3zpq Citations

Biophysical fragment screening of the β1-adrenergic receptor: identification of high affinity arylpiperazine leads using structure-based drug design.

Abstract

Biophysical fragment screening of a thermostabilized β1-adrenergic receptor (β1AR) using surface plasmon resonance (SPR) enabled the identification of moderate affinity, high ligand efficiency (LE) arylpiperazine hits 7 and 8. Subsequent hit to lead follow-up confirmed the activity of the chemotype, and a structure-based design approach using protein-ligand crystal structures of the β1AR resulted in the identification of several fragments that bound with higher affinity, including indole 19 and quinoline 20. In the first example of GPCR crystallography with ligands derived from fragment screening, structures of the stabilized β1AR complexed with 19 and 20 were determined at resolutions of 2.8 and 2.7 Å, respectively.

Reviews - 3zpq mentioned but not cited (4)

  1. G protein-coupled receptors: structure- and function-based drug discovery. Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J, Liu Q, Zhao S, Shui W, Jiang Y, Wang MW. Signal Transduct Target Ther 6 7 (2021)
  2. Harnessing Ion-Binding Sites for GPCR Pharmacology. Zarzycka B, Zaidi SA, Roth BL, Katritch V. Pharmacol Rev 71 571-595 (2019)
  3. Structural Studies of G Protein-Coupled Receptors. Zhang D, Zhao Q, Wu B. Mol Cells 38 836-842 (2015)
  4. Recent Insights from Molecular Dynamics Simulations for G Protein-Coupled Receptor Drug Discovery. Zou Y, Ewalt J, Ng HL. Int J Mol Sci 20 E4237 (2019)

Articles - 3zpq mentioned but not cited (12)

  1. Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs. McCorvy JD, Butler KV, Kelly B, Rechsteiner K, Karpiak J, Betz RM, Kormos BL, Shoichet BK, Dror RO, Jin J, Roth BL. Nat Chem Biol 14 126-134 (2018)
  2. Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. Da C, Kireev D. J Chem Inf Model 54 2555-2561 (2014)
  3. Predicting Binding Affinities for GPCR Ligands Using Free-Energy Perturbation. Lenselink EB, Louvel J, Forti AF, van Veldhoven JPD, de Vries H, Mulder-Krieger T, McRobb FM, Negri A, Goose J, Abel R, van Vlijmen HWT, Wang L, Harder E, Sherman W, IJzerman AP, Beuming T. ACS Omega 1 293-304 (2016)
  4. Intracellular sphingosine kinase 2-derived sphingosine-1-phosphate mediates epidermal growth factor-induced ezrin-radixin-moesin phosphorylation and cancer cell invasion. Adada MM, Canals D, Jeong N, Kelkar AD, Hernandez-Corbacho M, Pulkoski-Gross MJ, Donaldson JC, Hannun YA, Obeid LM. FASEB J 29 4654-4669 (2015)
  5. G protein-coupled receptors: the evolution of structural insight. Gacasan SB, Baker DL, Parrill AL. AIMS Biophys 4 491-527 (2017)
  6. GPCR structure, function, drug discovery and crystallography: report from Academia-Industry International Conference (UK Royal Society) Chicheley Hall, 1-2 September 2014. Heifetz A, Schertler GF, Seifert R, Tate CG, Sexton PM, Gurevich VV, Fourmy D, Cherezov V, Marshall FH, Storer RI, Moraes I, Tikhonova IG, Tautermann CS, Hunt P, Ceska T, Hodgson S, Bodkin MJ, Singh S, Law RJ, Biggin PC. Naunyn Schmiedebergs Arch Pharmacol 388 883-903 (2015)
  7. Structural insights into ligand recognition and activation of the melanocortin-4 receptor. Zhang H, Chen LN, Yang D, Mao C, Shen Q, Feng W, Shen DD, Dai A, Xie S, Zhou Y, Qin J, Sun JP, Scharf DH, Hou T, Zhou T, Wang MW, Zhang Y. Cell Res 31 1163-1175 (2021)
  8. In Silico Studies Targeting G-protein Coupled Receptors for Drug Research Against Parkinson's Disease. Lemos A, Melo R, Preto AJ, Almeida JG, Moreira IS, Dias Soeiro Cordeiro MN. Curr Neuropharmacol 16 786-848 (2018)
  9. A benchmark study of loop modeling methods applied to G protein-coupled receptors. Wink LH, Baker DL, Cole JA, Parrill AL. J Comput Aided Mol Des 33 573-595 (2019)
  10. The Novel Application of Geometric Morphometrics with Principal Component Analysis to Existing G Protein-Coupled Receptor (GPCR) Structures. Wiseman DN, Samra N, Román Lara MM, Penrice SC, Goddard AD. Pharmaceuticals (Basel) 14 953 (2021)
  11. Three-dimensional descriptors for aminergic GPCRs: dependence on docking conformation and crystal structure. Jastrzębski S, Sieradzki I, Leśniak D, Tabor J, Bojarski AJ, Podlewska S. Mol Divers 23 603-613 (2019)
  12. Ligand Binding Affinity Prediction for Membrane Proteins with Alchemical Free Energy Calculation Methods. Zhang H, Im W. J Chem Inf Model 64 5671-5679 (2024)


