3trx Citations

High-resolution three-dimensional structure of reduced recombinant human thioredoxin in solution.

Biochemistry 30 2685-98 (1991)
Cited: 86 times
EuropePMC logo PMID: 2001356

Abstract

The solution structure of recombinant human thioredoxin (105 residues) has been determined by nuclear magnetic resonance (NMR) spectroscopy combined with hybrid distance geometry-dynamical simulated annealing calculations. Approximate interproton distance restraints were derived from nuclear Overhauser effect (NOE) measurements. In addition, a large number of stereospecific assignments for beta-methylene protons and torsion angle restraints for phi, psi, and chi 1 were obtained by using a conformational grid search on the basis of the intraresidue and sequential NOE data in conjunction with 3JHN alpha and 3J alpha beta coupling constants. The structure calculations were based on 1983 approximate interproton distance restraints, 52 hydrogen-bonding restraints for 26 hydrogen bonds, and 98 phi, 71 psi, and 72 chi 1 torsion angle restraints. The 33 final simulated annealing structures obtained had an average atomic rms distribution of the individual structures about the mean coordinate positions of 0.40 +/- 0.06 A for the backbone atoms and 0.78 +/- 0.05 A for all atoms. The solution structure of human thioredoxin consists of a five-stranded beta-sheet surrounded by four alpha-helices, with an active site protrusion containing the two redox-active cysteines. The overall structure is similar to the crystal and NMR structures of oxidized [Katti, S. K., LeMaster, D. M., & Eklund, H. (1990) J. Mol. Biol. 212, 167-184] and reduced [Dyson, J. H., Gippert, G. P., Case, D. A., Holmgren, A., & Wright, P. (1990) Biochemistry 29, 4129-4136] Escherichia coli thioredoxin, respectively, despite the moderate 25% amino acid sequence homology. Several differences, however, can be noted. The human alpha 1 helix is a full turn longer than the corresponding helix in E. coli thioredoxin and is characterized by a more regular helical geometry. The helix labeled alpha 3 in human thioredoxin has its counterpart in the 3(10) helix of the E. coli protein and is also longer in the human protein. In contrast to these structural differences, the conformation of the active site loop in both proteins is very similar, reflecting the perfect sequence identity for a stretch of eight amino acid residues around the redox-active cysteines.

Reviews - 3trx mentioned but not cited (2)

  1. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Antioxid Redox Signal 19 1539-1605 (2013)
  2. Oxidative Cysteine Modification of Thiol Isomerases in Thrombotic Disease: A Hypothesis. Yang M, Flaumenhaft R. Antioxid Redox Signal 35 1134-1155 (2021)

Articles - 3trx mentioned but not cited (9)

  1. SuperPose: a simple server for sophisticated structural superposition. Maiti R, Van Domselaar GH, Zhang H, Wishart DS. Nucleic Acids Res 32 W590-4 (2004)
  2. Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases. Castillo V, Ventura S. PLoS Comput Biol 5 e1000476 (2009)
  3. Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy. Perez-Jimenez R, Li J, Kosuri P, Sanchez-Romero I, Wiita AP, Rodriguez-Larrea D, Chueca A, Holmgren A, Miranda-Vizuete A, Becker K, Cho SH, Beckwith J, Gelhaye E, Jacquot JP, Gaucher EA, Sanchez-Ruiz JM, Berne BJ, Fernandez JM. Nat Struct Mol Biol 16 890-896 (2009)
  4. Sequence variations within protein families are linearly related to structural variations. Koehl P, Levitt M. J Mol Biol 323 551-562 (2002)
  5. Prediction of protein pK a with representation learning. Gokcan H, Isayev O. Chem Sci 13 2462-2474 (2022)
  6. Structural insights into interaction between mammalian methionine sulfoxide reductase B1 and thioredoxin. Dobrovolska O, Rychkov G, Shumilina E, Nerinovski K, Schmidt A, Shabalin K, Yakimov A, Dikiy A. J Biomed Biotechnol 2012 586539 (2012)
  7. Access of hydrogen-radicals to the peptide-backbone as a measure for estimating the flexibility of proteins using matrix-assisted laser desorption/ionization mass spectrometry. Takayama M, Nagoshi K, Iimuro R, Inatomi K. Int J Mol Sci 15 8428-8442 (2014)
  8. Solution NMR structures of oxidized and reduced Ehrlichia chaffeensis thioredoxin: NMR-invisible structure owing to backbone dynamics. Buchko GW, Hewitt SN, Van Voorhis WC, Myler PJ. Acta Crystallogr F Struct Biol Commun 74 46-56 (2018)
  9. Improved Red Fluorescent Redox Indicators for Monitoring Cytosolic and Mitochondrial Thioredoxin Redox Dynamics. Pang Y, Zhang H, Ai HW. Biochemistry 61 377-384 (2022)


