3r4d Citations

Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor.

Proc Natl Acad Sci U S A 108 10696-701 (2011)
Cited: 154 times
EuropePMC logo PMID: 21670291

Abstract

Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same β-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the β-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

Reviews - 3r4d mentioned but not cited (7)

  1. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. Li F. J. Virol. 89 1954-1964 (2015)
  2. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Hilgenfeld R, Peiris M. Antiviral Res. 100 286-295 (2013)
  3. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Heald-Sargent T, Gallagher T. Viruses 4 557-580 (2012)
  4. Structure, Function, and Evolution of Coronavirus Spike Proteins. Li F. Annu Rev Virol 3 237-261 (2016)
  5. SARS-CoV and emergent coronaviruses: viral determinants of interspecies transmission. Bolles M, Donaldson E, Baric R. Curr Opin Virol 1 624-634 (2011)
  6. A structural view of coronavirus-receptor interactions. Reguera J, Mudgal G, Santiago C, Casasnovas JM. Virus Res. 194 3-15 (2014)
  7. Roles, Characteristics, and Analysis of Intrinsically Disordered Proteins: A Minireview. Lermyte F. Life (Basel) 10 E320 (2020)

Articles - 3r4d mentioned but not cited (17)

  1. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Walls AC, Tortorici MA, Bosch BJ, Frenz B, Rottier PJM, DiMaio F, Rey FA, Veesler D. Nature 531 114-117 (2016)
  2. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor. Peng G, Sun D, Rajashankar KR, Qian Z, Holmes KV, Li F. Proc. Natl. Acad. Sci. U.S.A. 108 10696-10701 (2011)
  3. The receptor for advanced glycation end-products (RAGE) is only present in mammals, and belongs to a family of cell adhesion molecules (CAMs). Sessa L, Gatti E, Zeni F, Antonelli A, Catucci A, Koch M, Pompilio G, Fritz G, Raucci A, Bianchi ME. PLoS ONE 9 e86903 (2014)
  4. Crystal structure of bovine coronavirus spike protein lectin domain. Peng G, Xu L, Lin YL, Chen L, Pasquarella JR, Holmes KV, Li F. J. Biol. Chem. 287 41931-41938 (2012)
  5. Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry. Shang J, Wan Y, Liu C, Yount B, Gully K, Yang Y, Auerbach A, Peng G, Baric R, Li F. PLoS Pathog 16 e1008392 (2020)
  6. Topological knots and links in proteins. Dabrowski-Tumanski P, Sulkowska JI. Proc Natl Acad Sci U S A 114 3415-3420 (2017)
  7. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, Wang X. Cell Res. 27 119-129 (2017)
  8. Letter Predicting the receptor-binding domain usage of the coronavirus based on kmer frequency on spike protein. Zhu Z, Zhang Z, Chen W, Cai Z, Ge X, Zhu H, Jiang T, Tan W, Peng Y. Infect Genet Evol 61 183-184 (2018)
  9. The role of viral population diversity in adaptation of bovine coronavirus to new host environments. Borucki MK, Allen JE, Chen-Harris H, Zemla A, Vanier G, Mabery S, Torres C, Hullinger P, Slezak T. PLoS ONE 8 e52752 (2013)
  10. From examining the relationship between (corona)viral adhesins and galectins to glyco-perspectives. Klein ML, Romero A, Kaltner H, Percec V, Gabius HJ. Biophys J 120 1031-1039 (2021)
  11. Structural and Molecular Evidence Suggesting Coronavirus-driven Evolution of Mouse Receptor. Peng G, Yang Y, Pasquarella JR, Xu L, Qian Z, Holmes KV, Li F. J. Biol. Chem. 292 2174-2181 (2017)
  12. Analysis and Identification of Bioactive Compounds of Cannabinoids in Silico for Inhibition of SARS-CoV-2 and SARS-CoV. Chen C, Liang H, Deng Y, Yang X, Li X, Hou C. Biomolecules 12 1729 (2022)
  13. Emerging mutation patterns in SARS-CoV-2 variants. Ostrov DA, Knox GW. Biochem Biophys Res Commun 586 87-92 (2022)
