3uex Citations

Structural and thermodynamic studies of binding saturated fatty acids to bovine β-lactoglobulin.

Int J Biol Macromol 50 1095-102 (2012)
Related entries: 3ueu, 3uev, 3uew

Cited: 32 times
EuropePMC logo PMID: 22425630

Abstract

Lactoglobulin is a globular milk protein for which physiological function has not been clarified. Due to its binding properties lactoglobulin might serve as a carrier for bioactive molecules. Binding of 12-, 14-, 16- and 18-carbon saturated fatty acids to bovine β-lactoglobulin has been characterised by isothermal titration calorimetry and X-ray crystallography as a part of systematic studies of lactoglobulin complexes with ligands of biological importance. The thermodynamic parameters have been determined for lauric, myristic and palmitic acid complexes revealing systematic decrease of enthalpic and increase of entropic component of ΔG with elongation of aliphatic chain. In all crystal structures determined with resolution 1.9-2.1Å, single fatty acid molecule was found in the β-barrel in extended conformation with individual pattern of interactions. Location of a fatty acid in the binding site depends on the length of aliphatic chain and influences polar interactions between protein and ligand. Systematic changes of entropic component indicate important role of water in binding process.

Articles - 3uex mentioned but not cited (3)

  1. β-lactoglobulin's conformational requirements for ligand binding at the calyx and the dimer interphase: a flexible docking study. Domínguez-Ramírez L, Del Moral-Ramírez E, Cortes-Hernández P, García-Garibay M, Jiménez-Guzmán J. PLoS One 8 e79530 (2013)
  2. Diversity-guided Lamarckian random drift particle swarm optimization for flexible ligand docking. Li C, Sun J, Palade V. BMC Bioinformatics 21 286 (2020)
  3. Divide-and-conquer strategy for large-scale Eulerian solvent excluded surface. Zhao R, Wang M, Tong Y, Wei GW. Commun Inf Syst 18 299-329 (2018)


Reviews citing this publication (4)

  1. Correlating structure and energetics in protein-ligand interactions: paradigms and paradoxes. Martin SF, Clements JH. Annu Rev Biochem 82 267-293 (2013)
  2. Bovine β-lactoglobulin/fatty acid complexes: binding, structural, and biological properties. Le Maux S, Bouhallab S, Giblin L, Brodkorb A, Croguennec T. Dairy Sci Technol 94 409-426 (2014)
  3. Milk Processing Affects Structure, Bioavailability and Immunogenicity of β-lactoglobulin. Broersen K. Foods 9 E874 (2020)
  4. β-Lactoglobulin and Glycodelin: Two Sides of the Same Coin? Sawyer L. Front Physiol 12 678080 (2021)

Articles citing this publication (25)

