3v3l Citations

Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination.

Genes Dev 26 235-40 (2012)
Cited: 151 times
EuropePMC logo PMID: 22267412

Abstract

Protein poly(ADP-ribosyl)ation and ubiquitination are two key post-translational modifications regulating many biological processes. Through crystallographic and biochemical analysis, we show that the RNF146 WWE domain recognizes poly(ADP-ribose) (PAR) by interacting with iso-ADP-ribose (iso-ADPR), the smallest internal PAR structural unit containing the characteristic ribose-ribose glycosidic bond formed during poly(ADP-ribosyl)ation. The key iso-ADPR-binding residues we identified are highly conserved among WWE domains. Binding assays further demonstrate that PAR binding is a common function for the WWE domain family. Since many WWE domain-containing proteins are known E3 ubiquitin ligases, our results suggest that protein poly(ADP-ribosyl)ation may be a general mechanism to target proteins for ubiquitination.

Reviews - 3v3l mentioned but not cited (3)

  1. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Gupte R, Liu Z, Kraus WL. Genes Dev. 31 101-126 (2017)
  2. New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Ryu KW, Kim DS, Kraus WL. Chem. Rev. 115 2453-2481 (2015)
  3. Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling. Karlberg T, Langelier MF, Pascal JM, Schüler H. Mol. Aspects Med. 34 1088-1108 (2013)

Articles - 3v3l mentioned but not cited (6)

  1. Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, Fan E, Cong F, Xu W. Genes Dev. 26 235-240 (2012)
  2. Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. DaRosa PA, Wang Z, Jiang X, Pruneda JN, Cong F, Klevit RE, Xu W. Nature 517 223-226 (2015)
  3. Live Cell Detection of Poly(ADP-Ribose) for Use in Genetic and Genotoxic Compound Screens. Koczor CA, Haider AJ, Saville KM, Li J, Andrews JF, Beiser AV, Sobol RW. Cancers (Basel) 14 3676 (2022)
  4. Poly(ADP-ribose) potentiates ZAP antiviral activity. Xue G, Braczyk K, Gonçalves-Carneiro D, Dawidziak DM, Sanchez K, Ong H, Wan Y, Zadrozny KK, Ganser-Pornillos BK, Bieniasz PD, Pornillos O. PLoS Pathog 18 e1009202 (2022)
  5. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  6. Crystal structures and functional analysis of the ZnF5-WWE1-WWE2 region of PARP13/ZAP define a distinctive mode of engaging poly(ADP-ribose). Kuttiyatveetil JRA, Soufari H, Dasovich M, Uribe IR, Mirhasan M, Cheng SJ, Leung AKL, Pascal JM. Cell Rep 41 111529 (2022)


Reviews citing this publication (52)

  1. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Gibson BA, Kraus WL. Nat. Rev. Mol. Cell Biol. 13 411-424 (2012)
  2. Wnt/beta-catenin signaling and small molecule inhibitors. Voronkov A, Krauss S. Curr. Pharm. Des. 19 634-664 (2013)
  3. Structures and Mechanisms of Enzymes Employed in the Synthesis and Degradation of PARP-Dependent Protein ADP-Ribosylation. Barkauskaite E, Jankevicius G, Ahel I. Mol. Cell 58 935-946 (2015)
  4. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Langelier MF, Pascal JM. Curr. Opin. Struct. Biol. 23 134-143 (2013)
  5. Nuclear ADP-Ribosylation and Its Role in Chromatin Plasticity, Cell Differentiation, and Epigenetics. Hottiger MO. Annu. Rev. Biochem. 84 227-263 (2015)
  6. Ubiquitin Ligases: Structure, Function, and Regulation. Zheng N, Shabek N. Annu. Rev. Biochem. 86 129-157 (2017)
  7. Reprogramming cellular events by poly(ADP-ribose)-binding proteins. Krietsch J, Rouleau M, Pic É, Ethier C, Dawson TM, Dawson VL, Masson JY, Poirier GG, Gagné JP. Mol. Aspects Med. 34 1066-1087 (2013)
  8. Spatiotemporal regulation of posttranslational modifications in the DNA damage response. Dantuma NP, van Attikum H. EMBO J. 35 6-23 (2016)
  9. The recognition and removal of cellular poly(ADP-ribose) signals. Barkauskaite E, Jankevicius G, Ladurner AG, Ahel I, Timinszky G. FEBS J. 280 3491-3507 (2013)
