3v32 Citations

Structural study of MCPIP1 N-terminal conserved domain reveals a PIN-like RNase.

OpenAccess logo Nucleic Acids Res 40 6957-65 (2012)
Related entries: 3v33, 3v34

Cited: 58 times
EuropePMC logo PMID: 22561375

Abstract

MCP-1-induced protein 1 (MCPIP1) plays an important role in the downregulation of the LPS-induced immune response by acting as an RNase targeting IL-6 and IL-12b mRNAs. A conserved domain located in the N-terminal part of MCPIP1 is thought to be responsible for its RNase activity, but its catalytic mechanism is not well understood due to the lack of an atomic resolution structure. We determined the 3D crystal structure of this MCPIP1 N-terminal conserved RNase domain at a resolution of 2.0 Å. The overall structure of MCPIP1 N-terminal conserved domain shares high structural homology with PilT N-terminal domain. We show that the RNase catalytic center is composed of several acidic residues, verifying their importance by site-specific mutagenesis. A positively charged arm close to the catalytic center may act as an RNA substrate-binding site, since exchange of critical positively charged residues on this arm with alanine partially abolish the RNase activity of MCPIP1 in vivo. Our structure of the MCPIP1 N-terminal conserved domain reveals the details of the catalytic center and provides a greater understanding of the RNA degradation mechanism.

Reviews - 3v32 mentioned but not cited (1)

  1. Structural conservation of the PIN domain active site across all domains of life. Senissar M, Manav MC, Brodersen DE. Protein Sci 26 1474-1492 (2017)

Articles - 3v32 mentioned but not cited (4)

  1. Structural study of MCPIP1 N-terminal conserved domain reveals a PIN-like RNase. Xu J, Peng W, Sun Y, Wang X, Xu Y, Li X, Gao G, Rao Z. Nucleic Acids Res 40 6957-6965 (2012)
  2. Structural insights into protein-only RNase P complexed with tRNA. Gobert A, Pinker F, Fuchsbauer O, Gutmann B, Boutin R, Roblin P, Sauter C, Giegé P. Nat Commun 4 1353 (2013)
  3. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions. Yokogawa M, Tsushima T, Noda NN, Kumeta H, Enokizono Y, Yamashita K, Standley DM, Takeuchi O, Akira S, Inagaki F. Sci Rep 6 22324 (2016)
  4. Ribonuclease activity of MARF1 controls oocyte RNA homeostasis and genome integrity in mice. Yao Q, Cao G, Li M, Wu B, Zhang X, Zhang T, Guo J, Yin H, Shi L, Chen J, Yu X, Zheng L, Ma J, Su YQ. Proc Natl Acad Sci U S A 115 11250-11255 (2018)


Reviews citing this publication (17)

