3u0j Citations

Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity.

J Biol Chem 286 43272-81 (2011)
Cited: 58 times
EuropePMC logo PMID: 22013065

Abstract

The Pseudomonas syringae type III effector HopU1 is a mono-ADP-ribosyltransferase that is injected into plant cells by the type III protein secretion system. Inside the plant cell it suppresses immunity by modifying RNA-binding proteins including the glycine-rich RNA-binding protein GRP7. The crystal structure of HopU1 at 2.7-Å resolution reveals two unique protruding loops, L1 and L4, not found in other mono-ADP-ribosyltransferases. Site-directed mutagenesis demonstrates that these loops are essential for substrate recognition and enzymatic activity. HopU1 ADP-ribosylates the conserved arginine 49 of GRP7, and this reduces the ability of GRP7 to bind RNA in vitro. In vivo, expression of GRP7 with Arg-49 replaced with lysine does not complement the reduced immune responses of the Arabidopsis thaliana grp7-1 mutant demonstrating the importance of this residue for GRP7 function. These data provide mechanistic details how HopU1 recognizes this novel type of substrate and highlights the role of GRP7 in plant immunity.

Reviews - 3u0j mentioned but not cited (1)

  1. Novel bacterial ADP-ribosylating toxins: structure and function. Simon NC, Aktories K, Barbieri JT. Nat Rev Microbiol 12 599-611 (2014)

Articles - 3u0j mentioned but not cited (4)

  1. Mechanism of phosphoribosyl-ubiquitination mediated by a single Legionella effector. Akturk A, Wasilko DJ, Wu X, Liu Y, Zhang Y, Qiu J, Luo ZQ, Reiter KH, Brzovic PS, Klevit RE, Mao Y. Nature 557 729-733 (2018)
  2. A novel mechanism by which small molecule inhibitors induce the DFG flip in Aurora A. Martin MP, Zhu JY, Lawrence HR, Pireddu R, Luo Y, Alam R, Ozcan S, Sebti SM, Lawrence NJ, Schönbrunn E. ACS Chem Biol 7 698-706 (2012)
  3. Crystal Structure-Based Exploration of Arginine-Containing Peptide Binding in the ADP-Ribosyltransferase Domain of the Type III Effector XopAI Protein. Liu JH, Yang JY, Hsu DW, Lai YH, Li YP, Tsai YR, Hou MH. Int J Mol Sci 20 E5085 (2019)
  4. mADP-RTs: versatile virulence factors from bacterial pathogens of plants and mammals. Wirthmueller L, Banfield MJ. Front Plant Sci 3 142 (2012)


Reviews citing this publication (20)

  1. Alternative splicing at the intersection of biological timing, development, and stress responses. Staiger D, Brown JW. Plant Cell 25 3640-3656 (2013)
  2. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Xin XF, He SY. Annu Rev Phytopathol 51 473-498 (2013)
  3. Phytopathogen effectors subverting host immunity: different foes, similar battleground. Dou D, Zhou JM. Cell Host Microbe 12 484-495 (2012)
  4. Catch me if you can: bacterial effectors and plant targets. Deslandes L, Rivas S. Trends Plant Sci 17 644-655 (2012)
  5. Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Macho AP, Zipfel C. Curr Opin Microbiol 23 14-22 (2015)
  6. Transcriptional control of plant defence responses. Buscaill P, Rivas S. Curr Opin Plant Biol 20 35-46 (2014)
  7. Behind the lines-actions of bacterial type III effector proteins in plant cells. Büttner D. FEMS Microbiol Rev 40 894-937 (2016)
  8. Plant innate immunity: an updated insight into defense mechanism. Muthamilarasan M, Prasad M. J Biosci 38 433-449 (2013)
  9. Emerging role for RNA-based regulation in plant immunity. Staiger D, Korneli C, Lummer M, Navarro L. New Phytol 197 394-404 (2013)
  10. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Franceschetti M, Maqbool A, Jiménez-Dalmaroni MJ, Pennington HG, Kamoun S, Banfield MJ. Microbiol Mol Biol Rev 81 e00066-16 (2017)
  11. On the front line: structural insights into plant-pathogen interactions. Wirthmueller L, Maqbool A, Banfield MJ. Nat Rev Microbiol 11 761-776 (2013)
  12. The ABCs and 123s of bacterial secretion systems in plant pathogenesis. Chang JH, Desveaux D, Creason AL. Annu Rev Phytopathol 52 317-345 (2014)
  13. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process. Meyer K, Koester T, Staiger D. Biomolecules 5 1717-1740 (2015)
  14. Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Brady PN, Goel A, Johnson MA. Microbiol Mol Biol Rev 83 e00038-18 (2019)
  15. Genomic era analyses of RNA secondary structure and RNA-binding proteins reveal their significance to post-transcriptional regulation in plants. Silverman IM, Li F, Gregory BD. Plant Sci 205-206 55-62 (2013)
  16. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Schreiber KJ, Chau-Ly IJ, Lewis JD. Microorganisms 9 1029 (2021)
  17. Uncovering the Structural Basis of a New Twist in Protein Ubiquitination. Puvar K, Luo ZQ, Das C. Trends Biochem Sci 44 467-477 (2019)
  18. Protein ADP-Ribosylation Takes Control in Plant-Bacterium Interactions. Feng B, Liu C, Shan L, He P. PLoS Pathog 12 e1005941 (2016)
  19. Phytopathogen type III effectors as probes of biological systems. Lee AH, Middleton MA, Guttman DS, Desveaux D. Microb Biotechnol 6 230-240 (2013)
  20. RNAi-Based Biofungicides as a Promising Next-Generation Strategy for Controlling Devastating Gray Mold Diseases. Islam MT, Sherif SM. Int J Mol Sci 21 E2072 (2020)