  10. New PARP targets for cancer therapy. Vyas S, Chang P. Nat. Rev. Cancer 14 502-509 (2014)
  11. New readers and interpretations of poly(ADP-ribosyl)ation. Kalisch T, Amé JC, Dantzer F, Schreiber V. Trends Biochem Sci 37 381-390 (2012)
  12. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Camicia R, Winkler HC, Hassa PO. Mol. Cancer 14 207 (2015)
  13. Readers of poly(ADP-ribose): designed to be fit for purpose. Teloni F, Altmeyer M. Nucleic Acids Res. 44 993-1006 (2016)
  14. Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity. Eisemann T, Pascal JM. Cell Mol Life Sci 77 19-33 (2020)
  15. Poly(ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage response. Tallis M, Morra R, Barkauskaite E, Ahel I. Chromosoma 123 79-90 (2014)
  16. Tankyrases: structure, function and therapeutic implications in cancer. Haikarainen T, Krauss S, Lehtio L. Curr. Pharm. Des. 20 6472-6488 (2014)
  17. Functions of PARylation in DNA Damage Repair Pathways. Wei H, Yu X. Genomics Proteomics Bioinformatics 14 131-139 (2016)
  18. The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemotherapy. Li M, Yu X. Oncogene 34 3349-3356 (2015)
  19. ADP-ribosylation: new facets of an ancient modification. Palazzo L, Mikoč A, Ahel I. FEBS J. 284 2932-2946 (2017)
  20. New directions in poly(ADP-ribose) polymerase biology. Bock FJ, Chang P. FEBS J. 283 4017-4031 (2016)
  21. Regulating the Regulators: Recent Revelations in the Control of E3 Ubiquitin Ligases. Vittal V, Stewart MD, Brzovic PS, Klevit RE. J. Biol. Chem. 290 21244-21251 (2015)
  22. Insights into the biogenesis, function, and regulation of ADP-ribosylation. Cohen MS, Chang P. Nat. Chem. Biol. 14 236-243 (2018)
  23. Poly (ADP-ribose) in the pathogenesis of Parkinson's disease. Lee Y, Kang HC, Lee BD, Lee YI, Kim YP, Shin JH. BMB Rep 47 424-432 (2014)
  24. Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress. Pellegrino S, Altmeyer M. Front Genet 7 63 (2016)
  25. Poly(ADP-ribose) polymerase-13 and RNA regulation in immunity and cancer. Todorova T, Bock FJ, Chang P. Trends Mol Med 21 373-384 (2015)
  26. Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crawford K, Bonfiglio JJ, Mikoč A, Matic I, Ahel I. Crit. Rev. Biochem. Mol. Biol. 53 64-82 (2018)
  27. ADP-ribosyltransferases and poly ADP-ribosylation. Liu C, Yu X. Curr. Protein Pept. Sci. 16 491-501 (2015)
  28. PARP, transcription and chromatin modeling. Posavec Marjanović M, Crawford K, Ahel I. Semin. Cell Dev. Biol. 63 102-113 (2017)
  29. Regulation of Wnt/β-catenin signalling by tankyrase-dependent poly(ADP-ribosyl)ation and scaffolding. Mariotti L, Pollock K, Guettler S. Br. J. Pharmacol. 174 4611-4636 (2017)
  30. ADP-ribosylation: activation, recognition, and removal. Li N, Chen J. Mol. Cells 37 9-16 (2014)
  31. Poly-ADP ribosylation in DNA damage response and cancer therapy. Hou WH, Chen SH, Yu X. Mutat Res 780 82-91 (2019)
  32. Nuclear PARPs and genome integrity. Azarm K, Smith S. Genes Dev 34 285-301 (2020)
  33. Cell fate regulation by chromatin ADP-ribosylation. Abplanalp J, Hottiger MO. Semin. Cell Dev. Biol. 63 114-122 (2017)
  34. Targeting poly(ADP-ribose)polymerase1 in neurological diseases: A promising trove for new pharmacological interventions to enter clinical translation. Sriram CS, Jangra A, Kasala ER, Bodduluru LN, Bezbaruah BK. Neurochem. Int. 76 70-81 (2014)
  35. PARP1: Structural insights and pharmacological targets for inhibition. Spiegel JO, Van Houten B, Durrant JD. DNA Repair (Amst) 103 103125 (2021)
  36. Tankyrases as modulators of pro-tumoral functions: molecular insights and therapeutic opportunities. Zamudio-Martinez E, Herrera-Campos AB, Muñoz A, Rodríguez-Vargas JM, Oliver FJ. J Exp Clin Cancer Res 40 144 (2021)
