3zs0 Citations

2-thioxanthines are mechanism-based inactivators of myeloperoxidase that block oxidative stress during inflammation.

Abstract

Myeloperoxidase (MPO) is a prime candidate for promoting oxidative stress during inflammation. This abundant enzyme of neutrophils uses hydrogen peroxide to oxidize chloride to highly reactive and toxic chlorine bleach. We have identified 2-thioxanthines as potent mechanism-based inactivators of MPO. Mass spectrometry and x-ray crystal structures revealed that these inhibitors become covalently attached to the heme prosthetic groups of the enzyme. We propose a mechanism whereby 2-thioxanthines are oxidized, and their incipient free radicals react with the heme groups of the enzyme before they can exit the active site. 2-Thioxanthines inhibited MPO in plasma and decreased protein chlorination in a mouse model of peritonitis. They slowed but did not prevent neutrophils from killing bacteria and were poor inhibitors of thyroid peroxidase. Our study shows that MPO is susceptible to the free radicals it generates, and this Achilles' heel of the enzyme can be exploited to block oxidative stress during inflammation.

Reviews citing this publication (21)

  1. Reactive Oxygen Species and Neutrophil Function. Winterbourn CC, Kettle AJ, Hampton MB. Annu Rev Biochem 85 765-792 (2016)
  2. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. J Leukoc Biol 93 185-198 (2013)
  3. Redox reactions and microbial killing in the neutrophil phagosome. Winterbourn CC, Kettle AJ. Antioxid Redox Signal 18 642-660 (2013)
  4. Oxidative stress and free radicals in COPD--implications and relevance for treatment. Domej W, Oettl K, Renner W. Int J Chron Obstruct Pulmon Dis 9 1207-1224 (2014)
  5. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Nussbaum C, Klinke A, Adam M, Baldus S, Sperandio M. Antioxid Redox Signal 18 692-713 (2013)
  6. Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids. Pattison DI, Davies MJ, Hawkins CL. Free Radic Res 46 975-995 (2012)
  7. Protein Posttranslational Modifications: Roles in Aging and Age-Related Disease. Santos AL, Lindner AB. Oxid Med Cell Longev 2017 5716409 (2017)
  8. Neutrophil-Mediated Regulation of Innate and Adaptive Immunity: The Role of Myeloperoxidase. Odobasic D, Kitching AR, Holdsworth SR. J Immunol Res 2016 2349817 (2016)
  9. Measuring chlorine bleach in biology and medicine. Kettle AJ, Albrett AM, Chapman AL, Dickerhof N, Forbes LV, Khalilova I, Turner R. Biochim Biophys Acta 1840 781-793 (2014)
  10. Pharmacology and Clinical Drug Candidates in Redox Medicine. Dao VT, Casas AI, Maghzal GJ, Seredenina T, Kaludercic N, Robledinos-Anton N, Di Lisa F, Stocker R, Ghezzi P, Jaquet V, Cuadrado A, Cuadrado A, Schmidt HH. Antioxid Redox Signal 23 1113-1129 (2015)
  11. Autoantibodies to posttranslational modifications in rheumatoid arthritis. Burska AN, Hunt L, Boissinot M, Strollo R, Ryan BJ, Vital E, Nissim A, Winyard PG, Emery P, Ponchel F. Mediators Inflamm 2014 492873 (2014)
  12. Phytoagents for cancer management: regulation of nucleic acid oxidation, ROS, and related mechanisms. Lee WL, Huang JY, Shyur LF. Oxid Med Cell Longev 2013 925804 (2013)
