3vb5 Citations

Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases.

OpenAccess logo Eur J Med Chem 59 1-6 (2013)
Related entries: 3vb3, 3vb4, 3vb6, 3vb7

Cited: 46 times
EuropePMC logo PMID: 23202846

Abstract

Coronaviral infection is associated with up to 5% of respiratory tract diseases. The 3C-like protease (3CL(pro)) of coronaviruses is required for proteolytic processing of polyproteins and viral replication, and is a promising target for the development of drugs against coronaviral infection. We designed and synthesized four nitrile-based peptidomimetic inhibitors with different N-terminal protective groups and different peptide length, and examined their inhibitory effect on the in-vitro enzymatic activity of 3CL(pro) of severe-acute-respiratory-syndrome-coronavirus. The IC(50) values of the inhibitors were in the range of 4.6-49 μM, demonstrating that the nitrile warhead can effectively inactivate the 3CL(pro) autocleavage process. The best inhibitor, Cbz-AVLQ-CN with an N-terminal carbobenzyloxy group, was ~10x more potent than the other inhibitors tested. Crystal structures of the enzyme-inhibitor complexes showed that the nitrile warhead inhibits 3CL(pro) by forming a covalent bond with the catalytic Cys145 residue, while the AVLQ peptide forms a number of favourable interactions with the S1-S4 substrate-binding pockets. We have further showed that the peptidomimetic inhibitor, Cbz-AVLQ-CN, has broad-spectrum inhibition against 3CL(pro) from human coronavirus strains 229E, NL63, OC43, HKU1, and infectious bronchitis virus, with IC(50) values ranging from 1.3 to 3.7 μM, but no detectable inhibition against caspase-3. In summary, we have shown that the nitrile-based peptidomimetic inhibitors are effective against 3CL(pro), and they inhibit 3CL(pro) from a broad range of coronaviruses. Our results provide further insights into the future design of drugs that could serve as a first line defence against coronaviral infection.

Reviews - 3vb5 mentioned but not cited (5)

  1. What coronavirus 3C-like protease tells us: From structure, substrate selectivity, to inhibitor design. Xiong M, Su H, Zhao W, Xie H, Shao Q, Xu Y. Med Res Rev 41 1965-1998 (2021)
  2. Emerging strategies on in silico drug development against COVID-19: challenges and opportunities. Yadav M, Dhagat S, Eswari JS. Eur J Pharm Sci 155 105522 (2020)
  3. Design and Evaluation of Anti-SARS-Coronavirus Agents Based on Molecular Interactions with the Viral Protease. Akaji K, Konno H. Molecules 25 E3920 (2020)
  4. Druggable targets from coronaviruses for designing new antiviral drugs. Silva LR, da Silva Santos-Júnior PF, de Andrade Brandão J, Anderson L, Bassi ÊJ, Xavier de Araújo-Júnior J, Cardoso SH, da Silva-Júnior EF. Bioorg Med Chem 28 115745 (2020)
  5. Synthetic and computational efforts towards the development of peptidomimetics and small-molecule SARS-CoV 3CLpro inhibitors. Paul A, Sarkar A, Saha S, Maji A, Janah P, Kumar Maity T. Bioorg Med Chem 46 116301 (2021)

Articles - 3vb5 mentioned but not cited (4)

  1. Conserved interactions required for inhibition of the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Shitrit A, Zaidman D, Kalid O, Bloch I, Doron D, Yarnizky T, Buch I, Segev I, Ben-Zeev E, Segev E, Kobiler O. Sci Rep 10 20808 (2020)
  2. A computational drug repurposing approach in identifying the cephalosporin antibiotic and anti-hepatitis C drug derivatives for COVID-19 treatment. Kumar R, Kumar V, Lee KW. Comput Biol Med 130 104186 (2021)
  3. Knowledge-based structural models of SARS-CoV-2 proteins and their complexes with potential drugs. Hijikata A, Shionyu-Mitsuyama C, Nakae S, Shionyu M, Ota M, Kanaya S, Shirai T. FEBS Lett 594 1960-1973 (2020)
  4. Protein structural heterogeneity: A hypothesis for the basis of proteolytic recognition by the main protease of SARS-CoV and SARS-CoV-2. Behnam MAM. Biochimie 182 177-184 (2021)


Reviews citing this publication (17)