  37. The Enigmatic Function of PARP1: From PARylation Activity to PAR Readers. Kamaletdinova T, Fanaei-Kahrani Z, Wang ZQ. Cells 8 (2019)
  38. Multiple Roles for Mono- and Poly(ADP-Ribose) in Regulating Stress Responses. Qi H, Price BD, Day TA. Trends Genet 35 159-172 (2019)
  39. Poly(ADP-ribose)-dependent ubiquitination and its clinical implications. Vivelo CA, Ayyappan V, Leung AKL. Biochem Pharmacol 167 3-12 (2019)
  40. E3 Ubiquitin Ligase TRIP12: Regulation, Structure, and Physiopathological Functions. Brunet M, Vargas C, Larrieu D, Torrisani J, Dufresne M. Int J Mol Sci 21 E8515 (2020)
  41. Functions and Molecular Mechanisms of Deltex Family Ubiquitin E3 Ligases in Development and Disease. Wang L, Sun X, He J, Liu Z. Front Cell Dev Biol 9 706997 (2021)
  42. An inventory of crosstalk between ubiquitination and other post-translational modifications in orchestrating cellular processes. Barbour H, Nkwe NS, Estavoyer B, Messmer C, Gushul-Leclaire M, Villot R, Uriarte M, Boulay K, Hlayhel S, Farhat B, Milot E, Mallette FA, Daou S, Affar EB. iScience 26 106276 (2023)
  43. PARP Inhibitors and Myeloid Neoplasms: A Double-Edged Sword. Csizmar CM, Saliba AN, Swisher EM, Kaufmann SH. Cancers (Basel) 13 6385 (2021)
  44. PARPs and ADP-ribosylation: Deciphering the complexity with molecular tools. Dasovich M, Leung AKL. Mol Cell 83 1552-1572 (2023)
  45. Regulation of Biomolecular Condensates by Poly(ADP-ribose). Rhine K, Odeh HM, Shorter J, Myong S. Chem Rev 123 9065-9093 (2023)
  46. E3-ubiquitin ligases and recent progress in osteoimmunology. Asano Y, Matsumoto Y, Wada J, Rottapel R. Front Immunol 14 1120710 (2023)
  47. Functional Roles of Poly(ADP-Ribose) in Stress Granule Formation and Dynamics. Jin X, Cao X, Liu S, Liu B. Front Cell Dev Biol 9 671780 (2021)
  48. Functional roles of ADP-ribosylation writers, readers and erasers. Li P, Lei Y, Qi J, Liu W, Yao K. Front Cell Dev Biol 10 941356 (2022)
  49. Joining the PARty: PARP Regulation of KDM5A during DNA Repair (and Transcription?). Sanchez A, Buck-Koehntop BA, Miller KM. Bioessays 44 e2200015 (2022)
  50. Research Advances in the Role of the Poly ADP Ribose Polymerase Family in Cancer. Sha H, Gan Y, Zou R, Wu J, Feng J. Front Oncol 11 790967 (2021)
  51. Research Progress on Mono-ADP-Ribosyltransferases in Human Cell Biology. Gan Y, Sha H, Zou R, Xu M, Zhang Y, Feng J, Wu J. Front Cell Dev Biol 10 864101 (2022)
  52. The Role of PARP1 and PAR in ATP-Independent Nucleosome Reorganisation during the DNA Damage Response. Belousova EA, Lavrik OI. Genes (Basel) 14 112 (2022)

Articles citing this publication (90)

  1. Family-wide analysis of poly(ADP-ribose) polymerase activity. Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, Ahel I, Chang P. Nat Commun 5 4426 (2014)
  2. Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. Gagné JP, Pic E, Isabelle M, Krietsch J, Ethier C, Paquet E, Kelly I, Boutin M, Moon KM, Foster LJ, Poirier GG. Nucleic Acids Res. 40 7788-7805 (2012)
  3. The Promise of Proteomics for the Study of ADP-Ribosylation. Daniels CM, Ong SE, Leung AK. Mol. Cell 58 911-924 (2015)
  4. The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Li M, Lu LY, Yang CY, Wang S, Yu X. Genes Dev. 27 1752-1768 (2013)
  5. Regulation of Wnt/β-catenin signaling by posttranslational modifications. Gao C, Xiao G, Hu J. Cell Biosci 4 13 (2014)
  6. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. Perina D, Mikoč A, Ahel J, Ćetković H, Žaja R, Ahel I. DNA Repair (Amst.) 23 4-16 (2014)
  7. PARPs and ADP-Ribosylation: 50 Years … and Counting. Kraus WL. Mol. Cell 58 902-910 (2015)
  8. Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. Forst AH, Karlberg T, Herzog N, Thorsell AG, Gross A, Feijs KL, Verheugd P, Kursula P, Nijmeijer B, Kremmer E, Kleine H, Ladurner AG, Schüler H, Lüscher B. Structure 21 462-475 (2013)