Reviews citing this publication (26)

  1. Twenty years on: the impact of fragments on drug discovery. Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H. Nat Rev Drug Discov 15 605-619 (2016)
  2. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Patching SG. Biochim Biophys Acta 1838 43-55 (2014)
  3. Biophysics in drug discovery: impact, challenges and opportunities. Renaud JP, Chung CW, Danielson UH, Egner U, Hennig M, Hubbard RE, Nar H. Nat Rev Drug Discov 15 679-698 (2016)
  4. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes? Róg T, Vattulainen I. Chem Phys Lipids 184 82-104 (2014)
  5. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Olaru A, Bala C, Jaffrezic-Renault N, Aboul-Enein HY. Crit Rev Anal Chem 45 97-105 (2015)
  6. Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Schuetz DA, de Witte WEA, Wong YC, Knasmueller B, Richter L, Kokh DB, Sadiq SK, Bosma R, Nederpelt I, Heitman LH, Segala E, Amaral M, Guo D, Andres D, Georgi V, Stoddart LA, Hill S, Cooke RM, De Graaf C, Leurs R, Frech M, Wade RC, de Lange ECM, IJzerman AP, Müller-Fahrnow A, Ecker GF. Drug Discov Today 22 896-911 (2017)
  7. What can crystal structures of aminergic receptors tell us about designing subtype-selective ligands? Michino M, Beuming T, Donthamsetti P, Newman AH, Javitch JA, Shi L. Pharmacol Rev 67 198-213 (2015)
  8. New paradigms in GPCR drug discovery. Jacobson KA. Biochem Pharmacol 98 541-555 (2015)
  9. Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics Approaches: Impact on Rational Drug Design. Basith S, Cui M, Macalino SJY, Park J, Clavio NAB, Kang S, Choi S. Front Pharmacol 9 128 (2018)
  10. Structural features of the G-protein/GPCR interactions. Moreira IS. Biochim Biophys Acta 1840 16-33 (2014)
  11. How Can Mutations Thermostabilize G-Protein-Coupled Receptors? Vaidehi N, Grisshammer R, Tate CG. Trends Pharmacol Sci 37 37-46 (2016)
  12. GPCR crystal structures: Medicinal chemistry in the pocket. Shonberg J, Kling RC, Gmeiner P, Löber S. Bioorg Med Chem 23 3880-3906 (2015)
  13. Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Milić D, Veprintsev DB. Front Pharmacol 6 66 (2015)
  14. Ligands of Adrenergic Receptors: A Structural Point of View. Wu Y, Zeng L, Zhao S. Biomolecules 11 936 (2021)
  15. Successful generation of structural information for fragment-based drug discovery. Öster L, Tapani S, Xue Y, Käck H. Drug Discov Today 20 1104-1111 (2015)
  16. Structure-based and fragment-based GPCR drug discovery. Andrews SP, Brown GA, Christopher JA. ChemMedChem 9 256-275 (2014)
  17. Accurate determination of protein:ligand standard binding free energies from molecular dynamics simulations. Fu H, Chen H, Blazhynska M, Goulard Coderc de Lacam E, Szczepaniak F, Pavlova A, Shao X, Gumbart JC, Dehez F, Roux B, Cai W, Chipot C. Nat Protoc 17 1114-1141 (2022)
  18. Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors. Chaturvedi M, Schilling J, Beautrait A, Bouvier M, Benovic JL, Shukla AK. Trends Biochem Sci 43 533-546 (2018)
  19. Developments in SPR Fragment Screening. Chavanieu A, Pugnière M. Expert Opin Drug Discov 11 489-499 (2016)
  20. Discovery of GPCR ligands for probing signal transduction pathways. Brogi S, Tafi A, Désaubry L, Nebigil CG. Front Pharmacol 5 255 (2014)
  21. Structures of mGluRs shed light on the challenges of drug development of allosteric modulators. Bennett KA, Doré AS, Christopher JA, Weiss DR, Marshall FH. Curr Opin Pharmacol 20 1-7 (2015)
  22. Allosteric modulation of G protein-coupled receptors by amiloride and its derivatives. Perspectives for drug discovery? Massink A, Amelia T, Karamychev A, IJzerman AP. Med Res Rev 40 683-708 (2020)
  23. Allosteric Modulation of Adenosine A2A Receptors as a New Therapeutic Avenue. Korkutata M, Agrawal L, Lazarus M. Int J Mol Sci 23 2101 (2022)
  24. The use of conformationally thermostabilised GPCRs in drug discovery: application to fragment, structure and biophysical techniques. Tehan BG, Christopher JA. Curr Opin Pharmacol 30 8-13 (2016)
  25. Engineering of Challenging G Protein-Coupled Receptors for Structure Determination and Biophysical Studies. Waltenspühl Y, Ehrenmann J, Klenk C, Plückthun A. Molecules 26 1465 (2021)
  26. IUPHAR themed review: Opioid efficacy, bias, and selectivity. Ramos-Gonzalez N, Paul B, Majumdar S. Pharmacol Res 197 106961 (2023)

