3pgm Citations

Structure and activity of phosphoglycerate mutase.

Philos Trans R Soc Lond B Biol Sci 293 121-30 (1981)
Cited: 56 times
EuropePMC logo PMID: 6115412

Abstract

The structure of yeast phosphoglycerate mutase determined by X-ray crystallographic and amino acid sequence studies has been interpreted in terms of the chemical, kinetic and mechanistic observations made on this enzyme. There are two histidine residues at the active site, with imidazole groups almost parallel to each other and approximately 0.4 nm apart, positioned close to the 2 and 3 positions of the substrate. The simplest interpretation of the available information suggests that a ping-pong type mechanism operates in which at least one of these histidine residues participates in the phosphoryl transfer reaction. The flexible C-terminal region also plays an important role in the enzymic reaction.

Articles - 3pgm mentioned but not cited (7)

  1. Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins. de Souza SJ, Long M, Klein RJ, Roy S, Lin S, Gilbert W. Proc Natl Acad Sci U S A 95 5094-5099 (1998)
  2. Intron positions correlate with module boundaries in ancient proteins. de Souza SJ, Long M, Schoenbach L, Roy SW, Gilbert W. Proc Natl Acad Sci U S A 93 14632-14636 (1996)
  3. Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. Zhang S, Golbraikh A, Tropsha A. J Med Chem 49 2713-2724 (2006)
  4. Compromised catalysis and potential folding defects in in vitro studies of missense mutants associated with hereditary phosphoglucomutase 1 deficiency. Lee Y, Stiers KM, Kain BN, Beamer LJ. J Biol Chem 289 32010-32019 (2014)
  5. Domain-based small molecule binding site annotation. Snyder KA, Feldman HJ, Dumontier M, Salama JJ, Hogue CW. BMC Bioinformatics 7 152 (2006)
  6. The fructose transporter of Bacillus subtilis encoded by the lev operon: backbone assignment and secondary structure of the IIB(Lev) subunit. Seip S, Lanz R, Gutknecht R, Flükiger K, Erni B. Eur J Biochem 243 306-314 (1997)
  7. SSSCPreds: Deep Neural Network-Based Software for the Prediction of Conformational Variability and Application to SARS-CoV-2. Izumi H, Nafie LA, Dukor RK. ACS Omega 5 30556-30567 (2020)


Reviews citing this publication (5)

  1. Enzyme catalysis: not different, just better. Knowles JR. Nature 350 121-124 (1991)
  2. Evolution of glycolysis. Fothergill-Gilmore LA, Michels PA. Prog Biophys Mol Biol 59 105-235 (1993)
  3. Movable lobes and flexible loops in proteins. Structural deformations that control biochemical activity. Kempner ES. FEBS Lett 326 4-10 (1993)
  4. Covalent control of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: insights into autoregulation of a bifunctional enzyme. Kurland IJ, Pilkis SJ. Protein Sci 4 1023-1037 (1995)
  5. The Sts Proteins: Modulators of Host Immunity. Zaman A, French JB, Carpino N. Int J Mol Sci 24 8834 (2023)

Articles citing this publication (44)

