3ryc Citations

The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin.

J Mol Biol 412 35-42 (2011)
Related entries: 3ryf, 3ryh, 3ryi

Cited: 101 times
EuropePMC logo PMID: 21787788

Abstract

Tubulin alternates between a soluble curved structure and a microtubule straight conformation. GTP binding to αβ-tubulin is required for microtubule assembly, but whether this triggers conversion into a straighter structure is still debated. This is due, at least in part, to the lack of structural data for GTP-tubulin before assembly. Here, we report atomic-resolution crystal structures of soluble tubulin in the GDP and GTP nucleotide states in a complex with a stathmin-like domain. The structures differ locally in the neighborhood of the nucleotide. A loop movement in GTP-bound tubulin favors its recruitment to the ends of growing microtubules and facilitates its curved-to-straight transition, but this conversion has not proceeded yet. The data therefore argue for the conformational change toward the straight structure occurring as microtubule-specific contacts are established. They also suggest a model for the way the tubulin structure is modified in relation to microtubule assembly.

Reviews - 3ryc mentioned but not cited (2)

  1. Molecular interactions at the colchicine binding site in tubulin: An X-ray crystallography perspective. Wang J, Miller DD, Li W. Drug Discov Today 27 759-776 (2022)
  2. Computational Approaches to the Rational Design of Tubulin-Targeting Agents. Pérez-Peña H, Abel AC, Shevelev M, Prota AE, Pieraccini S, Horvath D. Biomolecules 13 285 (2023)

Articles - 3ryc mentioned but not cited (17)

  1. A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end. Pecqueur L, Duellberg C, Dreier B, Jiang Q, Wang C, Plückthun A, Surrey T, Gigant B, Knossow M. Proc Natl Acad Sci U S A 109 12011-12016 (2012)
  2. Structured States of Disordered Proteins from Genomic Sequences. Toth-Petroczy A, Palmedo P, Ingraham J, Hopf TA, Berger B, Sander C, Marks DS. Cell 167 158-170.e12 (2016)
  3. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Findeisen P, Mühlhausen S, Dempewolf S, Hertzog J, Zietlow A, Carlomagno T, Kollmar M. Genome Biol Evol 6 2274-2288 (2014)
  4. Motility and microtubule depolymerization mechanisms of the Kinesin-8 motor, KIF19A. Wang D, Nitta R, Morikawa M, Yajima H, Inoue S, Shigematsu H, Kikkawa M, Hirokawa N. Elife 5 e18101 (2016)
  5. Genetic Basis of Common Human Disease: Insight into the Role of Missense SNPs from Genome-Wide Association Studies. Pal LR, Moult J. J Mol Biol 427 2271-2289 (2015)
  6. Molecular mechanisms and structural features of cardiomyopathy-causing troponin T mutants in the tropomyosin overlap region. Gangadharan B, Sunitha MS, Mukherjee S, Chowdhury RR, Haque F, Sekar N, Sowdhamini R, Spudich JA, Mercer JA. Proc Natl Acad Sci U S A 114 11115-11120 (2017)
  7. The free energy profile of tubulin straight-bent conformational changes, with implications for microtubule assembly and drug discovery. Peng LX, Hsu MT, Bonomi M, Agard DA, Jacobson MP. PLoS Comput Biol 10 e1003464 (2014)
  8. Molecular requirements for the inter-subunit interaction and kinetochore recruitment of SKAP and Astrin. Friese A, Faesen AC, Huis in 't Veld PJ, Fischböck J, Prumbaum D, Petrovic A, Raunser S, Herzog F, Musacchio A. Nat Commun 7 11407 (2016)
  9. Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents. Manchukonda NK, Naik PK, Santoshi S, Lopus M, Joseph S, Sridhar B, Kantevari S. PLoS One 8 e77970 (2013)
  10. Design and characterization of modular scaffolds for tubulin assembly. Mignot I, Pecqueur L, Dorléans A, Karuppasamy M, Ravelli RB, Dreier B, Plückthun A, Knossow M, Gigant B. J Biol Chem 287 31085-31094 (2012)
  11. GTP-dependent formation of straight tubulin oligomers leads to microtubule nucleation. Ayukawa R, Iwata S, Imai H, Kamimura S, Hayashi M, Ngo KX, Minoura I, Uchimura S, Makino T, Shirouzu M, Shigematsu H, Sekimoto K, Gigant B, Muto E. J Cell Biol 220 e202007033 (2021)
  12. Nucleotide Binding to ARL2 in the TBCD∙ARL2∙β-Tubulin Complex Drives Conformational Changes in β-Tubulin. Francis JW, Goswami D, Novick SJ, Pascal BD, Weikum ER, Ortlund EA, Griffin PR, Kahn RA. J Mol Biol 429 3696-3716 (2017)
  13. New Insights into the Coupling between Microtubule Depolymerization and ATP Hydrolysis by Kinesin-13 Protein Kif2C. Wang W, Shen T, Guerois R, Zhang F, Kuerban H, Lv Y, Gigant B, Knossow M, Wang C. J Biol Chem 290 18721-18731 (2015)
  14. Selection and Characterization of Artificial Proteins Targeting the Tubulin α Subunit. Campanacci V, Urvoas A, Consolati T, Cantos-Fernandes S, Aumont-Nicaise M, Valerio-Lepiniec M, Surrey T, Minard P, Gigant B. Structure 27 497-506.e4 (2019)
  15. A new microtubule-stabilizing agent shows potent antiviral effects against African swine fever virus with no cytotoxicity. Sirakanyan S, Arabyan E, Hakobyan A, Hakobyan T, Chilingaryan G, Sahakyan H, Sargsyan A, Arakelov G, Nazaryan K, Izmailyan R, Abroyan L, Karalyan Z, Arakelova E, Hakobyan E, Hovakimyan A, Serobian A, Neves M, Ferreira J, Ferreira F, Zakaryan H. Emerg Microbes Infect 10 783-796 (2021)
  16. Tubulin binding potentially clears up Bortezomib and Carfilzomib differential neurotoxic effect. Malacrida A, Semperboni S, Di Domizio A, Palmioli A, Broggi L, Airoldi C, Meregalli C, Cavaletti G, Nicolini G. Sci Rep 11 10523 (2021)
  17. Improved Assessment of Globularity of Protein Structures and the Ellipsoid Profile of the Biological Assemblies from the PDB. Banach M. Biomolecules 13 385 (2023)