  9. ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation. Feijs KL, Kleine H, Braczynski A, Forst AH, Herzog N, Verheugd P, Linzen U, Kremmer E, Lüscher B. Cell Commun. Signal 11 5 (2013)
  10. Engineering Af1521 improves ADP-ribose binding and identification of ADP-ribosylated proteins. Nowak K, Rosenthal F, Karlberg T, Bütepage M, Thorsell AG, Dreier B, Grossmann J, Sobek J, Imhof R, Lüscher B, Schüler H, Plückthun A, Leslie Pedrioli DM, Hottiger MO. Nat Commun 11 5199 (2020)
  11. Proteomics approaches to identify mono-(ADP-ribosyl)ated and poly(ADP-ribosyl)ated proteins. Vivelo CA, Leung AK. Proteomics 15 203-217 (2015)
  12. The oligonucleotide/oligosaccharide-binding fold motif is a poly(ADP-ribose)-binding domain that mediates DNA damage response. Zhang F, Chen Y, Li M, Yu X. Proc. Natl. Acad. Sci. U.S.A. 111 7278-7283 (2014)
  13. Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAPL protein. Liu CH, Zhou L, Chen G, Krug RM. Proc. Natl. Acad. Sci. U.S.A. 112 14048-14053 (2015)
  14. PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation. Welsby I, Hutin D, Gueydan C, Kruys V, Rongvaux A, Leo O. J. Biol. Chem. 289 26642-26657 (2014)
  15. Synthesis of dimeric ADP-ribose and its structure with human poly(ADP-ribose) glycohydrolase. Lambrecht MJ, Brichacek M, Barkauskaite E, Ariza A, Ahel I, Hergenrother PJ. J. Am. Chem. Soc. 137 3558-3564 (2015)
  16. Molecular Insights into Poly(ADP-ribose) Recognition and Processing. Zaja R, Mikoč A, Barkauskaite E, Ahel I. Biomolecules 3 1-17 (2012)
  17. Structural insight into the interaction of ADP-ribose with the PARP WWE domains. He F, Tsuda K, Takahashi M, Kuwasako K, Terada T, Shirouzu M, Watanabe S, Kigawa T, Kobayashi N, Güntert P, Yokoyama S, Muto Y. FEBS Lett. 586 3858-3864 (2012)
  18. Wnt pathway activation by ADP-ribosylation. Yang E, Tacchelly-Benites O, Wang Z, Randall MP, Tian A, Benchabane H, Freemantle S, Pikielny C, Tolwinski NS, Lee E, Ahmed Y. Nat Commun 7 11430 (2016)
  19. Large-scale preparation and characterization of poly(ADP-ribose) and defined length polymers. Tan ES, Krukenberg KA, Mitchison TJ. Anal. Biochem. 428 126-136 (2012)
  20. GDP-mannose-4,6-dehydratase is a cytosolic partner of tankyrase 1 that inhibits its poly(ADP-ribose) polymerase activity. Bisht KK, Dudognon C, Chang WG, Sokol ES, Ramirez A, Smith S. Mol. Cell. Biol. 32 3044-3053 (2012)
  21. Analysis of Chromatin ADP-Ribosylation at the Genome-wide Level and at Specific Loci by ADPr-ChAP. Bartolomei G, Leutert M, Manzo M, Baubec T, Hottiger MO. Mol. Cell 61 474-485 (2016)
  22. The PIN domain of EXO1 recognizes poly(ADP-ribose) in DNA damage response. Zhang F, Shi J, Chen SH, Bian C, Yu X. Nucleic Acids Res. 43 10782-10794 (2015)
  23. The role of poly ADP-ribosylation in the first wave of DNA damage response. Liu C, Vyas A, Kassab MA, Singh AK, Yu X. Nucleic Acids Res. 45 8129-8141 (2017)
  24. Modulation of poly(ADP-ribose) polymerase-1 (PARP-1)-mediated oxidative cell injury by ring finger protein 146 (RNF146) in cardiac myocytes. Gerö D, Szoleczky P, Chatzianastasiou A, Papapetropoulos A, Szabo C. Mol. Med. 20 313-328 (2014)
  25. The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage. Sellou H, Lebeaupin T, Chapuis C, Smith R, Hegele A, Singh HR, Kozlowski M, Bultmann S, Ladurner AG, Timinszky G, Huet S. Mol. Biol. Cell 27 3791-3799 (2016)
  26. A quantitative assay reveals ligand specificity of the DNA scaffold repair protein XRCC1 and efficient disassembly of complexes of XRCC1 and the poly(ADP-ribose) polymerase 1 by poly(ADP-ribose) glycohydrolase. Kim IK, Stegeman RA, Brosey CA, Ellenberger T. J. Biol. Chem. 290 3775-3783 (2015)