  1. Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. Warwicker J, Watson HC. J Mol Biol 157 671-679 (1982)
  2. Sequence and structure of yeast phosphoglycerate kinase. Watson HC, Walker NP, Shaw PJ, Bryant TN, Wendell PL, Fothergill LA, Perkins RE, Conroy SC, Dobson MJ, Tuite MF. EMBO J 1 1635-1640 (1982)
  3. 15 years of PhosphoSitePlus®: integrating post-translationally modified sites, disease variants and isoforms. Hornbeck PV, Kornhauser JM, Latham V, Murray B, Nandhikonda V, Nord A, Skrzypek E, Wheeler T, Zhang B, Gnad F. Nucleic Acids Res 47 D433-D441 (2019)
  4. Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. Hallows WC, Yu W, Denu JM. J Biol Chem 287 3850-3858 (2012)
  5. Letter Crystal structure of phytase from Aspergillus ficuum at 2.5 A resolution. Kostrewa D, Grüninger-Leitch F, D'Arcy A, Broger C, Mitchell D, van Loon AP. Nat Struct Biol 4 185-190 (1997)
  6. The crystal structure of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase reveals distinct domain homologies. Hasemann CA, Istvan ES, Uyeda K, Deisenhofer J. Structure 4 1017-1029 (1996)
  7. Three-dimensional structure of rat acid phosphatase. Schneider G, Lindqvist Y, Vihko P. EMBO J 12 2609-2615 (1993)
  8. Evolution of a bifunctional enzyme: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Bazan JF, Fletterick RJ, Pilkis SJ. Proc Natl Acad Sci U S A 86 9642-9646 (1989)
  9. Chiral receptors for phosphate ions. Amendola V, Boiocchi M, Esteban-Gómez D, Fabbrizzi L, Monzani E. Org Biomol Chem 3 2632-2639 (2005)
  10. The molecular genetic basis of muscle phosphoglycerate mutase (PGAM) deficiency. Tsujino S, Shanske S, Sakoda S, Fenichel G, DiMauro S. Am J Hum Genet 52 472-477 (1993)
  11. Continuum dielectric modelling of the protein-solvent system, and calculation of the long-range electrostatic field of the enzyme phosphoglycerate mutase. Warwicker J. J Theor Biol 121 199-210 (1986)
  12. Sequence of the gene encoding phosphoglycerate mutase from Saccharomyces cerevisiae. White MF, Fothergill-Gilmore LA. FEBS Lett 229 383-387 (1988)
  13. The role of the C-terminal region in phosphoglycerate mutase. Walter RA, Nairn J, Duncan D, Price NC, Kelly SM, Rigden DJ, Fothergill-Gilmore LA. Biochem J 337 ( Pt 1) 89-95 (1999)
  14. Sequence of rat skeletal muscle phosphoglycerate mutase cDNA. Castellà-Escolà J, Montoliu L, Pons G, Puigdomènech P, Cohen-Solal M, Carreras J, Rigau J, Climent F. Biochem Biophys Res Commun 165 1345-1351 (1989)
  15. Structural Insight into Substrate Selection and Catalysis of Lipid Phosphate Phosphatase PgpB in the Cell Membrane. Tong S, Lin Y, Lu S, Wang M, Bogdanov M, Zheng L. J Biol Chem 291 18342-18352 (2016)
  16. Phosphoglucomutase1 is necessary for sustained cell growth under repetitive glucose depletion. Bae E, Kim HE, Koh E, Kim KS. FEBS Lett 588 3074-3080 (2014)
  17. The amino acid sequence of the small monomeric phosphoglycerate mutase from the fission yeast Schizosaccharomyces pombe. Nairn J, Price NC, Fothergill-Gilmore LA, Walker GE, Fothergill JE, Dunbar B. Biochem J 297 ( Pt 3) 603-608 (1994)
  18. Inactivation of rabbit muscle phosphoglycerate mutase by limited proteolysis with thermolysin. Price NC, Duncan D, McAlister JW. Biochem J 229 167-171 (1985)
  19. Molecular cloning and nucleotide sequence of murine 2,3-bisphosphoglycerate mutase cDNA. Le Boulch P, Joulin V, Garel MC, Rosa J, Cohen-Solal M. Biochem Biophys Res Commun 156 874-881 (1988)
  20. Cloning, sequencing, and expression of the Zymomonas mobilis phosphoglycerate mutase gene (pgm) in Escherichia coli. Yomano LP, Scopes RK, Ingram LO. J Bacteriol 175 3926-3933 (1993)
  21. Denaturation and renaturation of the monomeric phosphoglycerate mutase from Schizosaccharomyces pombe. Johnson CM, Price NC. Biochem J 245 525-530 (1987)
  22. The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase. Haggarty NW, Dunbar B, Fothergill LA. EMBO J 2 1213-1220 (1983)
  23. Phosphoglycerate mutase from Streptomyces coelicolor A3(2): purification and characterization of the enzyme and cloning and sequence analysis of the gene. White PJ, Nairn J, Price NC, Nimmo HG, Coggins JR, Hunter IS. J Bacteriol 174 434-440 (1992)
  24. Amino acid residues involved in the catalytic site of human erythrocyte bisphosphoglycerate mutase. Functional consequences of substitutions of His10, His187 and Arg89. Garel MC, Lemarchandel V, Calvin MC, Arous N, Craescu CT, Prehu MO, Rosa J, Rosa R. Eur J Biochem 213 493-500 (1993)