Articles citing this publication (37)

  1. Allosteric sodium in class A GPCR signaling. Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC. Trends Biochem Sci 39 233-244 (2014)
  2. The role of a sodium ion binding site in the allosteric modulation of the A(2A) adenosine G protein-coupled receptor. Gutiérrez-de-Terán H, Massink A, Rodríguez D, Liu W, Han GW, Joseph JS, Katritch I, Heitman LH, Xia L, Ijzerman AP, Cherezov V, Katritch V, Stevens RC. Structure 21 2175-2185 (2013)
  3. A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural studies. Magnani F, Serrano-Vega MJ, Shibata Y, Abdul-Hussein S, Lebon G, Miller-Gallacher J, Singhal A, Strege A, Thomas JA, Tate CG. Nat Protoc 11 1554-1571 (2016)
  4. Sodium ion binding pocket mutations and adenosine A2A receptor function. Massink A, Gutiérrez-de-Terán H, Lenselink EB, Ortiz Zacarías NV, Xia L, Heitman LH, Katritch V, Stevens RC, IJzerman AP. Mol Pharmacol 87 305-313 (2015)
  5. Intracellular Transfer of Na+ in an Active-State G-Protein-Coupled Receptor. Vickery ON, Carvalheda CA, Zaidi SA, Pisliakov AV, Katritch V, Zachariae U. Structure 26 171-180.e2 (2018)
  6. Towards high throughput GPCR crystallography: In Meso soaking of Adenosine A2A Receptor crystals. Rucktooa P, Cheng RKY, Segala E, Geng T, Errey JC, Brown GA, Cooke RM, Marshall FH, Doré AS. Sci Rep 8 41 (2018)
  7. Function-specific virtual screening for GPCR ligands using a combined scoring method. Kooistra AJ, Vischer HF, McNaught-Flores D, Leurs R, de Esch IJ, de Graaf C. Sci Rep 6 28288 (2016)
  8. The Role of Cholesterol in Driving IAPP-Membrane Interactions. Sciacca MF, Lolicato F, Di Mauro G, Milardi D, D'Urso L, Satriano C, Ramamoorthy A, La Rosa C. Biophys J 111 140-151 (2016)
  9. What can we learn from molecular dynamics simulations for GPCR drug design? Tautermann CS, Seeliger D, Kriegl JM. Comput Struct Biotechnol J 13 111-121 (2015)
  10. Computational design of thermostabilizing point mutations for G protein-coupled receptors. Popov P, Peng Y, Shen L, Stevens RC, Cherezov V, Liu ZJ, Katritch V. Elife 7 e34729 (2018)
  11. Increasing chemical space coverage by combining empirical and computational fragment screens. Barelier S, Eidam O, Fish I, Hollander J, Figaroa F, Nachane R, Irwin JJ, Shoichet BK, Siegal G. ACS Chem Biol 9 1528-1535 (2014)
  12. Discovery of β2 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor. Aristotelous T, Ahn S, Shukla AK, Gawron S, Sassano MF, Kahsai AW, Wingler LM, Zhu X, Tripathi-Shukla P, Huang XP, Riley J, Besnard J, Read KD, Roth BL, Gilbert IH, Hopkins AL, Lefkowitz RJ, Navratilova I. ACS Med Chem Lett 4 1005-1010 (2013)
  13. How well does cholesteryl hemisuccinate mimic cholesterol in saturated phospholipid bilayers? Kulig W, Tynkkynen J, Javanainen M, Manna M, Rog T, Vattulainen I, Jungwirth P. J Mol Model 20 2121 (2014)