  1. Post-transcriptional regulatory networks in immunity. Ivanov P, Anderson P. Immunol Rev 253 253-272 (2013)
  2. mRNA degradation by the endoribonuclease Regnase-1/ZC3H12a/MCPIP-1. Uehata T, Akira S. Biochim Biophys Acta 1829 708-713 (2013)
  3. PPR proteins shed a new light on RNase P biology. Pinker F, Bonnard G, Gobert A, Gutmann B, Hammani K, Sauter C, Gegenheimer PA, Giegé P. RNA Biol 10 1457-1468 (2013)
  4. Regnase-1, a rapid response ribonuclease regulating inflammation and stress responses. Mao R, Yang R, Chen X, Harhaj EW, Wang X, Fan Y. Cell Mol Immunol 14 412-422 (2017)
  5. Post-transcriptional regulation of immune responses by RNA binding proteins. Mino T, Takeuchi O. Proc Jpn Acad Ser B Phys Biol Sci 94 248-258 (2018)
  6. MCP-1-induced protein-1, an immune regulator. Xu J, Fu S, Peng W, Rao Z. Protein Cell 3 903-910 (2012)
  7. Endonuclease Regnase-1/Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in controlling immune responses and beyond. Takeuchi O. Wiley Interdiscip Rev RNA 9 (2018)
  8. Posttranscriptional regulation of cytokine expression. Kovarik P, Ebner F, Sedlyarov V. Cytokine 89 21-26 (2017)
  9. ZC3H12A/MCPIP1/Regnase-1-related endonucleases: An evolutionary perspective on molecular mechanisms and biological functions. Habacher C, Ciosk R. Bioessays 39 (2017)
  10. Strategies for Improving the Efficacy of CAR T Cells in Solid Cancers. Kyte JA. Cancers (Basel) 14 571 (2022)
  11. Regnase-1 Is an Endoribonuclease Essential for the Maintenance of Immune Homeostasis. Uehata T, Takeuchi O. J Interferon Cytokine Res 37 220-229 (2017)
  12. MCPIP1 RNase and Its Multifaceted Role. Musson R, Szukała W, Jura J. Int J Mol Sci 21 E7183 (2020)
  13. Post-transcriptional gene regulation by RNA-binding proteins in vascular endothelial dysfunction. Xin H, Deng K, Fu M. Sci China Life Sci 57 836-844 (2014)
  14. How are MCPIP1 and cytokines mutually regulated in cancer-related immunity? Xu R, Li Y, Liu Y, Qu J, Cao W, Zhang E, He J, Cai Z. Protein Cell 11 881-893 (2020)
  15. Monocyte Chemotactic Protein-Induced Protein 1 (MCPIP-1): A Key Player of Host Defense and Immune Regulation. Jin Z, Zheng E, Sareli C, Kolattukudy PE, Niu J. Front Immunol 12 727861 (2021)
  16. Mechanistic and Structural Studies of Protein-Only RNase P Compared to Ribonucleoproteins Reveal the Two Faces of the Same Enzymatic Activity. Schelcher C, Sauter C, Giegé P. Biomolecules 6 E30 (2016)
  17. UPF1-From mRNA Degradation to Human Disorders. Staszewski J, Lazarewicz N, Konczak J, Migdal I, Maciaszczyk-Dziubinska E. Cells 12 419 (2023)

Articles citing this publication (36)