  14. Glycine 29 Is Critical for Conformational Changes of the Spike Glycoprotein of Mouse Hepatitis Virus A59 Triggered by either Receptor Binding or High pH. Mi D, Ou X, Li P, Peng G, Liu Y, Guo R, Mu Z, Li F, Holmes K, Qian Z. J. Virol. 93 (2019)
  15. Host-Virus Arms Races Drive Elevated Adaptive Evolution in Viral Receptors. Wang W, Zhao H, Han GZ. J Virol 94 (2020)
  16. Integrative structural studies of the SARS-CoV-2 spike protein during the fusion process (2022). Miner JC, Fenimore PW, Fischer WM, McMahon BH, Sanbonmatsu KY, Tung CS. Curr Res Struct Biol 4 220-230 (2022)
  17. Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein. Behloul N, Baha S, Shi R, Meng J. Virus Res 286 198058 (2020)


Reviews citing this publication (43)

  1. Viral quasispecies evolution. Domingo E, Sheldon J, Perales C. Microbiol. Mol. Biol. Rev. 76 159-216 (2012)
  2. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Viruses 4 1011-1033 (2012)
  3. Coronavirus Spike Protein and Tropism Changes. Hulswit RJ, de Haan CA, Bosch BJ. Adv Virus Res 96 29-57 (2016)
  4. Coronavirus pathogenesis. Weiss SR, Leibowitz JL. Adv. Virus Res. 81 85-164 (2011)
  5. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Antiviral Res 178 104792 (2020)
  6. Immunopathology of galectin-3: an increasingly promising target in COVID-19. Caniglia JL, Asuthkar S, Tsung AJ, Guda MR, Velpula KK. F1000Res 9 1078 (2020)
  7. Current advancements and potential strategies in the development of MERS-CoV vaccines. Zhang N, Jiang S, Du L. Expert Rev Vaccines 13 761-774 (2014)
  8. Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond. Lu G, Wang Q, Gao GF. Trends Microbiol. 23 468-478 (2015)
  9. Molecular diversity of coronavirus host cell entry receptors. Millet JK, Jaimes JA, Whittaker GR. FEMS Microbiol Rev 45 fuaa057 (2021)
  10. Receptor recognition and cross-species infections of SARS coronavirus. Li F. Antiviral Res. 100 246-254 (2013)
  11. Supramolecular Architecture of the Coronavirus Particle. Neuman BW, Buchmeier MJ. Adv Virus Res 96 1-27 (2016)
  12. A Tale of Two Viruses: The Distinct Spike Glycoproteins of Feline Coronaviruses. Jaimes JA, Millet JK, Stout AE, André NM, Whittaker GR. Viruses 12 (2020)
  13. Molecular Evolution of Human Coronavirus Genomes. Forni D, Cagliani R, Clerici M, Sironi M. Trends Microbiol. 25 35-48 (2017)
  14. Glycans of SARS-CoV-2 Spike Protein in Virus Infection and Antibody Production. Zhao X, Chen H, Wang H. Front Mol Biosci 8 629873 (2021)
  15. Spike Glycoprotein-Mediated Entry of SARS Coronaviruses. Wang L, Xiang Y. Viruses 12 E1289 (2020)
  16. Pathophysiology of SARS-CoV-2 in Lung of Diabetic Patients. Oliveira TL, Melo IS, Cardoso-Sousa L, Santos IA, El Zoghbi MB, Shimoura CG, Georjutti RP, Castro OW, Goulart LR, Jardim ACG, Cunha TM, Sabino-Silva R. Front Physiol 11 587013 (2020)
  17. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Chen X, Han W, Wang G, Zhao X. Int J Biol Macromol 164 331-343 (2020)
  18. Porcine Epidemic Diarrhea Virus: An Updated Overview of Virus Epidemiology, Virulence Variation Patterns and Virus-Host Interactions. Zhang Y, Chen Y, Zhou J, Wang X, Ma L, Li J, Yang L, Yuan H, Pang D, Ouyang H. Viruses 14 2434 (2022)
  19. Anti-SARS-CoV-2 Natural Products as Potentially Therapeutic Agents. Kim CH. Front Pharmacol 12 590509 (2021)
  20. SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction. Kim CH. Int J Mol Sci 21 (2020)
  21. Role of cytotoxic T lymphocytes and interferon-γ in coronavirus infection: Lessons from murine coronavirus infections in mice. Kyuwa S, Sugiura Y. J Vet Med Sci 82 1410-1414 (2020)
  22. Virus-Receptor Interactions: The Key to Cellular Invasion. Maginnis MS. J. Mol. Biol. 430 2590-2611 (2018)