Reviews citing this publication (18)

  1. Control of microtubule organization and dynamics: two ends in the limelight. Akhmanova A, Steinmetz MO. Nat Rev Mol Cell Biol 16 711-726 (2015)
  2. Microtubule dynamics: an interplay of biochemistry and mechanics. Brouhard GJ, Rice LM. Nat Rev Mol Cell Biol 19 451-463 (2018)
  3. The contribution of αβ-tubulin curvature to microtubule dynamics. Brouhard GJ, Rice LM. J Cell Biol 207 323-334 (2014)
  4. The binding sites of microtubule-stabilizing agents. Field JJ, Díaz JF, Miller JH. Chem Biol 20 301-315 (2013)
  5. Microtubule structure by cryo-EM: snapshots of dynamic instability. Manka SW, Moores CA. Essays Biochem 62 737-751 (2018)
  6. Multiple tubulins: evolutionary aspects and biological implications. Breviario D, Gianì S, Morello L. Plant J 75 202-218 (2013)
  7. The Mechanism of Tubulin Assembly into Microtubules: Insights from Structural Studies. Knossow M, Campanacci V, Khodja LA, Gigant B. iScience 23 101511 (2020)
  8. Regulation of microtubule dynamics, mechanics and function through the growing tip. Gudimchuk NB, McIntosh JR. Nat Rev Mol Cell Biol 22 777-795 (2021)
  9. Understanding force-generating microtubule systems through in vitro reconstitution. Vleugel M, Kok M, Dogterom M. Cell Adh Migr 10 475-494 (2016)
  10. Lessons from bacterial homolog of tubulin, FtsZ for microtubule dynamics. Battaje RR, Panda D. Endocr Relat Cancer 24 T1-T21 (2017)
  11. Invited review: Microtubule severing enzymes couple atpase activity with tubulin GTPase spring loading. Bailey ME, Jiang N, Dima RI, Ross JL. Biopolymers 105 547-556 (2016)
  12. Molecular mechanisms underlying microtubule growth dynamics. Cleary JM, Hancock WO. Curr Biol 31 R560-R573 (2021)
  13. Ahead of the Curve: New Insights into Microtubule Dynamics. Ohi R, Zanic M. F1000Res 5 F1000 Faculty Rev-314 (2016)
  14. Microtubule Assembly from Single Flared Protofilaments-Forget the Cozy Corner? Erickson HP. Biophys J 116 2240-2245 (2019)
  15. The Game of Tubulins. Kristensson MA. Cells 10 745 (2021)
  16. Alternative Approaches to Understand Microtubule Cap Morphology and Function. Oliva MÁ, Gago F, Kamimura S, Díaz JF. ACS Omega 8 3540-3550 (2023)
  17. Long Noncoding RNAs in Taxane Resistance of Breast Cancer. Chen H, Zhang M, Deng Y. Int J Mol Sci 24 12253 (2023)
  18. The molecular biology of tubulinopathies: Understanding the impact of variants on tubulin structure and microtubule regulation. Hoff KJ, Neumann AJ, Moore JK. Front Cell Neurosci 16 1023267 (2022)