  1. MCPIP1 ribonuclease exhibits broad-spectrum antiviral effects through viral RNA binding and degradation. Lin RJ, Chien HL, Lin SY, Chang BL, Yu HP, Tang WC, Lin YL. Nucleic Acids Res 41 3314-3326 (2013)
  2. USP10 inhibits genotoxic NF-κB activation by MCPIP1-facilitated deubiquitination of NEMO. Niu J, Shi Y, Xue J, Miao R, Huang S, Wang T, Wu J, Fu M, Wu ZH. EMBO J 32 3206-3219 (2013)
  3. KHNYN is essential for the zinc finger antiviral protein (ZAP) to restrict HIV-1 containing clustered CpG dinucleotides. Ficarelli M, Wilson H, Pedro Galão R, Mazzon M, Antzin-Anduetza I, Marsh M, Neil SJ, Swanson CM. Elife 8 e46767 (2019)
  4. MCPIP1 Selectively Destabilizes Transcripts Associated with an Antiapoptotic Gene Expression Program in Breast Cancer Cells That Can Elicit Complete Tumor Regression. Lu W, Ning H, Gu L, Peng H, Wang Q, Hou R, Fu M, Hoft DF, Liu J. Cancer Res 76 1429-1440 (2016)
  5. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi. Tsai HY, Chen CC, Conte D, Moresco JJ, Chaves DA, Mitani S, Yates JR, Tsai MD, Mello CC. Cell 160 407-419 (2015)
  6. Comprehensive classification of the PIN domain-like superfamily. Matelska D, Steczkiewicz K, Ginalski K. Nucleic Acids Res 45 6995-7020 (2017)
  7. Targeted disruption of MCPIP1/Zc3h12a results in fatal inflammatory disease. Miao R, Huang S, Zhou Z, Quinn T, Van Treeck B, Nayyar T, Dim D, Jiang Z, Papasian CJ, Eugene Chen Y, Liu G, Fu M. Immunol Cell Biol 91 368-376 (2013)
  8. Binding specificities of human RNA-binding proteins toward structured and linear RNA sequences. Jolma A, Zhang J, Mondragón E, Morgunova E, Kivioja T, Laverty KU, Yin Y, Zhu F, Bourenkov G, Morris Q, Hughes TR, Maher LJ, Taipale J. Genome Res 30 962-973 (2020)
  9. Virus-Mediated Alterations in miRNA Factors and Degradation of Viral miRNAs by MCPIP1. Happel C, Ramalingam D, Ziegelbauer JM. PLoS Biol 14 e2000998 (2016)
  10. Ribonuclease-Mediated Control of Body Fat. Habacher C, Guo Y, Venz R, Kumari P, Neagu A, Gaidatzis D, Harvald EB, Færgeman NJ, Gut H, Ciosk R. Dev Cell 39 359-369 (2016)
  11. Substrate specificity of human MCPIP1 endoribonuclease. Wilamowski M, Gorecki A, Dziedzicka-Wasylewska M, Jura J. Sci Rep 8 7381 (2018)
  12. Intact NYN/PIN-Like Domain is Crucial for the Degradation of Inflammation-Related Transcripts by ZC3H12D. Wawro M, Kochan J, Krzanik S, Jura J, Kasza A. J Cell Biochem 118 487-498 (2017)
  13. Monocyte Chemoattractant Protein-Induced Protein 1 (MCPIP1) Enhances Angiogenic and Cardiomyogenic Potential of Murine Bone Marrow-Derived Mesenchymal Stem Cells. Labedz-Maslowska A, Lipert B, Berdecka D, Kedracka-Krok S, Jankowska U, Kamycka E, Sekula M, Madeja Z, Dawn B, Jura J, Zuba-Surma EK. PLoS One 10 e0133746 (2015)
  14. Monocyte Chemotactic Protein-induced Protein 1 and 4 Form a Complex but Act Independently in Regulation of Interleukin-6 mRNA Degradation. Huang S, Liu S, Fu JJ, Tony Wang T, Yao X, Kumar A, Liu G, Fu M. J Biol Chem 290 20782-20792 (2015)
  15. ZC3H12B/MCPIP2, a new active member of the ZC3H12 family. Wawro M, Wawro K, Kochan J, Solecka A, Sowinska W, Lichawska-Cieslar A, Jura J, Kasza A. RNA 25 840-856 (2019)
  16. Human MARF1 is an endoribonuclease that interacts with the DCP1:2 decapping complex and degrades target mRNAs. Nishimura T, Fakim H, Brandmann T, Youn JY, Gingras AC, Jinek M, Fabian MR. Nucleic Acids Res 46 12008-12021 (2018)
  17. MCPIP1, alias Regnase-1 binds and cleaves mRNA of C/EBPβ. Lipert B, Wilamowski M, Gorecki A, Jura J. PLoS One 12 e0174381 (2017)
  18. Rae1/YacP, a new endoribonuclease involved in ribosome-dependent mRNA decay in Bacillus subtilis. Leroy M, Piton J, Gilet L, Pellegrini O, Proux C, Coppée JY, Figaro S, Condon C. EMBO J 36 1167-1181 (2017)
  19. Nonsense-mediated mRNA decay in Tetrahymena is EJC independent and requires a protozoa-specific nuclease. Tian M, Yang W, Zhang J, Dang H, Lu X, Fu C, Miao W. Nucleic Acids Res 45 6848-6863 (2017)