Reviews citing this publication (13)

  1. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Hatahet F, Ruddock LW. Antioxid Redox Signal 11 2807-2850 (2009)
  2. Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Holmgren A. Structure 3 239-243 (1995)
  3. Similarities and differences in the thioredoxin superfamily. Carvalho AP, Fernandes PA, Ramos MJ. Prog Biophys Mol Biol 91 229-248 (2006)
  4. NMR structure determination of proteins and protein complexes larger than 20 kDa. Clore GM, Gronenborn AM. Curr Opin Chem Biol 2 564-570 (1998)
  5. Catalysis of protein folding by protein disulfide isomerase and small-molecule mimics. Kersteen EA, Raines RT. Antioxid Redox Signal 5 413-424 (2003)
  6. Reactivity of thioredoxin as a protein thiol-disulfide oxidoreductase. Cheng Z, Zhang J, Ballou DP, Williams CH. Chem Rev 111 5768-5783 (2011)
  7. Thioredoxin-1 and posttranslational modifications. Haendeler J. Antioxid Redox Signal 8 1723-1728 (2006)
  8. Young Investigator Award Lecture. Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR. Clore GM, Gronenborn AM. Protein Sci 3 372-390 (1994)
  9. Structures of protein complexes by multidimensional heteronuclear magnetic resonance spectroscopy. Gronenborn AM, Clore GM. Crit Rev Biochem Mol Biol 30 351-385 (1995)
  10. Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders. Nakamura T, Oh CK, Zhang X, Tannenbaum SR, Lipton SA. Antioxid Redox Signal 35 531-550 (2021)
  11. Proteomics in rheumatology: a new direction for old diseases. Ali M, Manolios N. Semin Arthritis Rheum 35 67-76 (2005)
  12. Structures of larger proteins, protein-ligand and protein-DNA complexes by multi-dimensional heteronuclear NMR. Clore GM, Gronenborn AM. Prog Biophys Mol Biol 62 153-184 (1994)
  13. NMR structures and methodology. Chazin WJ. Curr Opin Biotechnol 3 326-332 (1992)

Articles citing this publication (62)