Articles citing this publication (64)

  1. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Alushin GM, Lander GC, Kellogg EH, Zhang R, Baker D, Nogales E. Cell 157 1117-1129 (2014)
  2. EBs recognize a nucleotide-dependent structural cap at growing microtubule ends. Maurer SP, Fourniol FJ, Bohner G, Moores CA, Surrey T. Cell 149 371-382 (2012)
  3. Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins. Zhang R, Alushin GM, Brown A, Nogales E. Cell 162 849-859 (2015)
  4. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Barbier P, Zejneli O, Martinho M, Lasorsa A, Belle V, Smet-Nocca C, Tsvetkov PO, Devred F, Landrieu I. Front Aging Neurosci 11 204 (2019)
  5. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. Prota AE, Magiera MM, Kuijpers M, Bargsten K, Frey D, Wieser M, Jaussi R, Hoogenraad CC, Kammerer RA, Janke C, Steinmetz MO. J Cell Biol 200 259-270 (2013)
  6. Structure of a kinesin-tubulin complex and implications for kinesin motility. Gigant B, Wang W, Dreier B, Jiang Q, Pecqueur L, Plückthun A, Wang C, Knossow M. Nat Struct Mol Biol 20 1001-1007 (2013)
  7. A tethered delivery mechanism explains the catalytic action of a microtubule polymerase. Ayaz P, Munyoki S, Geyer EA, Piedra FA, Vu ES, Bromberg R, Otwinowski Z, Grishin NV, Brautigam CA, Rice LM. Elife 3 e03069 (2014)
  8. Microtubules grow by the addition of bent guanosine triphosphate tubulin to the tips of curved protofilaments. McIntosh JR, O'Toole E, Morgan G, Austin J, Ulyanov E, Ataullakhanov F, Gudimchuk N. J Cell Biol 217 2691-2708 (2018)
  9. A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics. Geyer EA, Burns A, Lalonde BA, Ye X, Piedra FA, Huffaker TC, Rice LM. Elife 4 e10113 (2015)
  10. EB1 interacts with outwardly curved and straight regions of the microtubule lattice. Guesdon A, Bazile F, Buey RM, Mohan R, Monier S, García RR, Angevin M, Heichette C, Wieneke R, Tampé R, Duchesne L, Akhmanova A, Steinmetz MO, Chrétien D. Nat Cell Biol 18 1102-1108 (2016)
  11. Structural Basis of Microtubule Destabilization by Potent Auristatin Anti-Mitotics. Waight AB, Bargsten K, Doronina S, Steinmetz MO, Sussman D, Prota AE. PLoS One 11 e0160890 (2016)
  12. Mechanism for the catastrophe-promoting activity of the microtubule destabilizer Op18/stathmin. Gupta KK, Li C, Duan A, Alberico EO, Kim OV, Alber MS, Goodson HV. Proc Natl Acad Sci U S A 110 20449-20454 (2013)
  13. The role of tubulin-tubulin lattice contacts in the mechanism of microtubule dynamic instability. Manka SW, Moores CA. Nat Struct Mol Biol 25 607-615 (2018)
  14. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy. Yajima H, Ogura T, Nitta R, Okada Y, Sato C, Hirokawa N. J Cell Biol 198 315-322 (2012)
  15. Structural change in FtsZ Induced by intermolecular interactions between bound GTP and the T7 loop. Matsui T, Han X, Yu J, Yao M, Tanaka I. J Biol Chem 289 3501-3509 (2014)
  16. Insight into microtubule disassembly by kinesin-13s from the structure of Kif2C bound to tubulin. Wang W, Cantos-Fernandes S, Lv Y, Kuerban H, Ahmad S, Wang C, Gigant B. Nat Commun 8 70 (2017)
  17. Structural plasticity of tubulin assembly probed by vinca-domain ligands. Ranaivoson FM, Gigant B, Berritt S, Joullié M, Knossow M. Acta Crystallogr D Biol Crystallogr 68 927-934 (2012)
  18. Mutation of the α-tubulin Tuba1a leads to straighter microtubules and perturbs neuronal migration. Belvindrah R, Natarajan K, Shabajee P, Bruel-Jungerman E, Bernard J, Goutierre M, Moutkine I, Jaglin XH, Savariradjane M, Irinopoulou T, Poncer JC, Janke C, Francis F. J Cell Biol 216 2443-2461 (2017)