  1. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. Hilgenfeld R. FEBS J 281 4085-4096 (2014)
  2. Atlas of coronavirus replicase structure. Neuman BW, Chamberlain P, Bowden F, Joseph J. Virus Res 194 49-66 (2014)
  3. Perspectives on SARS-CoV-2 Main Protease Inhibitors. Gao K, Wang R, Chen J, Tepe JJ, Huang F, Wei GW. J Med Chem 64 16922-16955 (2021)
  4. The history, mechanism, and perspectives of nirmatrelvir (PF-07321332): an orally bioavailable main protease inhibitor used in combination with ritonavir to reduce COVID-19-related hospitalizations. Joyce RP, Hu VW, Wang J. Med Chem Res 31 1637-1646 (2022)
  5. Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Gao S, Huang T, Song L, Xu S, Cheng Y, Cherukupalli S, Kang D, Zhao T, Sun L, Zhang J, Zhan P, Liu X. Acta Pharm Sin B 12 581-599 (2022)
  6. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Li X, Song Y. Eur J Med Chem 260 115772 (2023)
  7. A Patent Review on SARS Coronavirus Main Protease (3CLpro ) Inhibitors. Chia CSB, Xu W, Shuyi Ng P. ChemMedChem 17 e202100576 (2022)
  8. Viral proteases as therapeutic targets. Majerová T, Konvalinka J. Mol Aspects Med 88 101159 (2022)
  9. Therapeutic approaches against coronaviruses acute respiratory syndrome. Servidio C, Stellacci F. Pharmacol Res Perspect 9 e00691 (2021)
  10. Potential "biopeptidal" therapeutics for severe respiratory syndrome coronaviruses: a review of antiviral peptides, viral mechanisms, and prospective needs. Ashaolu TJ, Nawaz A, Walayat N, Khalifa I. Appl Microbiol Biotechnol 105 3457-3470 (2021)
  11. Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives. Citarella A, Dimasi A, Moi D, Passarella D, Scala A, Piperno A, Micale N. Biomolecules 13 1339 (2023)
  12. On the origins of SARS-CoV-2 main protease inhibitors. Janin YL. RSC Med Chem 15 81-118 (2024)
  13. Exploring peptide studies related to SARS-CoV to accelerate the development of novel therapeutic and prophylactic solutions against COVID-19. Madhavan M, AlOmair LA, Ks D, Mustafa S. J Infect Public Health 14 1106-1119 (2021)
  14. P1 Glutamine isosteres in the design of inhibitors of 3C/3CL protease of human viruses of the Pisoniviricetes class. Stubbing LA, Hubert JG, Bell-Tyrer J, Hermant YO, Yang SH, McSweeney AM, McKenzie-Goldsmith GM, Ward VK, Furkert DP, Brimble MA. RSC Chem Biol 4 533-547 (2023)
  15. Fixing the Achilles Heel of Pfizer's Paxlovid for COVID-19 Treatment. Brewitz L, Schofield CJ. J Med Chem 67 11656-11661 (2024)
  16. Inhibitors of SARS-CoV-2 Main Protease (Mpro) as Anti-Coronavirus Agents. Zagórska A, Czopek A, Fryc M, Jończyk J. Biomolecules 14 797 (2024)
  17. Progress in Research on Inhibitors Targeting SARS-CoV-2 Main Protease (Mpro). Yang Y, Luo YD, Zhang CB, Xiang Y, Bai XY, Zhang D, Fu ZY, Hao RB, Liu XL. ACS Omega 9 34196-34219 (2024)

Articles citing this publication (20)

