3sfe Citations

Thiabendazole inhibits ubiquinone reduction activity of mitochondrial respiratory complex II via a water molecule mediated binding feature.

Protein Cell 2 531-42 (2011)
Cited: 20 times
EuropePMC logo PMID: 21822798

Abstract

The mitochondrial respiratory complex II or succinate: ubiquinone oxidoreductase (SQR) is a key membrane complex in both the tricarboxylic acid cycle and aerobic respiration. Five disinfectant compounds were investigated with their potent inhibition effects on the ubiquinone reduction activity of the porcine mitochondrial SQR by enzymatic assay and crystallography. Crystal structure of the SQR bound with thiabendazole (TBZ) reveals a different inhibitor-binding feature at the ubiquinone binding site where a water molecule plays an important role. The obvious inhibitory effect of TBZ based on the biochemical data (IC(50) ~100 μmol/L) and the significant structure-based binding affinity calculation (~94 μmol/L) draw the suspicion of using TBZ as a good disinfectant compound for nematode infections treatment and fruit storage.

Articles - 3sfe mentioned but not cited (1)

  1. Crystallographic investigation of the ubiquinone binding site of respiratory Complex II and its inhibitors. Huang LS, Lümmen P, Berry EA. Biochim Biophys Acta Proteins Proteom 1869 140679 (2021)


Reviews citing this publication (9)

  1. Cellular and molecular mechanisms of mitochondrial function. Osellame LD, Blacker TS, Duchen MR. Best Pract Res Clin Endocrinol Metab 26 711-723 (2012)
  2. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Sierotzki H, Scalliet G. Phytopathology 103 880-887 (2013)
  3. Respiratory complex III dysfunction in humans and the use of yeast as a model organism to study mitochondrial myopathy and associated diseases. Meunier B, Fisher N, Ransac S, Mazat JP, Brasseur G. Biochim Biophys Acta 1827 1346-1361 (2013)
  4. Why All the Fuss about Oxidative Phosphorylation (OXPHOS)? Xu Y, Xue D, Bankhead A, Neamati N. J Med Chem 63 14276-14307 (2020)
  5. Oxidative Stress in Ischemia/Reperfusion Injuries following Acute Ischemic Stroke. Jurcau A, Ardelean AI. Biomedicines 10 574 (2022)
  6. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain. Sun F, Zhou Q, Pang X, Xu Y, Rao Z. Curr Opin Struct Biol 23 526-538 (2013)
  7. Defining a direction: electron transfer and catalysis in Escherichia coli complex II enzymes. Maklashina E, Cecchini G, Dikanov SA. Biochim Biophys Acta 1827 668-678 (2013)
  8. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Biomedicines 11 2488 (2023)
  9. Status of Mitochondrial Oxidative Phosphorylation during the Development of Heart Failure. Bhullar SK, Dhalla NS. Antioxidants (Basel) 12 1941 (2023)

Articles citing this publication (10)

  1. Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent. Cha HJ, Byrom M, Mead PE, Ellington AD, Wallingford JB, Marcotte EM. PLoS Biol 10 e1001379 (2012)
  2. Development of a mitochondria-based centrifugal ultrafiltration/liquid chromatography/mass spectrometry method for screening mitochondria-targeted bioactive constituents from complex matrixes: Herbal medicines as a case study. Yang XX, Xu F, Wang D, Yang ZW, Tan HR, Shang MY, Wang X, Cai SQ. J Chromatogr A 1413 33-46 (2015)
  3. Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism. Chen F, Elgaher WAM, Winterhoff M, Büssow K, Waqas FH, Graner E, Pires-Afonso Y, Casares Perez L, de la Vega L, Sahini N, Czichon L, Zobl W, Zillinger T, Shehata M, Pleschka S, Bähre H, Falk C, Michelucci A, Schuchardt S, Blankenfeldt W, Hirsch AKH, Pessler F. Nat Metab 4 534-546 (2022)
  4. Bayesian Weighing of Electron Cryo-Microscopy Data for Integrative Structural Modeling. Bonomi M, Hanot S, Greenberg CH, Sali A, Nilges M, Vendruscolo M, Pellarin R. Structure 27 175-188.e6 (2019)
  5. The roles of SDHAF2 and dicarboxylate in covalent flavinylation of SDHA, the human complex II flavoprotein. Sharma P, Maklashina E, Cecchini G, Iverson TM. Proc Natl Acad Sci U S A 117 23548-23556 (2020)
  6. Synthesis, Antifungal Activity and Structure-Activity Relationships of Novel 3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic Acid Amides. Du S, Tian Z, Yang D, Li X, Li H, Jia C, Che C, Wang M, Qin Z. Molecules 20 8395-8408 (2015)
  7. Computational and experimental insight into the molecular mechanism of carboxamide inhibitors of succinate-ubquinone oxidoreductase. Zhu XL, Xiong L, Li H, Song XY, Liu JJ, Yang GF. ChemMedChem 9 1512-1521 (2014)
  8. Synthesis, antifungal activity and QSAR of some novel carboxylic acid amides. Du S, Lu H, Yang D, Li H, Gu X, Wan C, Jia C, Wang M, Li X, Qin Z. Molecules 20 4071-4087 (2015)
  9. Design, Synthesis, and Antifungal Activity of N-(alkoxy)-Diphenyl Ether Carboxamide Derivates as Novel Succinate Dehydrogenase Inhibitors. He B, Hu Y, Chen W, He X, Zhang E, Hu M, Zhang P, Yan W, Ye Y. Molecules 29 83 (2023)
  10. Disordered-to-ordered transitions in assembly factors allow the complex II catalytic subunit to switch binding partners. Sharma P, Maklashina E, Voehler M, Balintova S, Dvorakova S, Kraus M, Vanova KH, Nahacka Z, Zobalova R, Boukalova S, Cunatova K, Mracek T, Ghayee HK, Pacak K, Rohlena J, Neuzil J, Cecchini G, Iverson TM. Nat Commun 15 473 (2024)