  19. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Yang J, Wang Y, Wang T, Jiang J, Botting CH, Liu H, Chen Q, Yang J, Naismith JH, Zhu X, Chen L. Nat Commun 7 12103 (2016)
  20. Mechanism of microtubule stabilization by taccalonolide AJ. Wang Y, Yu Y, Li GB, Li SA, Wu C, Gigant B, Qin W, Chen H, Wu Y, Chen Q, Yang J. Nat Commun 8 15787 (2017)
  21. Structural model for differential cap maturation at growing microtubule ends. Estévez-Gallego J, Josa-Prado F, Ku S, Buey RM, Balaguer FA, Prota AE, Lucena-Agell D, Kamma-Lorger C, Yagi T, Iwamoto H, Duchesne L, Barasoain I, Steinmetz MO, Chrétien D, Kamimura S, Díaz JF, Oliva MA. Elife 9 e50155 (2020)
  22. MAP6 is an intraluminal protein that induces neuronal microtubules to coil. Cuveillier C, Delaroche J, Seggio M, Gory-Fauré S, Bosc C, Denarier E, Bacia M, Schoehn G, Mohrbach H, Kulić I, Andrieux A, Arnal I, Delphin C. Sci Adv 6 eaaz4344 (2020)
  23. Ternary complex of Kif2A-bound tandem tubulin heterodimers represents a kinesin-13-mediated microtubule depolymerization reaction intermediate. Trofimova D, Paydar M, Zara A, Talje L, Kwok BH, Allingham JS. Nat Commun 9 2628 (2018)
  24. The dynamic and structural properties of axonemal tubulins support the high length stability of cilia. Orbach R, Howard J. Nat Commun 10 1838 (2019)
  25. Microtubule assembly governed by tubulin allosteric gain in flexibility and lattice induced fit. Igaev M, Grubmüller H. Elife 7 e34353 (2018)
  26. Nucleotide-dependent lateral and longitudinal interactions in microtubules. Grafmüller A, Noya EG, Voth GA. J Mol Biol 425 2232-2246 (2013)
  27. GDP-to-GTP exchange on the microtubule end can contribute to the frequency of catastrophe. Piedra FA, Kim T, Garza ES, Geyer EA, Burns A, Ye X, Rice LM. Mol Biol Cell 27 3515-3525 (2016)
  28. Towards the identification of the binding site of benzimidazoles to β-tubulin of Trichinella spiralis: insights from computational and experimental data. Aguayo-Ortiz R, Méndez-Lucio O, Medina-Franco JL, Castillo R, Yépez-Mulia L, Hernández-Luis F, Hernández-Campos A. J Mol Graph Model 41 12-19 (2013)
  29. Structural basis of tubulin recruitment and assembly by microtubule polymerases with tumor overexpressed gene (TOG) domain arrays. Nithianantham S, Cook BD, Beans M, Guo F, Chang F, Al-Bassam J. Elife 7 e38922 (2018)
  30. The synthetic diazonamide DZ-2384 has distinct effects on microtubule curvature and dynamics without neurotoxicity. Wieczorek M, Tcherkezian J, Bernier C, Prota AE, Chaaban S, Rolland Y, Godbout C, Hancock MA, Arezzo JC, Ocal O, Rocha C, Olieric N, Hall A, Ding H, Bramoullé A, Annis MG, Zogopoulos G, Harran PG, Wilkie TM, Brekken RA, Siegel PM, Steinmetz MO, Shore GC, Brouhard GJ, Roulston A. Sci Transl Med 8 365ra159 (2016)
  31. Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability. Fedorov VA, Orekhov PS, Kholina EG, Zhmurov AA, Ataullakhanov FI, Kovalenko IB, Gudimchuk NB. PLoS Comput Biol 15 e1007327 (2019)
  32. Mechanisms of microtubule dynamics and force generation examined with computational modeling and electron cryotomography. Gudimchuk NB, Ulyanov EV, O'Toole E, Page CL, Vinogradov DS, Morgan G, Li G, Moore JK, Szczesna E, Roll-Mecak A, Ataullakhanov FI, Richard McIntosh J. Nat Commun 11 3765 (2020)