  27. Involvement of PARP1 in the regulation of alternative splicing. Matveeva E, Maiorano J, Zhang Q, Eteleeb AM, Convertini P, Chen J, Infantino V, Stamm S, Wang J, Rouchka EC, Fondufe-Mittendorf YN. Cell Discov 2 15046 (2016)
  28. The level of Ets-1 protein is regulated by poly(ADP-ribose) polymerase-1 (PARP-1) in cancer cells to prevent DNA damage. Legrand AJ, Choul-Li S, Spriet C, Idziorek T, Vicogne D, Drobecq H, Dantzer F, Villeret V, Aumercier M. PLoS ONE 8 e55883 (2013)
  29. Ubiquitin Modification by the E3 Ligase/ADP-Ribosyltransferase Dtx3L/Parp9. Yang CS, Jividen K, Spencer A, Dworak N, Ni L, Oostdyk LT, Chatterjee M, Kuśmider B, Reon B, Parlak M, Gorbunova V, Abbas T, Jeffery E, Sherman NE, Paschal BM. Mol. Cell 66 503-516.e5 (2017)
  30. Crystallographic and biochemical analysis of the mouse poly(ADP-ribose) glycohydrolase. Wang Z, Gagné JP, Poirier GG, Xu W. PLoS ONE 9 e86010 (2014)
  31. ELTA: Enzymatic Labeling of Terminal ADP-Ribose. Ando Y, Elkayam E, McPherson RL, Dasovich M, Cheng SJ, Voorneveld J, Filippov DV, Ong SE, Joshua-Tor L, Leung AKL. Mol Cell 73 845-856.e5 (2019)
  32. PARP1-produced poly-ADP-ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions. Catara G, Grimaldi G, Schembri L, Spano D, Turacchio G, Lo Monte M, Beccari AR, Valente C, Corda D. Sci Rep 7 14035 (2017)
  33. Breast cancer risk and 6q22.33: combined results from Breast Cancer Association Consortium and Consortium of Investigators on Modifiers of BRCA1/2. Kirchhoff T, Gaudet MM, Antoniou AC, McGuffog L, Humphreys MK, Dunning AM, Bojesen SE, Nordestgaard BG, Flyger H, Kang D, Yoo KY, Noh DY, Ahn SH, Dork T, Schürmann P, Karstens JH, Hillemanns P, Couch FJ, Olson J, Vachon C, Wang X, Cox A, Brock I, Elliott G, Reed MW, Burwinkel B, Meindl A, Brauch H, Hamann U, Ko YD, GENICA Network, Broeks A, Schmidt MK, Van 't Veer LJ, Braaf LM, Johnson N, Fletcher O, Gibson L, Peto J, Turnbull C, Seal S, Renwick A, Rahman N, Wu PE, Yu JC, Hsiung CN, Shen CY, Southey MC, Hopper JL, Hammet F, Van Dorpe T, Dieudonne AS, Hatse S, Lambrechts D, Andrulis IL, Bogdanova N, Antonenkova N, Rogov JI, Prokofieva D, Bermisheva M, Khusnutdinova E, van Asperen CJ, Tollenaar RA, Hooning MJ, Devilee P, Margolin S, Lindblom A, Milne RL, Arias JI, Zamora MP, Benítez J, Severi G, Baglietto L, Giles GG, kConFab, AOCS Study Group, Spurdle AB, Beesley J, Chen X, Holland H, Healey S, Wang-Gohrke S, Chang-Claude J, Mannermaa A, Kosma VM, Kauppinen J, Kataja V, Agnarsson BA, Caligo MA, Godwin AK, Nevanlinna H, Heikkinen T, Fredericksen Z, Lindor N, Nathanson KL, Domchek SM, SWE-BRCA, Loman N, Karlsson P, Stenmark Askmalm M, Melin B, von Wachenfeldt A, HEBON, Hogervorst FB, Verheus M, Rookus MA, Seynaeve C, Oldenburg RA, Ligtenberg MJ, Ausems MG, Aalfs CM, Gille HJ, Wijnen JT, Gómez García EB, EMBRACE, Peock S, Cook M, Oliver CT, Frost D, Luccarini C, Pichert G, Davidson R, Chu C, Eccles D, Ong KR, Cook J, Douglas F, Hodgson S, Evans DG, Eeles R, Gold B, Pharoah PD, Offit K, Chenevix-Trench G, Easton DF, BCAC/CIMBA. PLoS ONE 7 e35706 (2012)
  34. Celebrating 30 years of Wnt signaling. Verkaar F, Cadigan KM, van Amerongen R. Sci Signal 5 mr2 (2012)
  35. Cells recognize osmotic stress through liquid-liquid phase separation lubricated with poly(ADP-ribose). Watanabe K, Morishita K, Zhou X, Shiizaki S, Uchiyama Y, Koike M, Naguro I, Ichijo H. Nat Commun 12 1353 (2021)
  36. Dual Roles for Membrane Association of Drosophila Axin in Wnt Signaling. Wang Z, Tacchelly-Benites O, Yang E, Ahmed Y. PLoS Genet. 12 e1006494 (2016)
  37. Generation and Characterization of Recombinant Antibody-like ADP-Ribose Binding Proteins. Gibson BA, Conrad LB, Huang D, Kraus WL. Biochemistry 56 6305-6316 (2017)
  38. Site-specific analysis of the Asp- and Glu-ADP-ribosylated proteome by quantitative mass spectrometry. Li P, Zhen Y, Yu Y. Methods Enzymol 626 301-321 (2019)