  14. Fragment optimization for GPCRs by molecular dynamics free energy calculations: Probing druggable subpockets of the A 2A adenosine receptor binding site. Matricon P, Ranganathan A, Warnick E, Gao ZG, Rudling A, Lambertucci C, Marucci G, Ezzati A, Jaiteh M, Dal Ben D, Jacobson KA, Carlsson J. Sci Rep 7 6398 (2017)
  15. Improving the apo-state detergent stability of NTS1 with CHESS for pharmacological and structural studies. Scott DJ, Kummer L, Egloff P, Bathgate RA, Plückthun A. Biochim Biophys Acta 1838 2817-2824 (2014)
  16. Substrate deconstruction and the nonadditivity of enzyme recognition. Barelier S, Cummings JA, Rauwerdink AM, Hitchcock DS, Farelli JD, Almo SC, Raushel FM, Allen KN, Shoichet BK. J Am Chem Soc 136 7374-7382 (2014)
  17. Enabling STD-NMR fragment screening using stabilized native GPCR: A case study of adenosine receptor. Igonet S, Raingeval C, Cecon E, Pučić-Baković M, Lauc G, Cala O, Baranowski M, Perez J, Jockers R, Krimm I, Jawhari A. Sci Rep 8 8142 (2018)
  18. Exploration of the antagonist CP-376395 escape pathway for the corticotropin-releasing factor receptor 1 by random acceleration molecular dynamics simulations. Bai Q, Shi D, Zhang Y, Liu H, Yao X. Mol Biosyst 10 1958-1967 (2014)
  19. Weak-binding molecules are not drugs?-toward a systematic strategy for finding effective weak-binding drugs. Wang J, Guo Z, Fu Y, Wu Z, Huang C, Zheng C, Shar PA, Wang Z, Xiao W, Wang Y. Brief Bioinform 18 321-332 (2017)
  20. Anthocyanin rich extract of Brassica oleracea L. alleviates experimentally induced myocardial infarction. Jana S, Patel D, Patel S, Upadhyay K, Thadani J, Mandal R, Das S, Devkar R. PLoS One 12 e0182137 (2017)
  21. High-throughput identification of G protein-coupled receptor modulators through affinity mass spectrometry screening. Qin S, Meng M, Yang D, Bai W, Lu Y, Peng Y, Song G, Wu Y, Zhou Q, Zhao S, Huang X, McCorvy JD, Cai X, Dai A, Roth BL, Hanson MA, Liu ZJ, Wang MW, Stevens RC, Shui W. Chem Sci 9 3192-3199 (2018)
  22. Pharmacological Analysis and Structure Determination of 7-Methylcyanopindolol-Bound β1-Adrenergic Receptor. Sato T, Baker J, Warne T, Brown GA, Leslie AG, Congreve M, Tate CG. Mol Pharmacol 88 1024-1034 (2015)
  23. Biosensor-based affinities and binding kinetics of small molecule antagonists to the adenosine A(2A) receptor reconstituted in HDL like particles. Segala E, Errey JC, Fiez-Vandal C, Zhukov A, Cooke RM. FEBS Lett 589 1399-1405 (2015)
  24. A new crystal structure fragment-based pharmacophore method for G protein-coupled receptors. Fidom K, Isberg V, Hauser AS, Mordalski S, Lehto T, Bojarski AJ, Gloriam DE. Methods 71 104-112 (2015)
  25. Identification of Protein Palmitoylation Inhibitors from a Scaffold Ranking Library. Hamel LD, Lenhart BJ, Mitchell DA, Santos RG, Giulianotti MA, Deschenes RJ. Comb Chem High Throughput Screen 19 262-274 (2016)