  33. Biochemical and structural insights into microtubule perturbation by CopN from Chlamydia pneumoniae. Nawrotek A, Guimarães BG, Velours C, Subtil A, Knossow M, Gigant B. J Biol Chem 289 25199-25210 (2014)
  34. FtsZ Constriction Force - Curved Protofilaments Bending Membranes. Erickson HP, Osawa M. Subcell Biochem 84 139-160 (2017)
  35. Crystal Structure of the Cyclostreptin-Tubulin Adduct: Implications for Tubulin Activation by Taxane-Site Ligands. Balaguer FA, Mühlethaler T, Estévez-Gallego J, Calvo E, Giménez-Abián JF, Risinger AL, Sorensen EJ, Vanderwal CD, Altmann KH, Mooberry SL, Steinmetz MO, Oliva MÁ, Prota AE, Díaz JF. Int J Mol Sci 20 E1392 (2019)
  36. FtsZ Protofilament Curvature Is the Opposite of Tubulin Rings. Housman M, Milam SL, Moore DA, Osawa M, Erickson HP. Biochemistry 55 4085-4091 (2016)
  37. Design, Synthesis, and Biological Evaluation of Stable Colchicine-Binding Site Tubulin Inhibitors 6-Aryl-2-benzoyl-pyridines as Potential Anticancer Agents. Chen H, Deng S, Albadari N, Yun MK, Zhang S, Li Y, Ma D, Parke DN, Yang L, Seagroves TN, White SW, Miller DD, Li W. J Med Chem 64 12049-12074 (2021)
  38. Microtubule Plus End Dynamics - Do We Know How Microtubules Grow?: Cells boost microtubule growth by promoting distinct structural transitions at growing microtubule ends. van Haren J, Wittmann T. Bioessays 41 e1800194 (2019)
  39. Microtubule Simulations Provide Insight into the Molecular Mechanism Underlying Dynamic Instability. Tong D, Voth GA. Biophys J 118 2938-2951 (2020)
  40. Mechanistic Insights into Biological Activities of Polyphenolic Compounds from Rosemary Obtained by Inverse Molecular Docking. Lešnik S, Bren U. Foods 11 67 (2021)
  41. Relating nucleotide-dependent conformational changes in free tubulin dimers to tubulin assembly. Natarajan K, Mohan J, Senapati S. Biopolymers 99 282-291 (2013)
  42. Tubulin Dimer Reversible Dissociation: AFFINITY, KINETICS, AND DEMONSTRATION OF A STABLE MONOMER. Montecinos-Franjola F, Schuck P, Sackett DL. J Biol Chem 291 9281-9294 (2016)
  43. Comparative binding energy (COMBINE) analysis supports a proposal for the binding mode of epothilones to β-tubulin. Coderch C, Klett J, Morreale A, Fernando Díaz J, Gago F. ChemMedChem 7 836-843 (2012)
  44. X-ray fiber diffraction analysis shows dynamic changes in axial tubulin repeats in native microtubules depending on paclitaxel content, temperature and GTP-hydrolysis. Kamimura S, Fujita Y, Wada Y, Yagi T, Iwamoto H. Cytoskeleton (Hoboken) 73 131-144 (2016)
  45. A cryptic tubulin-binding domain links MEKK1 to curved tubulin protomers. Filipčík P, Latham SL, Cadell AL, Day CL, Croucher DR, Mace PD. Proc Natl Acad Sci U S A 117 21308-21318 (2020)
  46. B-nor-methylene Colchicinoid PT-100 Selectively Induces Apoptosis in Multidrug-Resistant Human Cancer Cells via an Intrinsic Pathway in a Caspase-Independent Manner. Stein A, Hilken Née Thomopoulou P, Frias C, Hopff SM, Varela P, Wilke N, Mariappan A, Neudörfl JM, Fedorov AY, Gopalakrishnan J, Gigant B, Prokop A, Schmalz HG. ACS Omega 7 2591-2603 (2022)
  47. Kinetically Stabilizing Mutations in Beta Tubulins Create Isotype-Specific Brain Malformations. Park K, Hoff KJ, Wethekam L, Stence N, Saenz M, Moore JK. Front Cell Dev Biol 9 765992 (2021)
  48. Severe TUBB4A-Related Hypomyelination With Atrophy of the Basal Ganglia and Cerebellum: Novel Neuropathological Findings. Joyal KM, Michaud J, van der Knaap MS, Bugiani M, Venkateswaran S. J Neuropathol Exp Neurol 78 3-9 (2019)