Articles citing this publication (33)

  1. Genome-Wide Analysis of Alternative Splicing during Development and Drought Stress in Maize. Thatcher SR, Danilevskaya ON, Meng X, Beatty M, Zastrow-Hayes G, Harris C, Van Allen B, Habben J, Li B. Plant Physiol 170 586-599 (2016)
  2. Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7. Nicaise V, Joe A, Jeong BR, Korneli C, Boutrot F, Westedt I, Staiger D, Alfano JR, Zipfel C. EMBO J 32 701-712 (2013)
  3. An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana. Streitner C, Köster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D. Nucleic Acids Res 40 11240-11255 (2012)
  4. Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis. Shmakov SA, Makarova KS, Wolf YI, Severinov KV, Koonin EV. Proc Natl Acad Sci U S A 115 E5307-E5316 (2018)
  5. Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts. Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR. Plant J 77 310-321 (2014)
  6. Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis. Köster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D. Nucleic Acids Res 42 9925-9936 (2014)
  7. A Host KH RNA-Binding Protein Is a Susceptibility Factor Targeted by an RXLR Effector to Promote Late Blight Disease. Wang X, Boevink P, McLellan H, Armstrong M, Bukharova T, Qin Z, Birch PR. Mol Plant 8 1385-1395 (2015)
  8. Structural basis of ubiquitin modification by the Legionella effector SdeA. Dong Y, Mu Y, Xie Y, Zhang Y, Han Y, Zhou Y, Wang W, Liu Z, Wu M, Wang H, Pan M, Xu N, Xu CQ, Yang M, Fan S, Deng H, Tan T, Liu X, Liu L, Li J, Wang J, Fang X, Feng Y. Nature 557 674-678 (2018)
  9. The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation. Lyons R, Iwase A, Gänsewig T, Sherstnev A, Duc C, Barton GJ, Hanada K, Higuchi-Takeuchi M, Matsui M, Sugimoto K, Kazan K, Simpson GG, Shirasu K. Sci Rep 3 2866 (2013)
  10. A circadian clock-regulated toggle switch explains AtGRP7 and AtGRP8 oscillations in Arabidopsis thaliana. Schmal C, Reimann P, Staiger D. PLoS Comput Biol 9 e1002986 (2013)
  11. The hnRNP-Q protein LIF2 participates in the plant immune response. Le Roux C, Del Prete S, Boutet-Mercey S, Perreau F, Balagué C, Roby D, Fagard M, Gaudin V. PLoS One 9 e99343 (2014)
  12. Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock. Korneli C, Danisman S, Staiger D. Plant Cell Physiol 55 1613-1622 (2014)
  13. The Role of Polypyrimidine Tract-Binding Proteins and Other hnRNP Proteins in Plant Splicing Regulation. Wachter A, Rühl C, Stauffer E. Front Plant Sci 3 81 (2012)
  14. Effector-triggered post-translational modifications and their role in suppression of plant immunity. Howden AJ, Huitema E. Front Plant Sci 3 160 (2012)
  15. Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity. Hackmann C, Korneli C, Kutyniok M, Köster T, Wiedenlübbert M, Müller C, Staiger D. Plant Cell Environ 37 696-706 (2014)
  16. A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis. Löhr B, Streitner C, Steffen A, Lange T, Staiger D. Mol Biol Rep 41 439-445 (2014)
  17. A phytobacterial TIR domain effector manipulates NAD+ to promote virulence. Eastman S, Smith T, Zaydman MA, Kim P, Martinez S, Damaraju N, DiAntonio A, Milbrandt J, Clemente TE, Alfano JR, Guo M. New Phytol 233 890-904 (2022)