  13. Methods for measuring myeloperoxidase activity toward assessing inhibitor efficacy in living systems. Huang J, Milton A, Arnold RD, Huang H, Smith F, Panizzi JR, Panizzi P. J Leukoc Biol 99 541-548 (2016)
  14. The many roles of myeloperoxidase: From inflammation and immunity to biomarkers, drug metabolism and drug discovery. Siraki AG. Redox Biol 46 102109 (2021)
  15. Role of Neutrophils in the Pathogenesis of Nonalcoholic Steatohepatitis. Hwang S, Yun H, Moon S, Cho YE, Gao B. Front Endocrinol (Lausanne) 12 751802 (2021)
  16. Myeloperoxidase: a potential therapeutic target for coronary artery disease. Chaikijurajai T, Tang WHW. Expert Opin Ther Targets 24 695-705 (2020)
  17. Activity-Based Protein Profiling (ABPP) of Oxidoreductases. Fuerst R, Breinbauer R. Chembiochem 22 630-638 (2021)
  18. Posttranslational protein modifications by reactive nitrogen and chlorine species and strategies for their prevention and elimination. Sadowska-Bartosz I, Ott C, Grune T, Bartosz G. Free Radic Res 48 1267-1284 (2014)
  19. Non-Canonical Functions of Myeloperoxidase in Immune Regulation, Tissue Inflammation and Cancer. Lockhart JS, Sumagin R. Int J Mol Sci 23 12250 (2022)
  20. Rational drug design applied to myeloperoxidase inhibition. Van Antwerpen P, Zouaoui Boudjeltia K. Free Radic Res 49 711-720 (2015)
  21. Myeloperoxidase: Regulation of Neutrophil Function and Target for Therapy. Rizo-Téllez SA, Sekheri M, Filep JG. Antioxidants (Basel) 11 2302 (2022)

Articles citing this publication (56)

  1. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. Parker H, Dragunow M, Hampton MB, Kettle AJ, Winterbourn CC. J Leukoc Biol 92 841-849 (2012)
  2. Myeloperoxidase and oxidative stress in rheumatoid arthritis. Stamp LK, Khalilova I, Tarr JM, Senthilmohan R, Turner R, Haigh RC, Winyard PG, Kettle AJ. Rheumatology (Oxford) 51 1796-1803 (2012)
  3. Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species. Björnsdottir H, Welin A, Michaëlsson E, Osla V, Berg S, Christenson K, Sundqvist M, Dahlgren C, Karlsson A, Bylund J. Free Radic Biol Med 89 1024-1035 (2015)
  4. Ceruloplasmin is an endogenous inhibitor of myeloperoxidase. Chapman AL, Mocatta TJ, Shiva S, Seidel A, Chen B, Khalilova I, Paumann-Page ME, Jameson GN, Winterbourn CC, Kettle AJ. J Biol Chem 288 6465-6477 (2013)
  5. Myeloperoxidase inhibition ameliorates multiple system atrophy-like degeneration in a transgenic mouse model. Stefanova N, Georgievska B, Eriksson H, Poewe W, Wenning GK. Neurotox Res 21 393-404 (2012)
  6. Interactions of hydrogen sulfide with myeloperoxidase. Pálinkás Z, Furtmüller PG, Nagy A, Jakopitsch C, Pirker KF, Magierowski M, Jasnos K, Wallace JL, Obinger C, Nagy P. Br J Pharmacol 172 1516-1532 (2015)
  7. PF-1355, a mechanism-based myeloperoxidase inhibitor, prevents immune complex vasculitis and anti-glomerular basement membrane glomerulonephritis. Zheng W, Warner R, Ruggeri R, Su C, Cortes C, Skoura A, Ward J, Ahn K, Kalgutkar A, Sun D, Maurer TS, Bonin PD, Okerberg C, Bobrowski W, Kawabe T, Zhang Y, Coskran T, Bell S, Kapoor B, Johnson K, Buckbinder L. J Pharmacol Exp Ther 353 288-298 (2015)
  8. Potent reversible inhibition of myeloperoxidase by aromatic hydroxamates. Forbes LV, Sjögren T, Auchère F, Jenkins DW, Thong B, Laughton D, Hemsley P, Pairaudeau G, Turner R, Eriksson H, Unitt JF, Kettle AJ. J Biol Chem 288 36636-36647 (2013)