  23. Betacoronavirus Genomes: How Genomic Information has been Used to Deal with Past Outbreaks and the COVID-19 Pandemic. Llanes A, Restrepo CM, Caballero Z, Rajeev S, Kennedy MA, Lleonart R. Int J Mol Sci 21 (2020)
  24. Host Receptors of Influenza Viruses and Coronaviruses-Molecular Mechanisms of Recognition. Sriwilaijaroen N, Suzuki Y. Vaccines (Basel) 8 E587 (2020)
  25. The bulky and the sweet: How neutralizing antibodies and glycan receptors compete for virus binding. Dietrich MH, Harprecht C, Stehle T. Protein Sci. 26 2342-2354 (2017)
  26. Transmissible Gastroenteritis Virus: An Update Review and Perspective. Chen Y, Zhang Y, Wang X, Zhou J, Ma L, Li J, Yang L, Ouyang H, Yuan H, Pang D. Viruses 15 359 (2023)
  27. Angiotensin-converting enzyme 2: The old door for new severe acute respiratory syndrome coronavirus 2 infection. Tan HW, Xu YM, Lau ATY. Rev Med Virol 30 e2122 (2020)
  28. Antibody-mediated immunity to SARS-CoV-2 spike. Errico JM, Adams LJ, Fremont DH. Adv Immunol 154 1-69 (2022)
  29. Human Coronavirus Cell Receptors Provide Challenging Therapeutic Targets. López-Cortés GI, Palacios-Pérez M, Hernández-Aguilar MM, Veledíaz HF, José MV. Vaccines (Basel) 11 174 (2023)
  30. Research progress on coronavirus S proteins and their receptors. Yuan HW, Wen HL. Arch Virol 166 1811-1817 (2021)
  31. Advances in the development of entry inhibitors for sialic-acid-targeting viruses. Heida R, Bhide YC, Gasbarri M, Kocabiyik Ö, Stellacci F, Huckriede ALW, Hinrichs WLJ, Frijlink HW. Drug Discov Today 26 122-137 (2021)
  32. Cell Entry of Animal Coronaviruses. Cheng YR, Li X, Zhao X, Lin H. Viruses 13 1977 (2021)
  33. Domains and Functions of Spike Protein in Sars-Cov-2 in the Context of Vaccine Design. Xia X. Viruses 13 (2021)
  34. HIV infection and the implication for COVID-19 vaccination. Oyelade T, Raya RP, Latief K. Public Health Chall 1 e14 (2022)
  35. Hydroelectrolytic Disorder in COVID-19 patients: Evidence Supporting the Involvement of Subfornical Organ and Paraventricular Nucleus of the Hypothalamus. de Melo IS, Sabino-Silva R, Cunha TM, Goulart LR, Reis WL, Jardim ACG, Shetty AK, de Castro OW. Neurosci Biobehav Rev 124 216-223 (2021)
  36. Kathryn V. Holmes: A Career of Contributions to the Coronavirus Field. Bonavia A, Dominguez SR, Dveksler G, Gagneten S, Howard M, Jeffers S, Qian Z, Smith MK, Thackray LB, Tresnan DB, Wentworth DE, Wessner DR, Williams RK, Miura TA. Viruses 14 1573 (2022)
  37. Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Everest H, Stevenson-Leggett P, Bailey D, Bickerton E, Keep S. Viruses 14 351 (2022)
  38. Novel Galectin-3 Roles in Neurogenesis, Inflammation and Neurological Diseases. Soares LC, Al-Dalahmah O, Hillis J, Young CC, Asbed I, Sakaguchi M, O'Neill E, Szele FG. Cells 10 3047 (2021)
  39. PEDV: Insights and Advances into Types, Function, Structure, and Receptor Recognition. Lin F, Zhang H, Li L, Yang Y, Zou X, Chen J, Tang X. Viruses 14 1744 (2022)
  40. Spike Glycoprotein Is Central to Coronavirus Pathogenesis-Parallel Between m-CoV and SARS-CoV-2. Saadi F, Pal D, Sarma JD. Ann Neurosci 28 201-218 (2021)
  41. Spike glycoproteins: Their significance for corona viruses and receptor binding activities for pathogenesis and viral survival. Noman A, Aqeel M, Khalid N, Hashem M, Alamari S, Zafar S, Qasim M, Irshad MK, Qari SH. Microb Pathog 150 104719 (2021)
  42. Structural insights into SARS-CoV-2 proteins. Arya R, Kumari S, Pandey B, Mistry H, Bihani SC, Das A, Prashar V, Gupta GD, Panicker L, Kumar M. J Mol Biol 433 166725 (2021)
  43. Utilization of Galectins by Pathogens for Infection. Ayona D, Fournier PE, Henrissat B, Desnues B. Front Immunol 11 1877 (2020)