  18. AvrRpm1 missense mutations weakly activate RPS2-mediated immune response in Arabidopsis thaliana. Cherkis KA, Temple BR, Chung EH, Sondek J, Dangl JL. PLoS One 7 e42633 (2012)
  19. RING-H2-type E3 gene VpRH2 from Vitis pseudoreticulata improves resistance to powdery mildew by interacting with VpGRP2A. Wang L, Xie X, Yao W, Wang J, Ma F, Wang C, Yang Y, Tong W, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. J Exp Bot 68 1669-1687 (2017)
  20. Nuclear Import of Arabidopsis Poly(ADP-Ribose) Polymerase 2 Is Mediated by Importin-α and a Nuclear Localization Sequence Located Between the Predicted SAP Domains. Chen C, Masi R, Lintermann R, Wirthmueller L. Front Plant Sci 9 1581 (2018)
  21. Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function. Khan F, Daniëls MA, Folkers GE, Boelens R, Saqlan Naqvi SM, van Ingen H. Nucleic Acids Res 42 8705-8718 (2014)
  22. An antifungal peptide from Coffea canephora seeds with sequence homology to glycine-rich proteins exerts membrane permeabilization and nuclear localization in fungi. Zottich U, Da Cunha M, Carvalho AO, Dias GB, Casarin N, Vasconcelos IM, Gomes VM. Biochim Biophys Acta 1830 3509-3516 (2013)
  23. Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy. Leder V, Lummer M, Tegeler K, Humpert F, Lewinski M, Schüttpelz M, Staiger D. Biochem Biophys Res Commun 453 69-74 (2014)
  24. Genotypic Variation in Resistance Gene-Mediated Calcium Signaling and Hormonal Signaling Involved in Effector-Triggered Immunity or Disease Susceptibility in the Xanthomonas campestris pv. Campestris-Brassica napus Pathosystem. Mamun MA, Islam MT, Lee BR, La VH, Bae DW, Kim TH. Plants (Basel) 9 E303 (2020)
  25. Brassica napus Infected with Leptosphaeria maculans. Ma JQ, Wei LJ, Lin A, Zhang C, Sun W, Yang B, Lu K, Li JN. Genes (Basel) 10 E296 (2019)
  26. An In-Silico Sequence-Structure-Function Analysis of the N-Terminal Lobe in CT Group Bacterial ADP-Ribosyltransferase Toxins. Lugo MR, Merrill AR. Toxins (Basel) 11 E365 (2019)
  27. Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues. Lewinski M, Hallmann A, Staiger D. Mol Genet Genomics 291 763-773 (2016)
  28. Toward a systems view on RNA-binding proteins and associated RNAs in plants: Guilt by association. Mateos JL, Staiger D. Plant Cell 35 1708-1726 (2023)
  29. HopA1 Effector from Pseudomonas syringae pv syringae Strain 61 Affects NMD Processes and Elicits Effector-Triggered Immunity. Dahale SK, Ghosh D, Ingole KD, Chugani A, Kim SH, Bhattacharjee S. Int J Mol Sci 22 7440 (2021)
  30. Identification and analysis of structurally critical fragments in HopS2. Borah SM, Jha AN. BMC Bioinformatics 19 552 (2019)
  31. Label-Free Quantitative Proteomics Analysis in Susceptible and Resistant Brassica napus Cultivars Infected with Xanthomonas campestris pv. campestris. Islam MT, Lee BR, La VH, Bae DW, Jung WJ, Kim TH. Microorganisms 9 253 (2021)
  32. Mapping the DNA-Binding Motif of Scabin Toxin, a Guanine Modifying Enzyme from Streptomyces scabies. Vatta M, Lyons B, Heney KA, Lidster T, Merrill AR. Toxins (Basel) 13 55 (2021)
  33. Using an RNA Aptamer to Inhibit the Action of Effector Proteins of Plant Pathogens. Abdeeva IA, Maloshenok LG, Pogorelko GV, Bruskin SA. Int J Mol Sci 24 16604 (2023)