  9. Myeloperoxidase is a potential molecular imaging and therapeutic target for the identification and stabilization of high-risk atherosclerotic plaque. Rashid I, Maghzal GJ, Chen YC, Cheng D, Talib J, Newington D, Ren M, Vajandar SK, Searle A, Maluenda A, Lindstedt EL, Jabbour A, Kettle AJ, Bongers A, Power C, Michaëlsson E, Peter K, Stocker R. Eur Heart J 39 3301-3310 (2018)
  10. Nonsteroidal anti-inflammatory drug induces proinflammatory damage in gastric mucosa through NF-κB activation and neutrophil infiltration: anti-inflammatory role of heme oxygenase-1 against nonsteroidal anti-inflammatory drug. Bindu S, Mazumder S, Dey S, Pal C, Goyal M, Alam A, Iqbal MS, Sarkar S, Azhar Siddiqui A, Banerjee C, Bandyopadhyay U. Free Radic Biol Med 65 456-467 (2013)
  11. Failure of Neuroprotection Despite Microglial Suppression by Delayed-Start Myeloperoxidase Inhibition in a Model of Advanced Multiple System Atrophy: Clinical Implications. Kaindlstorfer C, Sommer P, Georgievska B, Mather RJ, Kugler AR, Poewe W, Wenning GK, Stefanova N. Neurotox Res 28 185-194 (2015)
  12. Inflammatory bowel disease therapies and gut function in a colitis mouse model. Nahidi L, Leach ST, Mitchell HM, Kaakoush NO, Lemberg DA, Munday JS, Huinao K, Day AS. Biomed Res Int 2013 909613 (2013)
  13. Myeloperoxidase oxidation of methionine associates with early cystic fibrosis lung disease. Chandler JD, Margaroli C, Horati H, Kilgore MB, Veltman M, Liu HK, Taurone AJ, Peng L, Guglani L, Uppal K, Go YM, Tiddens HAWM, Scholte BJ, Tirouvanziam R, Jones DP, Janssens HM. Eur Respir J 52 1801118 (2018)
  14. Myeloperoxidase deficiency ameliorates progression of chronic kidney disease in mice. Lehners A, Lange S, Niemann G, Rosendahl A, Meyer-Schwesinger C, Oh J, Stahl R, Ehmke H, Benndorf R, Klinke A, Baldus S, Wenzel UO. Am J Physiol Renal Physiol 307 F407-17 (2014)
  15. Therapeutic Myeloperoxidase Inhibition Attenuates Neutrophil Activation, ANCA-Mediated Endothelial Damage, and Crescentic GN. Antonelou M, Michaëlsson E, Evans RDR, Wang CJ, Henderson SR, Walker LSK, Unwin RJ, Salama AD, RAVE-ITN Investigators. J Am Soc Nephrol 31 350-364 (2020)
  16. Inhibition of myeloperoxidase- and neutrophil-mediated oxidant production by tetraethyl and tetramethyl nitroxides. Kajer TB, Fairfull-Smith KE, Yamasaki T, Yamada K, Fu S, Bottle SE, Hawkins CL, Davies MJ. Free Radic Biol Med 70 96-105 (2014)
  17. Exposure of Pseudomonas aeruginosa to bactericidal hypochlorous acid during neutrophil phagocytosis is compromised in cystic fibrosis. Dickerhof N, Isles V, Pattemore P, Hampton MB, Kettle AJ. J Biol Chem 294 13502-13514 (2019)
  18. Heterogeneity of hypochlorous acid production in individual neutrophil phagosomes revealed by a rhodamine-based probe. Albrett AM, Ashby LV, Dickerhof N, Kettle AJ, Winterbourn CC. J Biol Chem 293 15715-15724 (2018)
  19. Mechanism of reaction of chlorite with mammalian heme peroxidases. Jakopitsch C, Pirker KF, Flemmig J, Hofbauer S, Schlorke D, Furtmüller PG, Arnhold J, Obinger C. J Inorg Biochem 135 10-19 (2014)