  26. SPR-based fragment screening with neurotensin receptor 1 generates novel small molecule ligands. Huber S, Casagrande F, Hug MN, Wang L, Heine P, Kummer L, Plückthun A, Hennig M. PLoS One 12 e0175842 (2017)
  27. Cell-based and virtual fragment screening for adrenergic α2C receptor agonists. Szőllősi E, Bobok A, Kiss L, Vass M, Kurkó D, Kolok S, Visegrády A, Keserű GM. Bioorg Med Chem 23 3991-3999 (2015)
  28. Quantitative analysis of sterol-modulated monomer-dimer equilibrium of the β1-adrenergic receptor by DEER spectroscopy. Kubatova N, Schmidt T, Schwieters CD, Clore GM. Proc Natl Acad Sci U S A 120 e2221036120 (2023)
  29. Fluorine NMR-based screening on cell membrane extracts. Veronesi M, Romeo E, Lambruschini C, Piomelli D, Bandiera T, Scarpelli R, Garau G, Dalvit C. ChemMedChem 9 286-289 (2014)
  30. Functional Stability of the Human Kappa Opioid Receptor Reconstituted in Nanodiscs Revealed by a Time-Resolved Scintillation Proximity Assay. Hansen RW, Wang X, Golab A, Bornert O, Oswald C, Wagner R, Martinez KL. PLoS One 11 e0150658 (2016)
  31. N-{[2-(4-Phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides with dopamine D₂ and 5-Hydroxytryptamine 5HT(1A) activity: synthesis, testing, and molecular modeling. Sukalovic V, Bogdan AE, Tovilovic G, Ignjatovic D, Andric D, Kostic-Rajacic S, Soskic V. Arch Pharm (Weinheim) 346 708-717 (2013)
  32. Screening of β1- and β2-Adrenergic Receptor Modulators through Advanced Pharmacoinformatics and Machine Learning Approaches. Islam MA, Rallabandi VPS, Mohammed S, Srinivasan S, Natarajan S, Dudekula DB, Park J. Int J Mol Sci 22 11191 (2021)
  33. Synthesis and activity of newly designed aroxyalkyl or aroxyethoxyethyl derivatives of piperazine on the cardiovascular and the central nervous systems. Waszkielewicz AM, Kubacka M, Pańczyk K, Mogilski S, Siwek A, Głuch-Lutwin M, Gryboś A, Filipek B. Bioorg Med Chem Lett 26 5315-5321 (2016)
  34. GPCRs through the keyhole: the role of protein flexibility in ligand binding to β-adrenoceptors. Emtage AL, Mistry SN, Fischer PM, Kellam B, Laughton CA. J Biomol Struct Dyn 35 2604-2619 (2017)
  35. Insights on the role of boron containing moieties in the design of new potent and efficient agonists targeting the β2 adrenoceptor. Soriano-Ursúa MA, Arias-Montaño JA, Correa-Basurto J, Hernández-Martínez CF, López-Cabrera Y, Castillo-Hernández MC, Padilla-Martínez II, Trujillo-Ferrara JG. Bioorg Med Chem Lett 25 820-825 (2015)
  36. G Protein-Coupled Receptor-Ligand Pose and Functional Class Prediction. Szwabowski GL, Griffing M, Mugabe EJ, O'Malley D, Baker LN, Baker DL, Parrill AL. Int J Mol Sci 25 6876 (2024)
  37. Identification of a Novel Subtype-Selective α1B-Adrenoceptor Antagonist. Abdul-Ridha A, de Zhang LA, Betrie AH, Deluigi M, Vaid TM, Whitehead A, Zhang Y, Davis B, Harris R, Simmonite H, Hubbard RE, Gooley PR, Plückthun A, Bathgate RAD, Chalmers DK, Scott DJ. ACS Chem Neurosci 15 671-684 (2024)