Articles citing this publication (87)

  1. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, Zhang Y, Zhang W, Yuan Y, Bao J, Zhang B, Shi Y, Yan J, Gao GF. Nature 500 227-231 (2013)
  2. Structural insights into coronavirus entry. Tortorici MA, Veesler D. Adv Virus Res 105 93-116 (2019)
  3. Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. Lau SK, Li KS, Tsang AK, Lam CS, Ahmed S, Chen H, Chan KH, Woo PC, Yuen KY. J. Virol. 87 8638-8650 (2013)
  4. Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Wang Q, Qi J, Yuan Y, Xuan Y, Han P, Wan Y, Ji W, Li Y, Wu Y, Wang J, Iwamoto A, Woo PC, Yuen KY, Yan J, Lu G, Gao GF. Cell Host Microbe 16 328-337 (2014)
  5. The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. Mou H, Raj VS, van Kuppeveld FJ, Rottier PJ, Haagmans BL, Bosch BJ. J. Virol. 87 9379-9383 (2013)
  6. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Yang Y, Du L, Liu C, Wang L, Ma C, Tang J, Baric RS, Jiang S, Li F. Proc. Natl. Acad. Sci. U.S.A. 111 12516-12521 (2014)
  7. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. Reguera J, Santiago C, Mudgal G, Ordoño D, Enjuanes L, Casasnovas JM. PLoS Pathog. 8 e1002859 (2012)
  8. Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus. Chen Y, Rajashankar KR, Yang Y, Agnihothram SS, Liu C, Lin YL, Baric RS, Li F. J. Virol. 87 10777-10783 (2013)
  9. Structural basis for multifunctional roles of mammalian aminopeptidase N. Chen L, Lin YL, Peng G, Li F. Proc. Natl. Acad. Sci. U.S.A. 109 17966-17971 (2012)
  10. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. Lau SK, Li KS, Tsang AK, Shek CT, Wang M, Choi GK, Guo R, Wong BH, Poon RW, Lam CS, Wang SY, Fan RY, Chan KH, Zheng BJ, Woo PC, Yuen KY. J. Virol. 86 11906-11918 (2012)
  11. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. Liu C, Tang J, Ma Y, Liang X, Yang Y, Peng G, Qi Q, Jiang S, Li J, Du L, Li F. J. Virol. 89 6121-6125 (2015)
  12. Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus. Promkuntod N, van Eijndhoven RE, de Vrieze G, Gröne A, Verheije MH. Virology 448 26-32 (2014)
  13. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W, Kong WP, Andres EL, Kettenbach AN, Denison MR, Chappell JD, Graham BS, Ward AB, McLellan JS. Proc. Natl. Acad. Sci. U.S.A. 114 E7348-E7357 (2017)
  14. Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A. Lau SK, Woo PC, Li KS, Tsang AK, Fan RY, Luk HK, Cai JP, Chan KH, Zheng BJ, Wang M, Yuen KY. J. Virol. 89 3076-3092 (2015)
  15. Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry. Li W, Luo R, He Q, van Kuppeveld FJM, Rottier PJM, Bosch BJ. Virus Res 235 6-13 (2017)
  16. An Open Receptor-Binding Cavity of Hemagglutinin-Esterase-Fusion Glycoprotein from Newly-Identified Influenza D Virus: Basis for Its Broad Cell Tropism. Song H, Qi J, Khedri Z, Diaz S, Yu H, Chen X, Varki A, Shi Y, Gao GF. PLoS Pathog. 12 e1005411 (2016)
  17. Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits. Li F. J. Virol. 86 2856-2858 (2012)
  18. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Li W, Hulswit RJG, Widjaja I, Raj VS, McBride R, Peng W, Widagdo W, Tortorici MA, van Dieren B, Lang Y, van Lent JWM, Paulson JC, de Haan CAM, de Groot RJ, van Kuppeveld FJM, Haagmans BL, Bosch BJ. Proc. Natl. Acad. Sci. U.S.A. 114 E8508-E8517 (2017)
  19. Human Coronavirus HKU1 Spike Protein Uses O-Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme. Huang X, Dong W, Milewska A, Golda A, Qi Y, Zhu QK, Marasco WA, Baric RS, Sims AC, Pyrc K, Li W, Sui J. J. Virol. 89 7202-7213 (2015)
  20. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. Wu K, Peng G, Wilken M, Geraghty RJ, Li F. J. Biol. Chem. 287 8904-8911 (2012)