  1. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, Frutiger S, Hochstrasser D. Electrophoresis 14 1023-1031 (1993)
  2. Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. Weichsel A, Gasdaska JR, Powis G, Montfort WR. Structure 4 735-751 (1996)
  3. High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Jeng MF, Campbell AP, Begley T, Holmgren A, Case DA, Wright PE, Dyson HJ. Structure 2 853-868 (1994)
  4. A single dipeptide sequence modulates the redox properties of a whole enzyme family. Huber-Wunderlich M, Glockshuber R. Fold Des 3 161-171 (1998)
  5. New methods of structure refinement for macromolecular structure determination by NMR. Clore GM, Gronenborn AM. Proc Natl Acad Sci U S A 95 5891-5898 (1998)
  6. Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants. Michelet L, Zaffagnini M, Marchand C, Collin V, Decottignies P, Tsan P, Lancelin JM, Trost P, Miginiac-Maslow M, Noctor G, Lemaire SD. Proc Natl Acad Sci U S A 102 16478-16483 (2005)
  7. The CXXC motif: imperatives for the formation of native disulfide bonds in the cell. Chivers PT, Laboissière MC, Raines RT. EMBO J 15 2659-2667 (1996)
  8. The high-resolution three-dimensional solution structures of the oxidized and reduced states of human thioredoxin. Qin J, Clore GM, Gronenborn AM. Structure 2 503-522 (1994)
  9. Crystal structures of two functionally different thioredoxins in spinach chloroplasts. Capitani G, Marković-Housley Z, DelVal G, Morris M, Jansonius JN, Schürmann P. J Mol Biol 302 135-154 (2000)
  10. Nitrative inactivation of thioredoxin-1 and its role in postischemic myocardial apoptosis. Tao L, Jiao X, Gao E, Lau WB, Yuan Y, Lopez B, Christopher T, RamachandraRao SP, Williams W, Southan G, Sharma K, Koch W, Ma XL. Circulation 114 1395-1402 (2006)
  11. NMR-derived three-dimensional solution structure of protein S complexed with calcium. Bagby S, Harvey TS, Eagle SG, Inouye S, Ikura M. Structure 2 107-122 (1994)
  12. Stereospecific assignment of beta-methylene protons in larger proteins using 3D 15N-separated Hartmann-Hahn and 13C-separated rotating frame Overhauser spectroscopy. Clore GM, Bax A, Gronenborn AM. J Biomol NMR 1 13-22 (1991)
  13. Structure of TcpG, the DsbA protein folding catalyst from Vibrio cholerae. Hu SH, Peek JA, Rattigan E, Taylor RK, Martin JL. J Mol Biol 268 137-146 (1997)
  14. Intron position as an evolutionary marker of thioredoxins and thioredoxin domains. Sahrawy M, Hecht V, Lopez-Jaramillo J, Chueca A, Chartier Y, Meyer Y. J Mol Evol 42 422-431 (1996)
  15. Structure of oxidized bacteriophage T4 glutaredoxin (thioredoxin). Refinement of native and mutant proteins. Eklund H, Ingelman M, Söderberg BO, Uhlin T, Nordlund P, Nikkola M, Sonnerstam U, Joelson T, Petratos K. J Mol Biol 228 596-618 (1992)
  16. Oxidative inactivation of thioredoxin as a cellular growth factor and protection by a Cys73-->Ser mutation. Gasdaska JR, Kirkpatrick DL, Montfort W, Kuperus M, Hill SR, Berggren M, Powis G. Biochem Pharmacol 52 1741-1747 (1996)
  17. High-resolution structure of Ascaris trypsin inhibitor in solution: direct evidence for a pH-induced conformational transition in the reactive site. Grasberger BL, Clore GM, Gronenborn AM. Structure 2 669-678 (1994)
  18. Characterization of catalytic centre mutants of macrophage migration inhibitory factor (MIF) and comparison to Cys81Ser MIF. Kleemann R, Kapurniotu A, Mischke R, Held J, Bernhagen J. Eur J Biochem 261 753-766 (1999)
  19. Crystal structure of thioltransferase at 2.2 A resolution. Katti SK, Robbins AH, Yang Y, Wells WW. Protein Sci 4 1998-2005 (1995)
  20. Mutation of conserved residues in Escherichia coli thioredoxin: effects on stability and function. Gleason FK. Protein Sci 1 609-616 (1992)
  21. Determination of the solution structures of domains II and III of protein G from Streptococcus by 1H nuclear magnetic resonance. Lian LY, Derrick JP, Sutcliffe MJ, Yang JC, Roberts GC. J Mol Biol 228 1219-1234 (1992)
  22. Chlamydomonas reinhardtii thioredoxins: structure of the genes coding for the chloroplastic m and cytosolic h isoforms; expression in Escherichia coli of the recombinant proteins, purification and biochemical properties. Stein M, Jacquot JP, Jeannette E, Decottignies P, Hodges M, Lancelin JM, Mittard V, Schmitter JM, Miginiac-Maslow M. Plant Mol Biol 28 487-503 (1995)
