S, Reyes GX, Gries K, Gross M, Zhao B, Yuan JH, Wade R, Chabes A, Hombauer H. Nucleic Acids Res. 47 237-252 (2019)
  48. Auranofin Resistance in Toxoplasma gondii Decreases the Accumulation of Reactive Oxygen Species but Does Not Target Parasite Thioredoxin Reductase. Ma CI, Tirtorahardjo JA, Jan S, Schweizer SS, Rosario SAC, Du Y, Zhang JJ, Morrissette NS, Andrade RM. Front Cell Infect Microbiol 11 618994 (2021)
  49. Caspase-dependent Proteolysis of Human Ribonucleotide Reductase Small Subunits R2 and p53R2 during Apoptosis. Tebbi A, Guittet O, Tuphile K, Cabrié A, Lepoivre M. J. Biol. Chem. 290 14077-14090 (2015)
  50. Effects of chameleon dispense-to-plunge speed on particle concentration, complex formation, and final resolution: A case study using the Neisseria gonorrhoeae ribonucleotide reductase inactive complex. Levitz TS, Brignole EJ, Fong I, Darrow MC, Drennan CL. J Struct Biol 214 107825 (2022)
  51. Increased Cytotoxicity of Herpes Simplex Virus Thymidine Kinase Expression in Human Induced Pluripotent Stem Cells. Iwasawa C, Tamura R, Sugiura Y, Suzuki S, Kuzumaki N, Narita M, Suematsu M, Nakamura M, Yoshida K, Toda M, Okano H, Miyoshi H. Int J Mol Sci 20 (2019)
  52. Insights into the evolution of enzymatic specificity and catalysis: From Asgard archaea to human adenylate kinases. Verma A, Åberg-Zingmark E, Sparrman T, Mushtaq AU, Rogne P, Grundström C, Berntsson R, Sauer UH, Backman L, Nam K, Sauer-Eriksson E, Wolf-Watz M. Sci Adv 8 eabm4089 (2022)
  53. Nuclear RNR-α antagonizes cell proliferation by directly inhibiting ZRANB3. Fu Y, Long MJC, Wisitpitthaya S, Inayat H, Pierpont TM, Elsaid IM, Bloom JC, Ortega J, Weiss RS, Aye Y. Nat. Chem. Biol. 14 943-954 (2018)
  54. Ribonucleotide Reductases: Structure, Chemistry, and Metabolism Suggest New Therapeutic Targets. Greene BL, Kang G, Cui C, Bennati M, Nocera DG, Drennan CL, Stubbe J. Annu Rev Biochem 89 45-75 (2020)
  55. Ribonucleotide reductase, a novel drug target for gonorrhea. Narasimhan J, Letinski S, Jung SP, Gerasyuto A, Wang J, Arnold M, Chen G, Hedrick J, Dumble M, Ravichandran K, Levitz T, Cui C, Drennan CL, Stubbe J, Karp G, Branstrom A. Elife 11 e67447 (2022)
  56. Still the most interesting enzyme in the world. Mathews CK. FASEB J. 32 4067-4069 (2018)
  57. Structures of Class Id Ribonucleotide Reductase Catalytic Subunits Reveal a Minimal Architecture for Deoxynucleotide Biosynthesis. Rose HR, Maggiolo AO, McBride MJ, Palowitch GM, Pandelia ME, Davis KM, Yennawar NH, Boal AK. Biochemistry 58 1845-1860 (2019)
  58. The conserved Lys-95 charged residue cluster is critical for the homodimerization and enzyme activity of human ribonucleotide reductase small subunit M2. Chen X, Xu Z, Zhang L, Liu H, Liu X, Lou M, Zhu L, Huang B, Yang CG, Zhu W, Shao J. J. Biol. Chem. 289 909-920 (2014)
  59. A Missense Mutation in a Large Subunit of Ribonucleotide Reductase Confers Temperature-Gated Tassel Formation. Xie S, Luo H, Huang Y, Wang Y, Ru W, Shi Y, Huang W, Wang H, Dong Z, Jin W. Plant Physiol 184 1979-1997 (2020)
  60. A nucleotide-sensing oligomerization mechanism that controls NrdR-dependent transcription of ribonucleotide reductases. Rozman Grinberg I, Martínez-Carranza M, Bimai O, Nouaïria G, Shahid S, Lundin D, Logan DT, Sjöberg BM, Stenmark P. Nat Commun 13 2700 (2022)
  61. A ribonucleotide reductase from Clostridium botulinum reveals distinct evolutionary pathways to regulation via the overall activity site. Martínez-Carranza M, Jonna VR, Lundin D, Sahlin M, Carlson LA, Jemal N, Högbom M, Sjöberg BM, Stenmark P, Hofer A. J Biol Chem 295 15576-15587 (2020)
  62. Acetylation regulates ribonucleotide reductase activity and cancer cell growth. Chen G, Luo Y, Warncke K, Sun Y, Yu DS, Fu H, Behera M, Ramalingam SS, Doetsch PW, Duong DM, Lammers M, Curran WJ, Deng X. Nat Commun 10 3213 (2019)
  63. Basis of dATP inhibition of RNRs. Greene BL, Nocera DG, Stubbe J. J. Biol. Chem. 293 10413-10414 (2018)