  49. The state of the guanosine nucleotide allosterically affects the interfaces of tubulin in protofilament. André JR, Clément MJ, Adjadj E, Toma F, Curmi PA, Manivet P. J Comput Aided Mol Des 26 397-407 (2012)
  50. Insights into allosteric control of microtubule dynamics from a buried β-tubulin mutation that causes faster growth and slower shrinkage. Ye X, Kim T, Geyer EA, Rice LM. Protein Sci 29 1429-1439 (2020)
  51. Structural insight into the stabilization of microtubules by taxanes. Prota AE, Lucena-Agell D, Ma Y, Estevez-Gallego J, Li S, Bargsten K, Josa-Prado F, Altmann KH, Gaillard N, Kamimura S, Mühlethaler T, Gago F, Oliva MA, Steinmetz MO, Fang WS, Díaz JF. Elife 12 e84791 (2023)
  52. Kinesin-8-specific loop-2 controls the dual activities of the motor domain according to tubulin protofilament shape. Hunter B, Benoit MPMH, Asenjo AB, Doubleday C, Trofimova D, Frazer C, Shoukat I, Sosa H, Allingham JS. Nat Commun 13 4198 (2022)
  53. TUBA1A tubulinopathy mutants disrupt neuron morphogenesis and override XMAP215/Stu2 regulation of microtubule dynamics. Hoff KJ, Aiken JE, Gutierrez MA, Franco SJ, Moore JK. Elife 11 e76189 (2022)
  54. Bending-torsional elasticity and energetics of the plus-end microtubule tip. Igaev M, Grubmüller H. Proc Natl Acad Sci U S A 119 e2115516119 (2022)
  55. Microtubules form by progressively faster tubulin accretion, not by nucleation-elongation. Rice LM, Moritz M, Agard DA. J Cell Biol 220 e202012079 (2021)
  56. Solid-state 31P NMR investigation on the status of guanine nucleotides in paclitaxel-stabilized microtubules. Lee GH, Oh SY, Yeo KJ, Ferdous T, Cho M, Paik Y. Magn Reson Chem 53 330-336 (2015)
  57. The subtle allostery of microtubule dynamics. Amos LA, Löwe J. Nat Struct Mol Biol 21 505-506 (2014)
  58. Modeling Microtubule Counterion Distributions and Conductivity Using the Poisson-Boltzmann Equation. Eakins BB, Patel SD, Kalra AP, Rezania V, Shankar K, Tuszynski JA. Front Mol Biosci 8 650757 (2021)
  59. Structural convergence for tubulin binding of CPAP and vinca domain microtubule inhibitors. Campanacci V, Urvoas A, Ammar Khodja L, Aumont-Nicaise M, Noiray M, Lachkar S, Curmi PA, Minard P, Gigant B. Proc Natl Acad Sci U S A 119 e2120098119 (2022)
  60. Atomistic molecular dynamics simulations of tubulin heterodimers explain the motion of a microtubule. Nasedkin A, Ermilova I, Swenson J. Eur Biophys J 50 927-940 (2021)
  61. Design, Synthesis, and Biological Evaluation of Pyrimidine Dihydroquinoxalinone Derivatives as Tubulin Colchicine Site-Binding Agents That Displayed Potent Anticancer Activity Both In Vitro and In Vivo. Pochampally S, Hartman KL, Wang R, Wang J, Yun MK, Parmar K, Park H, Meibohm B, White SW, Li W, Miller DD. ACS Pharmacol Transl Sci 6 526-545 (2023)
  62. Structural basis of microtubule depolymerization by the kinesin-like activity of HIV-1 Rev. Eren E, Watts NR, Randazzo D, Palmer I, Sackett DL, Wingfield PT. Structure 31 1233-1246.e5 (2023)
  63. Structural insights into the mechanism of GTP initiation of microtubule assembly. Zhou J, Wang A, Song Y, Liu N, Wang J, Li Y, Liang X, Li G, Chu H, Wang HW. Nat Commun 14 5980 (2023)
  64. Theory of tip structure-dependent microtubule catastrophes and damage-induced microtubule rescues. Alexandrova VV, Anisimov MN, Zaitsev AV, Mustyatsa VV, Popov VV, Ataullakhanov FI, Gudimchuk NB. Proc Natl Acad Sci U S A 119 e2208294119 (2022)