  20. Anti-myeloperoxidase antibodies attenuate the monocyte response to LPS and shape macrophage development. Popat RJ, Hakki S, Thakker A, Coughlan AM, Watson J, Little MA, Spickett CM, Lavender P, Afzali B, Kemper C, Robson MG. JCI Insight 2 e87379 (2017)
  21. Characterization and antioxidant properties of six Algerian propolis extracts: ethyl acetate extracts inhibit myeloperoxidase activity. Boufadi YM, Soubhye J, Riazi A, Rousseau A, Vanhaeverbeek M, Nève J, Boudjeltia KZ, Van Antwerpen P. Int J Mol Sci 15 2327-2345 (2014)
  22. Thioxo-dihydroquinazolin-one Compounds as Novel Inhibitors of Myeloperoxidase. Li Y, Ganesh T, Diebold BA, Zhu Y, McCoy JW, Smith SM, Sun A, Lambeth JD. ACS Med Chem Lett 6 1047-1052 (2015)
  23. Inhibiting cardiac myeloperoxidase alleviates the relaxation defect in hypertrophic cardiomyocytes. Ramachandra CJA, Kp MMJ, Chua J, Hernandez-Resendiz S, Liehn EA, Knöll R, Gan LM, Michaëlsson E, Jonsson MKB, Ryden-Markinhuhta K, Bhat RV, Fritsche-Danielson R, Lin YH, Sadayappan S, Tang HC, Wong P, Shim W, Hausenloy DJ. Cardiovasc Res 118 517-530 (2022)
  24. Myeloperoxidase Enhances Etoposide and Mitoxantrone-Mediated DNA Damage: A Target for Myeloprotection in Cancer Chemotherapy. Atwal M, Lishman EL, Austin CA, Cowell IG. Mol Pharmacol 91 49-57 (2017)
  25. Pharmacological myeloperoxidase (MPO) inhibition in an obese/hypertensive mouse model attenuates obesity and liver damage, but not cardiac remodeling. Piek A, Koonen DPY, Schouten EM, Lindtstedt EL, Michaëlsson E, de Boer RA, Silljé HHW. Sci Rep 9 18765 (2019)
  26. The Synthetic Myeloperoxidase Inhibitor AZD3241 Ameliorates Dextran Sodium Sulfate Stimulated Experimental Colitis. Ahmad G, Chami B, Liu Y, Schroder AL, San Gabriel PT, Gao A, Fong G, Wang X, Witting PK. Front Pharmacol 11 556020 (2020)
  27. Detailed protocol to assess in vivo and ex vivo myeloperoxidase activity in mouse models of vascular inflammation and disease using hydroethidine. Talib J, Maghzal GJ, Cheng D, Stocker R. Free Radic Biol Med 97 124-135 (2016)
  28. Development of rapid multistep carbon-11 radiosynthesis of the myeloperoxidase inhibitor AZD3241 to assess brain exposure by PET microdosing. Johnström P, Bergman L, Varnäs K, Malmquist J, Halldin C, Farde L. Nucl Med Biol 42 555-560 (2015)
  29. Ordered cleavage of myeloperoxidase ester bonds releases active site heme leading to inactivation of myeloperoxidase by benzoic acid hydrazide analogs. Huang J, Smith F, Panizzi P. Arch Biochem Biophys 548 74-85 (2014)
  30. Macrophage migration inhibitory factor (MIF) is rendered enzymatically inactive by myeloperoxidase-derived oxidants but retains its immunomodulatory function. Dickerhof N, Schindler L, Bernhagen J, Kettle AJ, Hampton MB. Free Radic Biol Med 89 498-511 (2015)
  31. Oxidation of calprotectin by hypochlorous acid prevents chelation of essential metal ions and allows bacterial growth: Relevance to infections in cystic fibrosis. Magon NJ, Turner R, Gearry RB, Hampton MB, Sly PD, Kettle AJ. Free Radic Biol Med 86 133-144 (2015)
  32. Pharmacokinetics and Disposition of the Thiouracil Derivative PF-06282999, an Orally Bioavailable, Irreversible Inactivator of Myeloperoxidase Enzyme, Across Animals and Humans. Dong JQ, Varma MV, Wolford A, Ryder T, Di L, Feng B, Terra SG, Sagawa K, Kalgutkar AS. Drug Metab Dispos 44 209-219 (2016)