  39. The SIAH E3 ubiquitin ligases promote Wnt/β-catenin signaling through mediating Wnt-induced Axin degradation. Ji L, Jiang B, Jiang X, Charlat O, Chen A, Mickanin C, Bauer A, Xu W, Yan X, Cong F. Genes Dev. 31 904-915 (2017)
  40. A molecular toolbox for ADP-ribosyl binding proteins. Sowa ST, Galera-Prat A, Wazir S, Alanen HI, Maksimainen MM, Lehtiö L. Cell Rep Methods 1 100121 (2021)
  41. Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities. Khadka P, Hsu JK, Veith S, Tadokoro T, Shamanna RA, Mangerich A, Croteau DL, Bohr VA. Mol. Cell. Biol. 35 3974-3989 (2015)
  42. Poly(ADP-ribosyl)ation of BRD7 by PARP1 confers resistance to DNA-damaging chemotherapeutic agents. Hu K, Wu W, Li Y, Lin L, Chen D, Yan H, Xiao X, Chen H, Chen Z, Zhang Y, Xu S, Guo Y, Koeffler HP, Song E, Yin D. EMBO Rep 20 (2019)
  43. A partnership between the lipid scramblase XK and the lipid transfer protein VPS13A at the plasma membrane. Guillén-Samander A, Wu Y, Pineda SS, García FJ, Eisen JN, Leonzino M, Ugur B, Kellis M, Heiman M, De Camilli P. Proc Natl Acad Sci U S A 119 e2205425119 (2022)
  44. Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL-INDUCED CELL DEATH1. Wirthmueller L, Asai S, Rallapalli G, Sklenar J, Fabro G, Kim DS, Lintermann R, Jaspers P, Wrzaczek M, Kangasjärvi J, MacLean D, Menke FLH, Banfield MJ, Jones JDG. New Phytol. 220 232-248 (2018)
  45. PARP14: A key ADP-ribosylating protein in host-virus interactions? Parthasarathy S, Fehr AR. PLoS Pathog 18 e1010535 (2022)
  46. PARP2 mediates branched poly ADP-ribosylation in response to DNA damage. Chen Q, Kassab MA, Dantzer F, Yu X. Nat Commun 9 3233 (2018)
  47. A Context-Dependent Role for the RNF146 Ubiquitin Ligase in Wingless/Wnt Signaling in Drosophila. Wang Z, Tacchelly-Benites O, Noble GP, Johnson MK, Gagné JP, Poirier GG, Ahmed Y. Genetics 211 913-923 (2019)
  48. Axin phosphorylation in both Wnt-off and Wnt-on states requires the tumor suppressor APC. Tacchelly-Benites O, Wang Z, Yang E, Benchabane H, Tian A, Randall MP, Ahmed Y. PLoS Genet. 14 e1007178 (2018)
  49. Geometrical constraints limiting the poly(ADP-ribose) conformation investigated by molecular dynamics simulation. D'Annessa I, Coletta A, Desideri A. Biopolymers 101 78-86 (2014)
  50. Nudix Hydrolase NUDT16 Regulates 53BP1 Protein by Reversing 53BP1 ADP-Ribosylation. Zhang F, Lou L, Peng B, Song X, Reizes O, Almasan A, Gong Z. Cancer Res 80 999-1010 (2020)
  51. PARP12 suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins. Li L, Zhao H, Liu P, Li C, Quanquin N, Ji X, Sun N, Du P, Qin CF, Lu N, Cheng G. Sci Signal 11 (2018)
  52. Tankyrase regulates epithelial lumen formation via suppression of Rab11 GEFs. Chandrakumar AA, Coyaud É, Marshall CB, Ikura M, Raught B, Rottapel R. J Cell Biol 220 e202008037 (2021)
  53. Temporal dynamics of base excision/single-strand break repair protein complex assembly/disassembly are modulated by the PARP/NAD+/SIRT6 axis. Koczor CA, Saville KM, Andrews JF, Clark J, Fang Q, Li J, Al-Rahahleh RQ, Ibrahim M, McClellan S, Makarov MV, Migaud ME, Sobol RW. Cell Rep 37 109917 (2021)
  54. Updated protein domain annotation of the PARP protein family sheds new light on biological function. Suskiewicz MJ, Munnur D, Strømland Ø, Yang JC, Easton LE, Chatrin C, Zhu K, Baretić D, Goffinont S, Schuller M, Wu WF, Elkins JM, Ahel D, Sanyal S, Neuhaus D, Ahel I. Nucleic Acids Res 51 8217-8236 (2023)
  55. Why structure and chain length matter: on the biological significance underlying the structural heterogeneity of poly(ADP-ribose). Reber JM, Mangerich A. Nucleic Acids Res 49 8432-8448 (2021)