  21. Flexible, Functional, and Familiar: Characteristics of SARS-CoV-2 Spike Protein Evolution. Saputri DS, Li S, van Eerden FJ, Rozewicki J, Xu Z, Ismanto HS, Davila A, Teraguchi S, Katoh K, Standley DM. Front Microbiol 11 2112 (2020)
  22. Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins. Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Luo C, Zhang W, Li F. PLoS Pathog. 14 e1007009 (2018)
  23. Glycan Engagement by Viruses: Receptor Switches and Specificity. Ströh LJ, Stehle T. Annu Rev Virol 1 285-306 (2014)
  24. Identification and Comparison of Receptor Binding Characteristics of the Spike Protein of Two Porcine Epidemic Diarrhea Virus Strains. Deng F, Ye G, Liu Q, Navid MT, Zhong X, Li Y, Wan C, Xiao S, He Q, Fu ZF, Peng G. Viruses 8 55 (2016)
  25. Discovery of Novel Bat Coronaviruses in South China That Use the Same Receptor as Middle East Respiratory Syndrome Coronavirus. Luo CM, Wang N, Yang XL, Liu HZ, Zhang W, Li B, Hu B, Peng C, Geng QB, Zhu GJ, Li F, Shi ZL. J. Virol. 92 (2018)
  26. Variable region of the 3' UTR is a critical virulence factor in the Far-Eastern subtype of tick-borne encephalitis virus in a mouse model. Sakai M, Yoshii K, Sunden Y, Yokozawa K, Hirano M, Kariwa H. J. Gen. Virol. 95 823-835 (2014)
  27. A unified mechanism for aminopeptidase N-based tumor cell motility and tumor-homing therapy. Liu C, Yang Y, Chen L, Lin YL, Li F. J. Biol. Chem. 289 34520-34529 (2014)
  28. Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection. Qing E, Hantak M, Perlman S, Gallagher T. mBio 11 (2020)
  29. Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike Glycoproteins. Ou X, Zheng W, Shan Y, Mu Z, Dominguez SR, Holmes KV, Qian Z. J. Virol. 90 5586-5600 (2016)
  30. A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein. Chen Y, Lu S, Jia H, Deng Y, Zhou J, Huang B, Yu Y, Lan J, Wang W, Lou Y, Qin K, Tan W. Emerg Microbes Infect 6 e37 (2017)
  31. Analysis of protein expression changes of the Vero E6 cells infected with classic PEDV strain CV777 by using quantitative proteomic technique. Sun D, Shi H, Guo D, Chen J, Shi D, Zhu Q, Zhang X, Feng L. J. Virol. Methods 218 27-39 (2015)
  32. Development of transgenic mouse model expressing porcine aminopeptidase N and its susceptibility to porcine epidemic diarrhea virus. Park JE, Park ES, Yu JE, Rho J, Paudel S, Hyun BH, Yang DK, Shin HJ. Virus Res. 197 108-115 (2015)
  33. Galectin-related protein: An integral member of the network of chicken galectins 1. From strong sequence conservation of the gene confined to vertebrates to biochemical characteristics of the chicken protein and its crystal structure. García Caballero G, Flores-Ibarra A, Michalak M, Khasbiullina N, Bovin NV, André S, Manning JC, Vértesy S, Ruiz FM, Kaltner H, Kopitz J, Romero A, Gabius HJ. Biochim Biophys Acta 1860 2285-2297 (2016)
  34. Identification of the Receptor-Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1. Qian Z, Ou X, Góes LG, Osborne C, Castano A, Holmes KV, Dominguez SR. J. Virol. 89 8816-8827 (2015)
  35. Structural analysis of the evolutionary origins of influenza virus hemagglutinin and other viral lectins. Chen L, Li F. J. Virol. 87 4118-4120 (2013)
  36. Betacoronavirus Adaptation to Humans Involved Progressive Loss of Hemagglutinin-Esterase Lectin Activity. Bakkers MJ, Lang Y, Feitsma LJ, Hulswit RJ, de Poot SA, van Vliet AL, Margine I, de Groot-Mijnes JD, van Kuppeveld FJ, Langereis MA, Huizinga EG, de Groot RJ. Cell Host Microbe 21 356-366 (2017)
  37. Characterization of a recombinant canine coronavirus with a distinct receptor-binding (S1) domain. Regan AD, Millet JK, Tse LP, Chillag Z, Rinaldi VD, Licitra BN, Dubovi EJ, Town CD, Whittaker GR. Virology 430 90-99 (2012)