  33. Early Clinical Experience With AZD4831, A Novel Myeloperoxidase Inhibitor, Developed for Patients With Heart Failure With Preserved Ejection Fraction. Nelander K, Lagerstrom-Fermer M, Amilon C, Michaëlsson E, Heijer M, Kjaer M, Russell M, Han D, Lindstedt EL, Whatling C, Gan LM, Ericsson H. Clin Transl Sci 14 812-819 (2021)
  34. Neutrophil-Mediated Cardiac Damage After Acute Myocardial Infarction: Significance of Defining a New Target Cell Type for Developing Cardioprotective Drugs. El Kazzi M, Rayner BS, Chami B, Dennis JM, Thomas SR, Witting PK. Antioxid Redox Signal 33 689-712 (2020)
  35. Regulation of the nitric oxide oxidase activity of myeloperoxidase by pharmacological agents. Maiocchi SL, Morris JC, Rees MD, Thomas SR. Biochem Pharmacol 135 90-115 (2017)
  36. Hybrid molecules inhibiting myeloperoxidase activity and serotonin reuptake: a possible new approach of major depressive disorders with inflammatory syndrome. Soubhye J, Aldib I, Prévost M, Elfving B, Gelbcke M, Podrecca M, Conotte R, Colet JM, Furtmüller PG, Delporte C, Rousseau A, Vanhaeverbeek M, Nève J, Obinger C, Zouaoui-Boudjeltia K, Van Antwerpen P, Dufrasne F. J Pharm Pharmacol 66 1122-1132 (2014)
  37. Induction of the reactive chlorine-responsive transcription factor RclR in Escherichia coli following ingestion by neutrophils. Königstorfer A, Ashby LV, Bollar GE, Billiot CE, Gray MJ, Jakob U, Hampton MB, Winterbourn CC. Pathog Dis 79 ftaa079 (2021)
  38. Inhibition of myeloperoxidase: evaluation of 2H-indazoles and 1H-indazolones. Roth A, Ott S, Farber KM, Palazzo TA, Conrad WE, Haddadin MJ, Tantillo DJ, Cross CE, Eiserich JP, Kurth MJ. Bioorg Med Chem 22 6422-6429 (2014)
  39. Zinc finger oxidation of Fpg/Nei DNA glycosylases by 2-thioxanthine: biochemical and X-ray structural characterization. Biela A, Coste F, Culard F, Guerin M, Goffinont S, Gasteiger K, Cieśla J, Winczura A, Kazimierczuk Z, Gasparutto D, Carell T, Tudek B, Castaing B. Nucleic Acids Res 42 10748-10761 (2014)
  40. Conjugation of urate-derived electrophiles to proteins during normal metabolism and inflammation. Turner R, Brennan SO, Ashby LV, Dickerhof N, Hamzah MR, Pearson JF, Stamp LK, Kettle AJ. J Biol Chem 293 19886-19898 (2018)
  41. Fluorescent detection of peroxynitrite during antibody-dependent cellular phagocytosis. Rane D, Carlson EJ, Yin Y, Peterson BR. Methods Enzymol 640 1-35 (2020)
  42. Iodide modulates protein damage induced by the inflammation-associated heme enzyme myeloperoxidase. Gamon LF, Dieterich S, Ignasiak MT, Schrameyer V, Davies MJ. Redox Biol 28 101331 (2020)
  43. Potent Triazolopyridine Myeloperoxidase Inhibitors. Wurtz NR, Viet A, Shaw SA, Dilger A, Valente MN, Khan JA, Jusuf S, Narayanan R, Fernando G, Lo F, Liu X, Locke GA, Kopcho L, Abell LM, Sleph P, Basso M, Zhao L, Wexler RR, Duclos F, Kick EK. ACS Med Chem Lett 9 1175-1180 (2018)
  44. Discovery of AZD4831, a Mechanism-Based Irreversible Inhibitor of Myeloperoxidase, As a Potential Treatment for Heart Failure with Preserved Ejection Fraction. Inghardt T, Antonsson T, Ericsson C, Hovdal D, Johannesson P, Johansson C, Jurva U, Kajanus J, Kull B, Michaëlsson E, Pettersen A, Sjögren T, Sörensen H, Westerlund K, Lindstedt EL. J Med Chem 65 11485-11496 (2022)