  20. Two NYN domain containing putative nucleases are involved in transcript maturation in Arabidopsis mitochondria. Stoll B, Binder S. Plant J 85 278-288 (2016)
  21. MCPIP1 inhibits Wnt/β-catenin signaling pathway activity and modulates epithelial-mesenchymal transition during clear cell renal cell carcinoma progression by targeting miRNAs. Gorka J, Marona P, Kwapisz O, Waligórska A, Pospiech E, Dobrucki JW, Rys J, Jura J, Miekus K. Oncogene 40 6720-6735 (2021)
  22. Short Communication: Preferential Killing of HIV Latently Infected CD4(+) T Cells by MALT1 Inhibitor. Li H, He H, Gong L, Fu M, Wang TT. AIDS Res Hum Retroviruses 32 174-177 (2016)
  23. A hemolytic-uremic syndrome-associated strain O113:H21 Shiga toxin-producing Escherichia coli specifically expresses a transcriptional module containing dicA and is related to gene network dysregulation in Caco-2 cells. Bando SY, Iamashita P, Guth BE, Dos Santos LF, Fujita A, Abe CM, Ferreira LR, Moreira-Filho CA. PLoS One 12 e0189613 (2017)
  24. Extracellular mRNA transported to the nucleus exerts translation-independent function. Tomita T, Kato M, Mishima T, Matsunaga Y, Sanjo H, Ito KI, Minagawa K, Matsui T, Oikawa H, Takahashi S, Takao T, Iwai N, Mino T, Takeuchi O, Maru Y, Hiratsuka S. Nat Commun 12 3655 (2021)
  25. Structure and Function of a Novel ATPase that Interacts with Holliday Junction Resolvase Hjc and Promotes Branch Migration. Zhai B, DuPrez K, Doukov TI, Li H, Huang M, Shang G, Ni J, Gu L, Shen Y, Fan L. J Mol Biol 429 1009-1029 (2017)
  26. MCPIP1 ribonuclease can bind and cleave AURKA mRNA in MYCN-amplified neuroblastoma cells. Nowak I, Boratyn E, Student S, Bernhart SF, Fallmann J, Durbas M, Stadler PF, Rokita H. RNA Biol 18 144-156 (2021)
  27. PIN and CCCH Zn-finger domains coordinate RNA targeting in ZC3H12 family endoribonucleases. Garg A, Roske Y, Yamada S, Uehata T, Takeuchi O, Heinemann U. Nucleic Acids Res 49 5369-5381 (2021)
  28. CD40×HER2 bispecific antibody overcomes the CCL2-induced trastuzumab resistance in HER2-positive gastric cancer. Sun W, Wang X, Wang D, Lu L, Lin H, Zhang Z, Jia Y, Nie X, Liu T, Fu W. J Immunother Cancer 10 e005063 (2022)
  29. Macrophage-Specific MCPIP1/Regnase-1 Attenuates Kidney Ischemia-Reperfusion Injury by Shaping the Local Inflammatory Response and Tissue Regeneration. Ribeiro A, Dobosz E, Krill M, Köhler P, Wadowska M, Steiger S, Schmaderer C, Koziel J, Lech M. Cells 11 397 (2022)
  30. A PilT N-terminus domain protein SSO1118 from hyperthemophilic archaeon Sulfolobus solfataricus P2. Xuan J, Song X, Chen C, Wang J, Feng Y. J Biomol NMR 57 363-368 (2013)
  31. Analysis of Protein Intermolecular Interactions with MAFFT-DASH. Rozewicki J, Li S, Katoh K, Standley DM. Methods Mol Biol 2231 163-177 (2021)
  32. MCPIP1 Suppresses the NF-κB Signaling Pathway Through Negative Regulation of K63-Linked Ubiquitylation of TRAF6 in Colorectal Cancer. Ye W, Cui Y, Rong J, Huang W, Zheng Z, Li A, Li Y. Cancer Gene Ther 30 96-107 (2023)
  33. Molecular Mechanisms of ZC3H12C/Reg-3 Biological Activity and Its Involvement in Psoriasis Pathology. Wawro M, Kochan J, Sowinska W, Solecka A, Wawro K, Morytko A, Kwiecinska P, Grygier B, Kwitniewski M, Fu M, Cichy J, Kasza A. Int J Mol Sci 22 7311 (2021)
  34. Transgenic Expression of a Mutant Ribonuclease Regnase-1 in T Cells Disturbs T Cell Development and Functions. Kong G, Dou Y, Xiao X, Wang Y, Ming Y, Li XC. Front Immunol 12 682220 (2021)
  35. Short-lived AUF1 p42-binding mRNAs of RANKL and BCL6 have two distinct instability elements each. Dogar AM, Pauchard-Batschulat R, Grisoni-Neupert B, Richman L, Paillusson A, Pradervand S, Hagenbüchle O, Ambrosini G, Schmid CD, Bucher P, Kühn LC. PLoS One 13 e0206823 (2018)
  36. ZC3H12C expression in dendritic cells is necessary to prevent lymphadenopathy of skin-draining lymph nodes. Clayer E, Frank D, Anderton H, Zhang S, Kueh A, Heim V, Nutt SL, Chopin M, Bouillet P. Immunol Cell Biol 100 160-173 (2022)