  1. Drug targets for corona virus: A systematic review. Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, Kumar S, Bhattacharyya A, Kumar H, Bansal S, Medhi B. Indian J Pharmacol 52 56-65 (2020)
  2. Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir. Carbajo-Lozoya J, Ma-Lauer Y, Malešević M, Theuerkorn M, Kahlert V, Prell E, von Brunn B, Muth D, Baumert TF, Drosten C, Fischer G, von Brunn A. Virus Res 184 44-53 (2014)
  3. Structure-Based Optimization of ML300-Derived, Noncovalent Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus 3CL Protease (SARS-CoV-2 3CLpro). Han SH, Goins CM, Arya T, Shin WJ, Maw J, Hooper A, Sonawane DP, Porter MR, Bannister BE, Crouch RD, Lindsey AA, Lakatos G, Martinez SR, Alvarado J, Akers WS, Wang NS, Jung JU, Macdonald JD, Stauffer SR. J Med Chem 65 2880-2904 (2022)
  4. Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease. Kneller DW, Li H, Phillips G, Weiss KL, Zhang Q, Arnould MA, Jonsson CB, Surendranathan S, Parvathareddy J, Blakeley MP, Coates L, Louis JM, Bonnesen PV, Kovalevsky A. Nat Commun 13 2268 (2022)
  5. Coronaviruses resistant to a 3C-like protease inhibitor are attenuated for replication and pathogenesis, revealing a low genetic barrier but high fitness cost of resistance. Deng X, StJohn SE, Osswald HL, O'Brien A, Banach BS, Sleeman K, Ghosh AK, Mesecar AD, Baker SC. J Virol 88 11886-11898 (2014)
  6. Fused-ring structure of decahydroisoquinolin as a novel scaffold for SARS 3CL protease inhibitors. Shimamoto Y, Hattori Y, Kobayashi K, Teruya K, Sanjoh A, Nakagawa A, Yamashita E, Akaji K. Bioorg Med Chem 23 876-890 (2015)
  7. Synthesis, modification and docking studies of 5-sulfonyl isatin derivatives as SARS-CoV 3C-like protease inhibitors. Liu W, Zhu HM, Niu GJ, Shi EZ, Chen J, Sun B, Chen WQ, Zhou HG, Yang C. Bioorg Med Chem 22 292-302 (2014)
  8. Simeprevir Potently Suppresses SARS-CoV-2 Replication and Synergizes with Remdesivir. Lo HS, Hui KPY, Lai HM, He X, Khan KS, Kaur S, Huang J, Li Z, Chan AKN, Cheung HH, Ng KC, Ho JCW, Chen YW, Ma B, Cheung PM, Shin D, Wang K, Lee MH, Selisko B, Eydoux C, Guillemot JC, Canard B, Wu KP, Liang PH, Dikic I, Zuo Z, Chan FKL, Hui DSC, Mok VCT, Wong KB, Mok CKP, Ko H, Aik WS, Chan MCW, Ng WL. ACS Cent Sci 7 792-802 (2021)
  9. Repurposing therapeutics for COVID-19: Rapid prediction of commercially available drugs through machine learning and docking. Mohapatra S, Nath P, Chatterjee M, Das N, Kalita D, Roy P, Satapathi S. PLoS One 15 e0241543 (2020)
  10. Famotidine inhibits toll-like receptor 3-mediated inflammatory signaling in SARS-CoV-2 infection. Mukherjee R, Bhattacharya A, Bojkova D, Mehdipour AR, Shin D, Khan KS, Hei-Yin Cheung H, Wong KB, Ng WL, Cinatl J, Geurink PP, van der Heden van Noort GJ, Rajalingam K, Ciesek S, Hummer G, Dikic I. J Biol Chem 297 100925 (2021)
  11. X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation. Lee J, Kenward C, Worrall LJ, Vuckovic M, Gentile F, Ton AT, Ng M, Cherkasov A, Strynadka NCJ, Paetzel M. Nat Commun 13 5196 (2022)
  12. Peptidomimetic nitrile warheads as SARS-CoV-2 3CL protease inhibitors. Bai B, Arutyunova E, Khan MB, Lu J, Joyce MA, Saffran HA, Shields JA, Kandadai AS, Belovodskiy A, Hena M, Vuong W, Lamer T, Young HS, Vederas JC, Tyrrell DL, Lemieux MJ, Nieman JA. RSC Med Chem 12 1722-1730 (2021)
  13. A Warhead Substitution Study on the Coronavirus Main Protease Inhibitor Nirmatrelvir. Vankadara S, Dawson MD, Fong JY, Oh QY, Ang QA, Liu B, Chang HY, Koh J, Koh X, Tan QW, Joy J, Chia CSB. ACS Med Chem Lett 13 1345-1350 (2022)
  14. Alkyne Derivatives of SARS-CoV-2 Main Protease Inhibitors Including Nirmatrelvir Inhibit by Reacting Covalently with the Nucleophilic Cysteine. Brewitz L, Dumjahn L, Zhao Y, Owen CD, Laidlaw SM, Malla TR, Nguyen D, Lukacik P, Salah E, Crawshaw AD, Warren AJ, Trincao J, Strain-Damerell C, Carroll MW, Walsh MA, Schofield CJ. J Med Chem 66 2663-2680 (2023)
  15. Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E. Zhu Y, Scholle F, Kisthardt SC, Xie DY. Virology 571 21-33 (2022)
  16. Repurposing Low-Molecular-Weight Drugs against the Main Protease of Severe Acute Respiratory Syndrome Coronavirus 2. Gao J, Zhang L, Liu X, Li F, Ma R, Zhu Z, Zhang J, Wu J, Shi Y, Pan Y, Ge Y, Ruan K. J Phys Chem Lett 11 7267-7272 (2020)
  17. Acriflavine and proflavine hemisulfate as potential antivirals by targeting Mpro. Liang J, Zheng M, Xu W, Chen Y, Tang P, Wu G, Zou P, Li H, Chen L. Bioorg Chem 129 106185 (2022)
  18. Structural basis for the development of SARS 3CL protease inhibitors from a peptide mimic to an aza-decaline scaffold. Teruya K, Hattori Y, Shimamoto Y, Kobayashi K, Sanjoh A, Nakagawa A, Yamashita E, Akaji K. Biopolymers 106 391-403 (2016)
  19. Emerging Technologies for the Treatment of COVID-19. Aghamollaei H, Sarvestani R, Bakherad H, Zare H, Guest PC, Ranjbar R, Sahebkar A. Adv Exp Med Biol 1321 81-96 (2021)
  20. Discovery of inhibitors against SARS-CoV-2 main protease using fragment-based drug design. Shao HP, Wang TH, Zhai HL, Bi KX, Zhao BQ. Chem Biol Interact 371 110352 (2023)