  38. Cryo-Electron Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Tai W, Du L, Zhou Y, Zhang W, Li F. J. Virol. 92 (2018)
  39. Discovery of a subgenotype of human coronavirus NL63 associated with severe lower respiratory tract infection in China, 2018. Wang Y, Li X, Liu W, Gan M, Zhang L, Wang J, Zhang Z, Zhu A, Li F, Sun J, Zhang G, Zhuang Z, Luo J, Chen D, Qiu S, Zhang L, Xu D, Mok CKP, Zhang F, Zhao J, Zhou R, Zhao J. Emerg Microbes Infect 9 246-255 (2020)
  40. Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains. Qing E, Kicmal T, Kumar B, Hawkins GM, Timm E, Perlman S, Gallagher T. mBio 12 e0159021 (2021)
  41. Identification of the immunodominant neutralizing regions in the spike glycoprotein of porcine deltacoronavirus. Chen R, Fu J, Hu J, Li C, Zhao Y, Qu H, Wen X, Cao S, Wen Y, Wu R, Zhao Q, Yan Q, Huang Y, Ma X, Han X, Huang X. Virus Res 276 197834 (2020)
  42. Putative Receptor Binding Domain of Bat-Derived Coronavirus HKU9 Spike Protein: Evolution of Betacoronavirus Receptor Binding Motifs. Huang C, Qi J, Lu G, Wang Q, Yuan Y, Wu Y, Zhang Y, Yan J, Gao GF. Biochemistry 55 5977-5988 (2016)
  43. Isolation, propagation, genome analysis and epidemiology of HKU1 betacoronaviruses. Dominguez SR, Shrivastava S, Berglund A, Qian Z, Góes LGB, Halpin RA, Fedorova N, Ransier A, Weston PA, Durigon EL, Jerez JA, Robinson CC, Town CD, Holmes KV. J. Gen. Virol. 95 836-848 (2014)
  44. Comparison of lentiviruses pseudotyped with S proteins from coronaviruses and cell tropisms of porcine coronaviruses. Wang J, Deng F, Ye G, Dong W, Zheng A, He Q, Peng G. Virol Sin 31 49-56 (2016)
  45. Crystal structure of the receptor binding domain of the spike glycoprotein of human betacoronavirus HKU1. Ou X, Guan H, Qin B, Mu Z, Wojdyla JA, Wang M, Dominguez SR, Qian Z, Cui S. Nat Commun 8 15216 (2017)
  46. Exploring the active compounds of traditional Mongolian medicine in intervention of novel coronavirus (COVID-19) based on molecular docking method. Yu JW, Wang L, Bao LD. J Funct Foods 71 104016 (2020)
  47. Recombinant SARS-CoV-2 S Protein Binds to Glycans of the Lactosamine Family in vitro. Ryzhikov AB, Onkhonova GS, Imatdinov IR, Gavrilova EV, Maksyutov RA, Gordeeva EA, Pazynina GV, Ryzhov IM, Shilova NV, Bovin NV. Biochemistry (Mosc) 86 243-247 (2021)
  48. Roles of Two Major Domains of the Porcine Deltacoronavirus S1 Subunit in Receptor Binding and Neutralization. Liu Y, Wang B, Liang QZ, Shi FS, Ji CM, Yang XL, Yang YL, Qin P, Chen R, Huang YW. J Virol 95 e0111821 (2021)
  49. SARS-CoV-2: Structural diversity, phylogeny, and potential animal host identification of spike glycoprotein. Dabravolski SA, Kavalionak YK. J Med Virol 92 1690-1694 (2020)
  50. Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy. Walls A, Tortorici MA, Bosch BJ, Frenz B, Rottier PJ, DiMaio F, Rey FA, Veesler D. Protein Sci. 26 113-121 (2017)
  51. Cryo-EM structures of HKU2 and SADS-CoV spike glycoproteins provide insights into coronavirus evolution. Yu J, Qiao S, Guo R, Wang X. Nat Commun 11 3070 (2020)
  52. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Hulswit RJG, Lang Y, Bakkers MJG, Li W, Li Z, Schouten A, Ophorst B, van Kuppeveld FJM, Boons GJ, Bosch BJ, Huizinga EG, de Groot RJ. Proc. Natl. Acad. Sci. U.S.A. 116 2681-2690 (2019)
  53. Molecular characterization of HLJ-073, a recombinant canine coronavirus strain from China with an ORF3abc deletion. Chen S, Liu D, Tian J, Kang H, Guo D, Jiang Q, Liu J, Li Z, Hu X, Qu L. Arch Virol 164 2159-2164 (2019)