  23. Conformational analysis of protein structures derived from NMR data. MacArthur MW, Thornton JM. Proteins 17 232-251 (1993)
  24. Crystal structure of thioredoxin-2 from Anabaena. Saarinen M, Gleason FK, Eklund H. Structure 3 1097-1108 (1995)
  25. Protein phi and psi dihedral restraints determined from multidimensional hypersurface correlations of backbone chemical shifts and their use in the determination of protein tertiary structures. Beger RD, Bolton PH. J Biomol NMR 10 129-142 (1997)
  26. Solution structure of a trefoil-motif-containing cell growth factor, porcine spasmolytic protein. Carr MD, Bauer CJ, Gradwell MJ, Feeney J. Proc Natl Acad Sci U S A 91 2206-2210 (1994)
  27. Linked thioredoxin-glutathione systems in platyhelminth parasites: alternative pathways for glutathione reduction and deglutathionylation. Bonilla M, Denicola A, Marino SM, Gladyshev VN, Salinas G. J Biol Chem 286 4959-4967 (2011)
  28. Solution structure of the fibrin binding finger domain of tissue-type plasminogen activator determined by 1H nuclear magnetic resonance. Downing AK, Driscoll PC, Harvey TS, Dudgeon TJ, Smith BO, Baron M, Campbell ID. J Mol Biol 225 821-833 (1992)
  29. Representing an ensemble of NMR-derived protein structures by a single structure. Sutcliffe MJ. Protein Sci 2 936-944 (1993)
  30. The nonclassic secretion of thioredoxin is not sensitive to redox state. Tanudji M, Hevi S, Chuck SL. Am J Physiol Cell Physiol 284 C1272-9 (2003)
  31. Comparison of the solution nuclear magnetic resonance and X-ray crystal structures of human recombinant interleukin-1 beta. Clore GM, Gronenborn AM. J Mol Biol 221 47-53 (1991)
  32. Determination of the positions of bound water molecules in the solution structure of reduced human thioredoxin by heteronuclear three-dimensional nuclear magnetic resonance spectroscopy. Forman-Kay JD, Gronenborn AM, Wingfield PT, Clore GM. J Mol Biol 220 209-216 (1991)
  33. Force field parameters for S-nitrosocysteine and molecular dynamics simulations of S-nitrosated thioredoxin. Han S. Biochem Biophys Res Commun 377 612-616 (2008)
  34. Structural comparison of oxidized and reduced FKBP13 from Arabidopsis thaliana. Gopalan G, He Z, Battaile KP, Luan S, Swaminathan K. Proteins 65 789-795 (2006)
  35. The Escherichia coli thioredoxin homolog YbbN/Trxsc is a chaperone and a weak protein oxidoreductase. Caldas T, Malki A, Kern R, Abdallah J, Richarme G. Biochem Biophys Res Commun 343 780-786 (2006)
  36. 1H and 15N resonance assignments and secondary structure of the human thioredoxin C62A, C69A, C73A mutant. Forman-Kay JD, Clore GM, Stahl SJ, Gronenborn AM. J Biomol NMR 2 431-445 (1992)
  37. Effect of disulfide bridge formation on the NMR spectrum of a protein: studies on oxidized and reduced Escherichia coli thioredoxin. Chandrasekhar K, Campbell AP, Jeng MF, Holmgren A, Dyson HJ. J Biomol NMR 4 411-432 (1994)
  38. The evolutionarily conserved Dim1 protein defines a novel branch of the thioredoxin fold superfamily. Zhang YZ, Gould KL, Dunbrack RL JR, Cheng H, Roder H, Golemis EA. Physiol Genomics 1 109-118 (1999)
  39. Structure-based design of a fluorimetric redox active peptide probe. Cline DJ, Thorpe C, Schneider JP. Anal Biochem 325 144-150 (2004)
  40. Crystal Structure of Chloroplastic Thioredoxin f2 from Chlamydomonas reinhardtii Reveals Distinct Surface Properties. Lemaire SD, Tedesco D, Crozet P, Michelet L, Fermani S, Zaffagnini M, Henri J. Antioxidants (Basel) 7 E171 (2018)
  41. Structural insight into the interactions of SoxV, SoxW and SoxS in the process of transport of reductants during sulfur oxidation by the novel global sulfur oxidation reaction cycle. Bagchi A, Ghosh TC. Biophys Chem 119 7-13 (2006)
  42. 1H, 13C, 15N-NMR resonance assignments of oxidized thioredoxin h from the eukaryotic green alga Chlamydomonas reinhardtii using new methods based on two-dimensional triple-resonance NMR spectroscopy and computer-assisted backbone assignment. Mittard V, Morelle N, Brutscher B, Simorre JP, Marion D, Stein M, Jacquot JP, Lirsac PN, Lancelin JM. Eur J Biochem 229 473-485 (1995)
  43. NMR solution structure of the reduced form of thioredoxin 2 from Saccharomyces cerevisiae. Amorim GC, Pinheiro AS, Netto LE, Valente AP, Almeida FC. J Biomol NMR 38 99-104 (2007)