  25. Purification and preliminary characterization of phosphoglycerate mutase from Schizosaccharomyces pombe. Price NC, Duncan D, Ogg DJ. Int J Biochem 17 843-846 (1985)
  26. The susceptibility towards proteolysis of intermediates during the renaturation of yeast phosphoglycerate mutase. Johnson CM, Price NC. Biochem J 236 617-620 (1986)
  27. The role of local tight packing of hydrophobic groups in beta-structure. Vtyurin N. Proteins 15 62-70 (1993)
  28. cDNA encoding type B subunit of rat phosphoglycerate mutase: its isolation and nucleotide sequence. Uchida K. Arch Biochem Biophys 288 558-561 (1991)
  29. Do metal ions promote the re-activation of the 2,3-bisphosphoglycerate-independent phosphoglycerate mutases? Johnson CM, Price NC. Biochem J 252 111-117 (1988)
  30. Exosomal PGAM1 promotes prostate cancer angiogenesis and metastasis by interacting with ACTG1. Luo JQ, Yang TW, Wu J, Lai HH, Zou LB, Chen WB, Zhou XM, Lv DJ, Cen SR, Long ZN, Mao YY, Zheng PX, Su XH, Xian ZY, Shu FP, Mao XM. Cell Death Dis 14 502 (2023)
  31. A recombinant bisphosphoglycerate mutase variant with acid phosphatase homology degrades 2,3-diphosphoglycerate. Garel MC, Arous N, Calvin MC, Craescu CT, Rosa J, Rosa R. Proc Natl Acad Sci U S A 91 3593-3597 (1994)
  32. Crystallization and preliminary X-ray diffraction studies of the human erythrocyte bisphosphoglycerate mutase. Cherfils J, Rosa R, Garel MC, Calvin MC, Rosa J, Janin J. J Mol Biol 218 269-270 (1991)
  33. Molecular dynamics study of interaction and substrate channeling between neuron-specific enolase and B-type phosphoglycerate mutase. Hakobyan D, Nazaryan K. Proteins 78 1691-1704 (2010)
  34. Structural modeling of the human erythrocyte bisphosphoglycerate mutase. Craescu CT, Schaad O, Garel MC, Rosa R, Edelstein S. Biochimie 74 519-526 (1992)
  35. The phosphonomethyl analogue of 3-phosphoglycerate is a potent competitive inhibitor of phosphoglycerate mutases. McAleese SM, Fothergill-Gilmore LA, Dixon HB. Biochem J 230 535-542 (1985)
  36. Molecular insight into 2-phosphoglycolate activation of the phosphatase activity of bisphosphoglycerate mutase. Aljahdali AS, Musayev FN, Burgner JW, Ghatge MS, Shekar V, Zhang Y, Omar AM, Safo MK. Acta Crystallogr D Struct Biol 78 472-482 (2022)
  37. The bisphosphonomethyl analogue of 2,3-bisphosphoglycerate inhibits yeast but not wheat-germ phosphoglycerate mutase. McAleese SM, Jutagir V, Blackburn GM, Fothergill-Gilmore LA. Biochem J 243 301-304 (1987)
  38. Flux-Balance Analysis and Mobile CRISPRi-Guided Deletion of a Conditionally Essential Gene in Shewanella oneidensis MR-1. Ford KC, Kaste JAM, Shachar-Hill Y, TerAvest MA. ACS Synth Biol 11 3405-3413 (2022)
  39. Macro-structural organization of phosphoglycerate mutase. Amato SV, Rose ZB, Liebman MN. Biochem Biophys Res Commun 121 826-833 (1984)
  40. Phylogeny and ontogeny of the phosphoglycerate mutases.--V. Inactivation of phosphoglycerate mutase isozymes by histidine-specific reagents. Carreras J, Mezquita J, Pons G. Comp Biochem Physiol B 72 401-407 (1982)
  41. Metabolism of glycerate 2,3-P2--XI. Essential amino acids of pig phosphoglycerate mutase isozymes. Berrocal F, Carreras J. Comp Biochem Physiol B 86 547-554 (1987)
  42. Schistosoma mansoni phosphoglycerate mutase: a glycolytic ectoenzyme with thrombolytic potential. Pirovich DB, Da'dara AA, Skelly PJ. Parasite 29 41 (2022)
  43. Letter Sequence-specific 1H, 13C and 15N resonance assignments of the rat liver fructose-2,6-bisphosphatase domain. Zangger K, Pervushin K, Sterk H, Lange AJ, Okar DA. J Biomol NMR 27 281-282 (2003)
  44. Representation of protein 3D structures in spherical (ρ, ϕ, θ) coordinates and two of its potential applications. Reyes VM. Interdiscip Sci 3 161-174 (2011)


Related citations provided by authors (5)

  1. The Amino-Acid Sequence of Yeast Phosphoglycerate Mutase. Fothergill LA, Harkins RN To be published -
  2. Structure and Activity of Phosphoglycerate Mutase. Winn SI, Watson HC, Harkins RN, Fothergill LA Philos. Trans. R. Soc. London,Ser. B 293 121- (1981)
  3. Structure of Yeast Phosphoglycerate Mutase. Campbell JW, Watson HC, Hodgson GI Nature 250 301- (1974)
  4. Low Resolution Structure of Yeast Phosphoglycerate Mutase. Campbell JW, Hodgson GI, Watson HC Nature New Biol. 240 137- (1972)
  5. A Preliminary X-Ray Crystallographic Investigation of Yeast Phosphoglycerate Mutase. Campbell JW, Hodgson GI, Watson HC, Scopes RK J. Mol. Biol. 61 257- (1971)