  54. A Novel Potentially Recombinant Rodent Coronavirus with a Polybasic Cleavage Site in the Spike Protein. Li X, Wang L, Liu P, Li H, Huo S, Zong K, Zhu S, Guo Y, Zhang L, Hu B, Lan Y, Chmura A, Wu G, Daszak P, Liu WJ, Gao GF. J Virol 95 e0117321 (2021)
  55. A potential role for Galectin-3 inhibitors in the treatment of COVID-19. Caniglia JL, Guda MR, Asuthkar S, Tsung AJ, Velpula KK. PeerJ 8 e9392 (2020)
  56. Chicken GRIFIN: Structural characterization in crystals and in solution. Ruiz FM, Gilles U, Ludwig AK, Sehad C, Shiao TC, García Caballero G, Kaltner H, Lindner I, Roy R, Reusch D, Romero A, Gabius HJ. Biochimie 146 127-138 (2018)
  57. Crystal structure of the S1 subunit N-terminal domain from DcCoV UAE-HKU23 spike protein. Cheng Y, He B, Yang J, Ye F, Lin S, Yang F, Chen Z, Chen Z, Cao Y, Lu G. Virology 535 74-82 (2019)
  58. Detection of alpha- and betacoronaviruses in rodents from Yunnan, China. Ge XY, Yang WH, Zhou JH, Li B, Zhang W, Shi ZL, Zhang YZ. Virol. J. 14 98 (2017)
  59. Mechanism of Multi-Organ Injury in Experimental COVID-19 and Its Inhibition by a Small Molecule Peptide. Paidas MJ, Sampath N, Schindler EA, Cosio DS, Ndubizu CO, Shamaladevi N, Kwal J, Rodriguez S, Ahmad A, Kenyon NS, Jayakumar AR. Front Pharmacol 13 864798 (2022)
  60. Role of sialic acids in feline enteric coronavirus infections. Desmarets LMB, Theuns S, Roukaerts IDM, Acar DD, Nauwynck HJ. J. Gen. Virol. 95 1911-1918 (2014)
  61. Selection of a SARS-CoV-2 Surrogate for Use in Surface Disinfection Efficacy Studies with Chlorine and Antimicrobial Surfaces. String GM, White MR, Gute DM, Mühlberger E, Lantagne DS. Environ Sci Technol Lett 8 995-1001 (2021)
  62. Structural basis for human coronavirus attachment to sialic acid receptors. Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, Boons GJ, Bosch BJ, Rey FA, de Groot RJ, Veesler D. Nat. Struct. Mol. Biol. 26 481-489 (2019)
  63. A novel full-length isoform of murine pregnancy-specific glycoprotein 16 (psg16) is expressed in the brain but does not mediate murine coronavirus (MHV) entry. Phillips JM, Kuo IT, Richardson C, Weiss SR. J. Neurovirol. 18 138-143 (2012)
  64. Characterization of the interaction between recombinant porcine aminopeptidase N and spike glycoprotein of porcine epidemic diarrhea virus. Sun YG, Li R, Jiang L, Qiao S, Zhi Y, Chen XX, Xie S, Wu J, Li X, Deng R, Zhang G. Int. J. Biol. Macromol. 117 704-712 (2018)
  65. Identification of H209 as Essential for pH 8-Triggered Receptor-Independent Syncytium Formation by S Protein of Mouse Hepatitis Virus A59. Li P, Shan Y, Zheng W, Ou X, Mi D, Mu Z, Holmes KV, Qian Z. J. Virol. 92 (2018)
  66. Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis. Chen Y, Zhang Z, Li J, Gao Y, Zhou L, Ge X, Han J, Guo X, Yang H. Virol. J. 15 170 (2018)
  67. Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein. Tortorici MA, Walls AC, Joshi A, Park YJ, Eguia RT, Miranda MC, Kepl E, Dosey A, Stevens-Ayers T, Boeckh MJ, Telenti A, Lanzavecchia A, King NP, Corti D, Bloom JD, Veesler D. Cell 185 2279-2291.e17 (2022)
  68. Myotis fimbriatus Virome, a Window to Virus Diversity and Evolution in the Genus Myotis. Armero A, Li R, Bienes KM, Chen X, Li J, Xu S, Chen Y, Hughes AC, Berthet N, Wong G. Viruses 14 1899 (2022)
  69. A Systemic Study of Subcellular Localization of Porcine Epidemic Diarrhea Virus Proteins. Zhu H, Li Z, Bai J, Jiang P, Wang X, Liu X. Pathogens 11 1555 (2022)
  70. Amino acid sites related to the PB2 subunits of IDV affect polymerase activity. Wang Y, Sun W, Wang Z, Zhao M, Zhang X, Kong Y, Wang X, Feng N, Wang T, Yan F, Zhao Y, Xia X, Yang S, Gao Y. Virol J 18 230 (2021)