  1. Ligand binding and self-association cooperativity of β-lactoglobulin. Gutiérrez-Magdaleno G, Bello M, Portillo-Téllez MC, Rodríguez-Romero A, García-Hernández E. J Mol Recognit 26 67-75 (2013)
  2. Hybrid Steered Molecular Dynamics Approach to Computing Absolute Binding Free Energy of Ligand-Protein Complexes: A Brute Force Approach That Is Fast and Accurate. Chen LY. J Chem Theory Comput 11 1928-1938 (2015)
  3. Binding of 18-carbon unsaturated fatty acids to bovine β-lactoglobulin--structural and thermodynamic studies. Loch JI, Bonarek P, Polit A, Riès D, Dziedzicka-Wasylewska M, Lewiński K. Int J Biol Macromol 57 226-231 (2013)
  4. Spectroscopic and theoretical investigation of oxali-palladium interactions with β-lactoglobulin. Ghalandari B, Divsalar A, Saboury AA, Haertlé T, Parivar K, Bazl R, Eslami-Moghadam M, Amanlou M. Spectrochim Acta A Mol Biomol Spectrosc 118 1038-1046 (2014)
  5. Conformational variability of goat β-lactoglobulin: crystallographic and thermodynamic studies. Loch JI, Bonarek P, Polit A, Świątek S, Czub M, Ludwikowska M, Lewiński K. Int J Biol Macromol 72 1283-1291 (2015)
  6. Ligand entry into the calyx of β-lactoglobulin. Bello M, García-Hernández E. Biopolymers 101 744-757 (2014)
  7. Binding free energy calculations between bovine β-lactoglobulin and four fatty acids using the MMGBSA method. Bello M. Biopolymers 101 1010-1018 (2014)
  8. The differences in binding 12-carbon aliphatic ligands by bovine β-lactoglobulin isoform A and B studied by isothermal titration calorimetry and X-ray crystallography. Loch JI, Bonarek P, Polit A, Swiątek Ś, Dziedzicka-Wasylewska M, Lewiński K. J Mol Recognit 26 357-367 (2013)
  9. Molecular simulations of β-lactoglobulin complexed with fatty acids reveal the structural basis of ligand affinity to internal and possible external binding sites. Evoli S, Guzzi R, Rizzuti B. Proteins 82 2609-2619 (2014)
  10. Enantioselective transfer hydrogenation of ketone catalysed by artificial metalloenzymes derived from bovine β-lactoglobulin. Chevalley A, Salmain M. Chem Commun (Camb) 48 11984-11986 (2012)
  11. Factors affecting the interactions between beta-lactoglobulin and fatty acids as revealed in molecular dynamics simulations. Yi C, Wambo TO. Phys Chem Chem Phys 17 23074-23080 (2015)
  12. Artificial metalloenzymes derived from bovine β-lactoglobulin for the asymmetric transfer hydrogenation of an aryl ketone--synthesis, characterization and catalytic activity. Chevalley A, Cherrier MV, Fontecilla-Camps JC, Ghasemi M, Salmain M. Dalton Trans 43 5482-5489 (2014)
  13. Binding Sites for Oligosaccharide Repeats from Lactic Acid Bacteria Exopolysaccharides on Bovine β-Lactoglobulin Identified by NMR Spectroscopy. Birch J, Khan S, Madsen M, Kjeldsen C, Møller MS, Stender EGP, Peters GHJ, Duus JØ, Kragelund BB, Svensson B. ACS Omega 6 9039-9052 (2021)
  14. Complexes between linoleate and native or aggregated β-lactoglobulin: interaction parameters and in vitro cytotoxic effect. Le Maux S, Bouhallab S, Giblin L, Brodkorb A, Croguennec T. Food Chem 141 2305-2313 (2013)
  15. Engineered β-Lactoglobulin Produced in E. coli: Purification, Biophysical and Structural Characterisation. Loch JI, Bonarek P, Tworzydło M, Polit A, Hawro B, Łach A, Ludwin E, Lewiński K. Mol Biotechnol 58 605-618 (2016)
  16. Structure of two crystal forms of sheep β-lactoglobulin with EF-loop in closed conformation. Loch JI, Molenda M, Kopeć M, Swiątek S, Lewiński K. Biopolymers 101 886-894 (2014)
  17. β-Lactoglobulin interactions with local anaesthetic drugs – Crystallographic and calorimetric studies. Loch JI, Bonarek P, Polit A, Jabłoński M, Czub M, Ye X, Lewiński K. Int J Biol Macromol 80 87-94 (2015)
  18. Binding study of novel anti-diabetic pyrimidine fused heterocycles to β-lactoglobulin as a carrier protein. Mehraban MH, Yousefi R, Taheri-Kafrani A, Panahi F, Khalafi-Nezhad A. Colloids Surf B Biointerfaces 112 374-379 (2013)
  19. Docking and Molecular Dynamics Predictions of Pesticide Binding to the Calyx of Bovine β-Lactoglobulin. Cortes-Hernandez P, Vázquez Nuñez R, Domínguez-Ramírez L. Int J Mol Sci 21 E1988 (2020)
  20. Encapsulation of testosterone and its aliphatic and aromatic dimers by milk beta-lactoglobulin. Chanphai P, Vesper AR, Bekale L, Bérubé G, Tajmir-Riahi HA. Int J Biol Macromol 76 153-160 (2015)
  21. Gas-Phase Unfolding of Protein Complexes Distinguishes Conformational Isomers. Nash S, Vachet RW. J Am Chem Soc 144 22128-22139 (2022)
  22. Molecular insights into alginate β-lactoglobulin A multivalencies-The foundation for their amorphous aggregates and coacervation. Madsen M, Prestel A, Madland E, Westh P, Tøndervik A, Sletta H, Peters GHJ, Aachmann FL, Kragelund BB, Svensson B. Protein Sci 32 e4556 (2023)
  23. Structural and energetic requirements for a second binding site at the dimeric β-lactoglobulin interface. Bello M. J Biomol Struct Dyn 34 1884-1902 (2016)
  24. New ligand-binding sites identified in the crystal structures of β-lactoglobulin complexes with desipramine. Loch JI, Barciszewski J, Śliwiak J, Bonarek P, Wróbel P, Pokrywka K, Shabalin IG, Minor W, Jaskolski M, Lewiński K. IUCrJ 9 386-398 (2022)
  25. Understanding the potency of fatty acids with the amino acid side chains of bovine β lactoglobulin-A quantum chemical approach. Palanisamy D, Pandiyan BV, Duraisamy T, Kolandaivel P. J Mol Graph Model 74 105-116 (2017)