  64. From the covalent linkage of drugs to novel inhibitors of ribonucleotide reductase: synthesis and biological evaluation of valproic esters of 3'-C-methyladenosine. Petrelli R, Meli M, Vita P, Torquati I, Ferro A, Vodnala M, D'Alessandro N, Tolomeo M, Del Bello F, Kusumanchi P, Franchetti P, Grifantini M, Jayaram HN, Hofer A, Cappellacci L. Bioorg. Med. Chem. Lett. 24 5304-5309 (2014)
  65. Glutathione-glutaredoxin is an efficient electron donor system for mammalian p53R2-R1-dependent ribonucleotide reductase. Sengupta R, Coppo L, Mishra P, Holmgren A. J Biol Chem 294 12708-12716 (2019)
  66. IRBIT Directs Differentiation of Intestinal Stem Cell Progeny to Maintain Tissue Homeostasis. Arnaoutov A, Lee H, Plevock Haase K, Aksenova V, Jarnik M, Oliver B, Serpe M, Dasso M. iScience 23 100954 (2020)
  67. Identification of Novel Ribonucleotide Reductase Inhibitors for Therapeutic Application in Bile Tract Cancer: An Advanced Pharmacoinformatics Study. Islam MA, Barshetty MM, Srinivasan S, Dudekula DB, Rallabandi VPS, Mohammed S, Natarajan S, Park J. Biomolecules 12 1279 (2022)
  68. Letter Inhibition of yeast ribonucleotide reductase by Sml1 depends on the allosteric state of the enzyme. Misko TA, Wijerathna SR, Radivoyevitch T, Berdis AJ, Ahmad MF, Harris ME, Dealwis CG. FEBS Lett. 590 1704-1712 (2016)
  69. Phylogenetic sequence analysis and functional studies reveal compensatory amino acid substitutions in loop 2 of human ribonucleotide reductase. Knappenberger AJ, Grandhi S, Sheth R, Ahmad MF, Viswanathan R, Harris ME. J. Biol. Chem. 292 16463-16476 (2017)
  70. Preclinical validation and phase I trial of 4-hydroxysalicylanilide, targeting ribonucleotide reductase mediated dNTP synthesis in multiple myeloma. Xie Y, Wang Y, Xu Z, Lu Y, Song D, Gao L, Yu D, Li B, Chen G, Zhang H, Feng Q, Zhang Y, Hu K, Huang C, Peng Y, Wu X, Mao Z, Shao J, Zhu W, Shi J. J Biomed Sci 29 32 (2022)
  71. RRM1 variants cause a mitochondrial DNA maintenance disorder via impaired de novo nucleotide synthesis. Shintaku J, Pernice WM, Eyaid W, Gc JB, Brown ZP, Juanola-Falgarona M, Torres-Torronteras J, Sommerville EW, Hellebrekers DM, Blakely EL, Donaldson A, van de Laar I, Leu CS, Marti R, Frank J, Tanji K, Koolen DA, Rodenburg RJ, Chinnery PF, Smeets HJM, Gorman GS, Bonnen PE, Taylor RW, Hirano M. J Clin Invest 132 e145660 (2022)
  72. Radicals in Biology: Your Life Is in Their Hands. Stubbe J, Nocera DG. J Am Chem Soc 143 13463-13472 (2021)
  73. Ribonucleotide reductase regulatory subunit M2 drives glioblastoma TMZ resistance through modulation of dNTP production. Perrault EN, Shireman JM, Ali ES, Lin P, Preddy I, Park C, Budhiraja S, Baisiwala S, Dixit K, James CD, Heiland DH, Ben-Sahra I, Pott S, Basu A, Miska J, Ahmed AU. Sci Adv 9 eade7236 (2023)
  74. Screening of traditional Chinese medicine monomers as ribonucleotide reductase M2 inhibitors for tumor treatment. Qin YY, Feng S, Zhang XD, Peng B. World J Clin Cases 10 11299-11312 (2022)
  75. Solution Structure of the dATP-Inactivated Class I Ribonucleotide Reductase From Leeuwenhoekiella blandensis by SAXS and Cryo-Electron Microscopy. Hasan M, Banerjee I, Rozman Grinberg I, Sjöberg BM, Logan DT. Front Mol Biosci 8 713608 (2021)
  76. Structural and Biochemical Investigation of Class I Ribonucleotide Reductase from the Hyperthermophile Aquifex aeolicus. Rehling D, Scaletti ER, Rozman Grinberg I, Lundin D, Sahlin M, Hofer A, Sjöberg BM, Stenmark P. Biochemistry 61 92-106 (2022)
  77. Structure-based screening of binding affinities via small-angle X-ray scattering. Chen PC, Masiewicz P, Perez K, Hennig J. IUCrJ 7 644-655 (2020)
  78. Structure-guided design of anti-cancer ribonucleotide reductase inhibitors. Misko TA, Liu YT, Harris ME, Oleinick NL, Pink J, Lee HY, Dealwis CG. J Enzyme Inhib Med Chem 34 438-450 (2019)
  79. TAS1553, a small molecule subunit interaction inhibitor of ribonucleotide reductase, exhibits antitumor activity by causing DNA replication stress. Ueno H, Hoshino T, Yano W, Tsukioka S, Suzuki T, Hara S, Ogino Y, Chong KT, Suzuki T, Tsuji S, Itadani H, Yamamiya I, Otsu Y, Ito S, Yonekura T, Terasaka M, Tanaka N, Miyahara S. Commun Biol 5 571 (2022)
  80. Triapine Radiochemotherapy in Advanced Stage Cervical Cancer. Kunos CA, Ivy SP. Front Oncol 8 149 (2018)