  44. Slight Deuterium Enrichment in Water Acts as an Antioxidant: Is Deuterium a Cell Growth Regulator? Zhang X, Wang J, Zubarev RA. Mol Cell Proteomics 19 1790-1804 (2020)
  45. Biochemical, structural, and biological properties of human thioredoxin active site peptides. Oblong JE, Berggren M, Powis G. FEBS Lett 343 81-84 (1994)
  46. Complete 1H, 13C, and 15N NMR resonance assignments and secondary structure of human glutaredoxin in the fully reduced form. Sun C, Holmgren A, Bushweller JH. Protein Sci 6 383-390 (1997)
  47. Modification of Cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ASK1/p38-MAPK signalling pathway. Shu N, Hägglund P, Cai H, Hawkins CL, Davies MJ. Redox Biol 29 101400 (2020)
  48. Solution structures of Mycobacterium tuberculosis thioredoxin C and models of intact thioredoxin system suggest new approaches to inhibitor and drug design. Olson AL, Neumann TS, Cai S, Sem DS. Proteins 81 675-689 (2013)
  49. Description of the topographical changes associated to the different stages of the DsbA catalytic cycle. Vinci F, Couprie J, Pucci P, Quéméneur E, Moutiez M. Protein Sci 11 1600-1612 (2002)
  50. Molecular dynamics simulations of thioredoxin with S-glutathiolated cysteine-73. Han S. Biochem Biophys Res Commun 362 532-537 (2007)
  51. NMR solution structure of the reduced form of thioredoxin 1 from Sacharomyces cerevisiae. Pinheiro AS, Amorim GC, Netto LE, Almeida FC, Valente AP. Proteins 70 584-587 (2008)
  52. Conformation of CD4-derived cyclic hexapeptides by NMR and molecular dynamics. Ma S, McGregor MJ, Cohen FE, Pallai PV. Biopolymers 34 987-1000 (1994)
  53. Imperfect DNA mirror repeats in E. coli TnsA and other protein-coding DNA. Lang DM. Biosystems 81 183-207 (2005)
  54. Accurately Predicting Protein pKa Values Using Nonequilibrium Alchemy. Wilson CJ, Karttunen M, de Groot BL, Gapsys V. J Chem Theory Comput 19 7833-7845 (2023)
  55. Binding of phenothiazines into allosteric hydrophobic pocket of human thioredoxin 1. Philot EA, da Mata Lopes D, de Souza AT, Braz AS, Nantes IL, Rodrigues T, Perahia D, Miteva MA, Scott LP. Eur Biophys J 45 279-286 (2016)
  56. Interaction domain on thioredoxin for Pseudomonas aeruginosa 5'-adenylylsulfate reductase. Chung JS, Noguera-Mazon V, Lancelin JM, Kim SK, Hirasawa M, Hologne M, Leustek T, Knaff DB. J Biol Chem 284 31181-31189 (2009)
  57. Truncated Escherichia coli thioredoxin induces proliferation of human blood mononuclear cells and production of reactive oxygen species as well as proinflammatory cytokines. Liu SY, Liu IC, Lin TY. Cell Biochem Funct 34 226-232 (2016)
  58. An nmr conformational analysis of a synthetic peptide Cn2(1-15)NH2-S-S-acetyl-Cn2(52-66)NH2 from the New World Centruroides noxius 2 (Cn2) scorpion toxin: comparison of the structure with those of the Centruroides scorpion toxins. Yamamoto H, Sejbal J, York E, Stewart JM, Possani LD, Kotovych G. Biopolymers 49 277-286 (1999)
  59. Deciphering the Path of S-nitrosation of Human Thioredoxin: Evidence of an Internal NO Transfer and Implication for the Cellular Responses to NO. Almeida VS, Miller LL, Delia JPG, Magalhães AV, Caruso IP, Iqbal A, Almeida FCL. Antioxidants (Basel) 11 1236 (2022)
  60. Inhibition of Thermus thermophilus HB8 thioredoxin activity by platinum(II). Kato M, Yamamoto H, Okamura TA, Maoka N, Masui R, Kuramitsu S, Ueyama N. Dalton Trans 1023-1026 (2005)
  61. Calcineurin A versus NS5A-TP2/HD domain containing 2: a case study of site-directed low-frequency random mutagenesis for dissecting target specificity of peptide aptamers. Dibenedetto S, Cluet D, Stebe PN, Baumle V, Léault J, Terreux R, Bickle M, Chassey BD, Mikaelian I, Colas P, Spichty M, Zoli M, Rudkin BB. Mol Cell Proteomics 12 1939-1952 (2013)
  62. Recombinant ACHT1 from Arabidopsis thaliana: crystallization and X-ray crystallographic analysis. Pan W, Wang J, Yang Y, Liu L, Zhang M. Acta Crystallogr F Struct Biol Commun 73 382-385 (2017)


Related citations provided by authors (2)

  1. Studies on the Solution Conformation of Human Thioredoxin Using Heteronuclear 15N-1H Nuclear Magnetic Resonance Spectroscopy. Forman-Kay JD, Gronenborn AM, Kay LE, Wingfield PT, Clore GM Biochemistry 29 1566- (1990)
  2. A Proton Nuclear Magnetic Resonance Assignment and Secondary Structure Determination of Recombinant Human Thioredoxin. Forman-Kay JD, Clore GM, Driscoll PC, Wingfield P, Richards FM, Gronenborn AM Biochemistry 28 7088- (1989)