  71. Bioinformatics prediction of B and T cell epitopes within the spike and nucleocapsid proteins of SARS-CoV2. Dawood RM, El-Meguid MA, Salum GM, El-Wakeel K, Shemis M, El Awady MK. J Infect Public Health 14 169-178 (2020)
  72. COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein. Ehsani S. Biol Direct 15 19 (2020)
  73. Changes in the spike and nucleocapsid protein of porcine epidemic diarrhea virus strain in Vietnam-a molecular potential for the vaccine development? Tran TX, Lien NTK, Thu HT, Duy ND, Duong BTT, Quyen DV. PeerJ 9 e12329 (2021)
  74. Cryo-EM analysis of the HCoV-229E spike glycoprotein reveals dynamic prefusion conformational changes. Song X, Shi Y, Ding W, Niu T, Sun L, Tan Y, Chen Y, Shi J, Xiong Q, Huang X, Xiao S, Zhu Y, Cheng C, Fu ZF, Liu ZJ, Peng G. Nat Commun 12 141 (2021)
  75. Deciphering the O-Glycosylation of HKU1 Spike Protein With the Dual-Functional Hydrophilic Interaction Chromatography Materials. Cui Y, Dong X, Zhang X, Chen C, Fu D, Li X, Liang X. Front Chem 9 707235 (2021)
  76. Fe-Fe Double-Atom Catalysts for Murine Coronavirus Disinfection: Nonradical Activation of Peroxides and Mechanisms of Virus Inactivation. Zhou Z, Li M, Zhang Y, Kong L, Smith VF, Zhang M, Gulbrandson AJ, Waller GH, Lin F, Liu X, Durkin DP, Chen H, Shuai D. Environ Sci Technol 57 3804-3816 (2023)
  77. Hyperinflammation and Fibrosis in Severe COVID-19 Patients: Galectin-3, a Target Molecule to Consider. Garcia-Revilla J, Deierborg T, Venero JL, Boza-Serrano A. Front Immunol 11 2069 (2020)
  78. Hyperlipidemia and Obesity's Role in Immune Dysregulation Underlying the Severity of COVID-19 Infection. Khatchadourian C, Sisliyan C, Nguyen K, Poladian N, Tian Q, Tamjidi F, Luong B, Singh M, Robison J, Venketaraman V. Clin Pract 11 694-707 (2021)
  79. Identification of a Novel Neutralizing Epitope on the N-Terminal Domain of the Human Coronavirus 229E Spike Protein. Shi J, Shi Y, Xiu R, Wang G, Liang R, Jiao Y, Shen Z, Zhu C, Peng G. J Virol 96 e0195521 (2022)
  80. N-linked glycoproteins and host proteases are involved in swine acute diarrhea syndrome coronavirus entry. Chen Y, Liu X, Zheng JN, Yang LJ, Luo Y, Yao YL, Liu MQ, Xie TT, Lin HF, He YT, Zhou P, Hu B, Tian RJ, Shi ZL. J Virol e0091623 (2023)
  81. One Health and Cattle Genetic Resources: Mining More than 500 Cattle Genomes to Identify Variants in Candidate Genes Potentially Affecting Coronavirus Infections. Bovo S, Schiavo G, Fontanesi L. Animals (Basel) 12 838 (2022)
  82. Pervasive Positive Selection on Virus Receptors Driven by Host-Virus Conflicts in Mammals. Wang W, Han GZ. J Virol 95 e0102921 (2021)
  83. Photosensitized Electrospun Nanofibrous Filters for Capturing and Killing Airborne Coronaviruses under Visible Light Irradiation. Shen H, Zhou Z, Wang H, Chen J, Zhang M, Han M, Shen Y, Shuai D. Environ Sci Technol 56 4295-4304 (2022)
  84. Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD. Wang N, Rosen O, Wang L, Turner HL, Stevens LJ, Corbett KS, Bowman CA, Pallesen J, Shi W, Zhang Y, Leung K, Kirchdoerfer RN, Becker MM, Denison MR, Chappell JD, Ward AB, Graham BS, McLellan JS. Cell Rep 28 3395-3405.e6 (2019)
  85. Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Zhou H, Chen Y, Zhang S, Niu P, Qin K, Jia W, Huang B, Zhang S, Lan J, Zhang L, Tan W, Wang X. Nat Commun 10 3068 (2019)
  86. Structure of the S1 subunit C-terminal domain from bat-derived coronavirus HKU5 spike protein. Han X, Qi J, Song H, Wang Q, Zhang Y, Wu Y, Lu G, Yuen KY, Shi Y, Gao GF. Virology 507 101-109 (2017)
  87. The N-Terminal Domain of Spike Protein Is Not the Enteric Tropism Determinant for Transmissible Gastroenteritis Virus in Piglets. Wang G, Liang R, Liu Z, Shen Z, Shi J, Shi Y, Deng F, Xiao S, Fu ZF, Peng G. Viruses 11 (2019)