  56. Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining. Singh JK, Smith R, Rother MB, de Groot AJL, Wiegant WW, Vreeken K, D'Augustin O, Kim RQ, Qian H, Krawczyk PM, González-Prieto R, Vertegaal ACO, Lamers M, Huet S, van Attikum H. Nat Commun 12 6560 (2021)
  57. Identification of PARP-7 substrates reveals a role for MARylation in microtubule control in ovarian cancer cells. Palavalli Parsons LH, Challa S, Gibson BA, Nandu T, Stokes MS, Huang D, Lea JS, Kraus WL. Elife 10 (2021)
  58. PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response. Aberle L, Krüger A, Reber JM, Lippmann M, Hufnagel M, Schmalz M, Trussina IREA, Schlesiger S, Zubel T, Schütz K, Marx A, Hartwig A, Ferrando-May E, Bürkle A, Mangerich A. Nucleic Acids Res 48 10015-10033 (2020)
  59. Poly(ADP-ribose)-dependent chromatin unfolding facilitates the association of DNA-binding proteins with DNA at sites of damage. Smith R, Lebeaupin T, Juhász S, Chapuis C, D'Augustin O, Dutertre S, Burkovics P, Biertümpfel C, Timinszky G, Huet S. Nucleic Acids Res. 47 11250-11267 (2019)
  60. Rac GTPase activating protein 1 promotes gallbladder cancer via binding DNA ligase 3 to reduce apoptosis. Bian R, Dang W, Song X, Liu L, Jiang C, Yang Y, Li Y, Li L, Li X, Hu Y, Bao R, Liu Y. Int J Biol Sci 17 2167-2180 (2021)
  61. Structural basis for tankyrase-RNF146 interaction reveals noncanonical tankyrase-binding motifs. DaRosa PA, Klevit RE, Xu W. Protein Sci. 27 1057-1067 (2018)
  62. Tankyrase-mediated ADP-ribosylation is a regulator of TNF-induced death. Liu L, Sandow JJ, Leslie Pedrioli DM, Samson AL, Silke N, Kratina T, Ambrose RL, Doerflinger M, Hu Z, Morrish E, Chau D, Kueh AJ, Fitzibbon C, Pellegrini M, Pearson JS, Hottiger MO, Webb AI, Lalaoui N, Silke J. Sci Adv 8 eabh2332 (2022)
  63. The PARP1-Siah1 Axis Controls HIV-1 Transcription and Expression of Siah1 Substrates. Yu D, Liu R, Yang G, Zhou Q. Cell Rep 23 3741-3749 (2018)
  64. The Ubiquitin Ligase TRIP12 Limits PARP1 Trapping and Constrains PARP Inhibitor Efficiency. Gatti M, Imhof R, Huang Q, Baudis M, Altmeyer M. Cell Rep 32 107985 (2020)
  65. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel MJ, Poirier GG, Masson JY. NAR Cancer 5 zcad043 (2023)
  66. A Fluorescence Polarization Assay for Macrodomains Facilitates the Identification of Potent Inhibitors of the SARS-CoV-2 Macrodomain. Anmangandla A, Jana S, Peng K, Wallace SD, Bagde SR, Drown BS, Xu J, Hergenrother PJ, Fromme JC, Lin H. ACS Chem Biol 18 1200-1207 (2023)
  67. A macrodomain-linked immunosorbent assay (MLISA) for mono-ADP-ribosyltransferases. Chen J, Lam AT, Zhang Y. Anal. Biochem. 543 132-139 (2018)
  68. ADP-ribose-specific chromatin-affinity purification for investigating genome-wide or locus-specific chromatin ADP-ribosylation. Bisceglie L, Bartolomei G, Hottiger MO. Nat Protoc 12 1951-1961 (2017)
  69. ADPr-ChAP: Mapping ADP-Ribosylation onto the Genome. McPherson RL, Leung AKL. Mol. Cell 61 327-328 (2016)
  70. An Evolutionary Perspective on the Origin, Conservation and Binding Partner Acquisition of Tankyrases. Sowa ST, Bosetti C, Galera-Prat A, Johnson MS, Lehtiö L. Biomolecules 12 1688 (2022)
  71. DELTEX2 C-terminal domain recognizes and recruits ADP-ribosylated proteins for ubiquitination. Ahmed SF, Buetow L, Gabrielsen M, Lilla S, Chatrin C, Sibbet GJ, Zanivan S, Huang DT. Sci Adv 6 (2020)
  72. Development and characterization of new tools for detecting poly(ADP-ribose) in vitro and in vivo. Challa S, Ryu KW, Whitaker AL, Abshier JC, Camacho CV, Kraus WL. Elife 11 e72464 (2022)
  73. Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro. Lin KY, Huang D, Kraus WL. Methods Mol. Biol. 1813 91-108 (2018)
  74. Genetically Encoded Fluorescent Sensor for Poly-ADP-Ribose. Serebrovskaya EO, Podvalnaya NM, Dudenkova VV, Efremova AS, Gurskaya NG, Gorbachev DA, Luzhin AV, Kantidze OL, Zagaynova EV, Shram SI, Lukyanov KA. Int J Mol Sci 21 (2020)
  75. HPF1-dependent histone ADP-ribosylation triggers chromatin relaxation to promote the recruitment of repair factors at sites of DNA damage. Smith R, Zentout S, Rother M, Bigot N, Chapuis C, Mihuț A, Zobel FF, Ahel I, van Attikum H, Timinszky G, Huet S. Nat Struct Mol Biol (2023)
  76. Identification of regulators of poly-ADP-ribose polymerase inhibitor response through complementary CRISPR knockout and activation screens. Clements KE, Schleicher EM, Thakar T, Hale A, Dhoonmoon A, Tolman NJ, Sharma A, Liang X, Imamura Kawasawa Y, Nicolae CM, Wang HG, De S, Moldovan GL. Nat Commun 11 6118 (2020)
  77. Multiple E3 ligases control tankyrase stability and function. Perrard J, Smith S. Nat Commun 14 7208 (2023)
  78. Nutlin-3a suppresses poly (ADP-ribose) polymerase 1 by mechanisms different from conventional PARP1 suppressors in a human breast cancer cell line. Kobayashi M, Ishizaki Y, Owaki M, Matsumoto Y, Kakiyama Y, Hoshino S, Tagawa R, Sudo Y, Okita N, Akimoto K, Higami Y. Oncotarget 11 1653-1665 (2020)
  79. Poly(ADP-Ribosyl) Code Functions. Maluchenko NV, Koshkina DO, Feofanov AV, Studitsky VM, Kirpichnikov MP. Acta Naturae 13 58-69 (2021)
  80. Poly(ADP-ribose)-binding protein RCD1 is a plant PARylation reader regulated by Photoregulatory Protein Kinases. Vainonen JP, Gossens R, Krasensky-Wrzaczek J, De Masi R, Danciu I, Puukko T, Battchikova N, Jonak C, Wirthmueller L, Wrzaczek M, Shapiguzov A, Kangasjärvi J. Commun Biol 6 429 (2023)
  81. Quantitative Analysis of Nuclear Poly(ADP-Ribose) Dynamics in Response to Laser-Induced DNA Damage. Koczor CA, Saville KM, Al-Rahahleh RQ, Andrews JF, Li J, Sobol RW. Methods Mol Biol 2609 43-59 (2023)
  82. Sevoflurane Exposure Induces Neuronal Cell Parthanatos Initiated by DNA Damage in the Developing Brain via an Increase of Intracellular Reactive Oxygen Species. Piao M, Wang Y, Liu N, Wang X, Chen R, Qin J, Ge P, Feng C. Front Cell Neurosci 14 583782 (2020)
  83. Sjögren syndrome/scleroderma autoantigen 1 is a direct Tankyrase binding partner in cancer cells. Perdreau-Dahl H, Progida C, Barfeld SJ, Guldsten H, Thiede B, Arntzen M, Bakke O, Mills IG, Krauss S, Morth JP. Commun Biol 3 123 (2020)
  84. Solenoid architecture of HUWE1 contributes to ligase activity and substrate recognition. Hunkeler M, Jin CY, Ma MW, Monda JK, Overwijn D, Bennett EJ, Fischer ES. Mol Cell 81 3468-3480.e7 (2021)
  85. Structural and biochemical evidence supporting poly ADP-ribosylation in the bacterium Deinococcus radiodurans. Cho CC, Chien CY, Chiu YC, Lin MH, Hsu CH. Nat Commun 10 1491 (2019)
  86. Structural features of the Notch ankyrin domain-Deltex WWE2 domain heterodimer determined by NMR spectroscopy and functional implications. Carter AA, Ramsey KM, Hatem CL, Sherry KP, Majumdar A, Barrick D. Structure 31 584-594.e5 (2023)
  87. Structurally distinct PARP7 inhibitors provide new insights into the function of PARP7 in regulating nucleic acid-sensing and IFN-β signaling. Sanderson DJ, Rodriguez KM, Bejan DS, Olafsen NE, Bohn ID, Kojic A, Sundalam S, Siordia IR, Duell AK, Deng N, Schultz C, Grant DM, Matthews J, Cohen MS. Cell Chem Biol 30 43-54.e8 (2023)
  88. Switch-like compaction of poly(ADP-ribose) upon cation binding. Badiee M, Kenet AL, Ganser LR, Paul T, Myong S, Leung AKL. Proc Natl Acad Sci U S A 120 e2215068120 (2023)
  89. Transcriptome screening identifies TIPARP as an antiviral host factor against the Getah virus. Jiao H, Yan Z, Zhai X, Yang Y, Wang N, Li X, Jiang Z, Su S. J Virol e0059123 (2023)
  90. USP39 promotes non-homologous end-joining repair by poly(ADP-ribose)-induced liquid demixing. Kim JJ, Lee SY, Hwang Y, Kim S, Chung JM, Park S, Yoon J, Yun H, Ji JH, Chae S, Cho H, Kim CG, Dawson TM, Kim H, Dawson VL, Kang HC. Nucleic Acids Res 49 11083-11102 (2021)