  45. Myeloperoxidase deficiency attenuates systemic and dietary iron-induced adverse effects. Xiao X, Saha P, Yeoh BS, Hipp JA, Singh V, Vijay-Kumar M. J Nutr Biochem 62 28-34 (2018)
  46. The Effect of Oxidant Hypochlorous Acid on Platelet Aggregation and Dityrosine Concentration in Chronic Heart Failure Patients and Healthy Controls. Mongirdienė A, Laukaitienė J, Skipskis V, Kašauskas A. Medicina (Kaunas) 55 E198 (2019)
  47. Triazolopyrimidines identified as reversible myeloperoxidase inhibitors. Duclos F, Abell LM, Harden DG, Pike K, Nowak K, Locke GA, Duke GJ, Liu X, Fernando G, Shaw SA, Vokits BP, Wurtz NR, Viet A, Valente MN, Stachura S, Sleph P, Khan JA, Gao J, Dongre AR, Zhao L, Wexler RR, Gordon DA, Kick EK. Medchemcomm 8 2093-2099 (2017)
  48. Neutrophil NET Formation with Microbial Stimuli Requires Late Stage NADPH Oxidase Activity. Parker HA, Jones HM, Kaldor CD, Hampton MB, Winterbourn CC. Antioxidants (Basel) 10 1791 (2021)
  49. Oxidation of bacillithiol during killing of Staphylococcus aureus USA300 inside neutrophil phagosomes. Ashby LV, Springer R, Loi VV, Antelmann H, Hampton MB, Kettle AJ, Dickerhof N. J Leukoc Biol 112 591-605 (2022)
  50. Discovery of 1-((6-Aminopyridin-3-yl)Methyl)-3-(4-Bromophenyl)Urea as a Potent, Irreversible Myeloperoxidase Inhibitor. Marro ML, Patterson AW, Lee L, Deng L, Reynolds A, Ren X, Axford L, Patnaik A, Hollis-Symynkywicz M, Casson N, Custeau D, Ames L, Loi S, Zhang L, Honda T, Blank J, Harrison TJ, Papillon JPN, Hamann LG, Marcinkeviciene J, Regard JB. J Pharmacol Exp Ther 367 147-154 (2018)
  51. ESR and X-ray Structure Investigations on the Binding and Mechanism of Inhibition of the Native State of Myeloperoxidase with Low Molecular Weight Fragments. Chavali B, Masquelin T, Nilges MJ, Timm DE, Stout SL, Matter WF, Jin N, Jadhav PK, Deng GG. Appl Magn Reson 46 853-873 (2015)
  52. Species Differences in the Oxidative Desulfurization of a Thiouracil-Based Irreversible Myeloperoxidase Inactivator by Flavin-Containing Monooxygenase Enzymes. Eng H, Sharma R, Wolford A, Di L, Ruggeri RB, Buckbinder L, Conn EL, Dalvie DK, Kalgutkar AS. Drug Metab Dispos 44 1262-1269 (2016)
  53. Therapeutic inhibition of MPO stabilizes pre-existing high risk atherosclerotic plaque. Chen W, Tumanov S, Kong SMY, Cheng D, Michaëlsson E, Bongers A, Power C, Ayer A, Stocker R. Redox Biol 58 102532 (2022)
  54. Inhibition of Myeloperoxidase. Soubhye J, Furtmüller PG, Dufrasne F, Obinger C. Handb Exp Pharmacol 264 261-285 (2021)
  55. Novel bis-arylalkylamines as myeloperoxidase inhibitors: Design, synthesis, and structure-activity relationship study. Aldib I, Gelbcke M, Soubhye J, Prévost M, Furtmüller PG, Obinger C, Elfving B, Alard IC, Roos G, Delporte C, Berger G, Dufour D, Zouaoui Boudjeltia K, Nève J, Dufrasne F, Van Antwerpen P. Eur J Med Chem 123 746-762 (2016)
  56. Protective Effects of Therapeutic Neutrophil Depletion and Myeloperoxidase Inhibition on Left Ventricular Function and Remodeling in Myocardial Infarction. Guthoff H, Hof A, Klinke A, Maaß M, Konradi J, Mehrkens D, Geißen S, Nettersheim FS, Braumann S, Michaelsson E, Nies RJ, Lee S, Redzinski MC, Peters VBM, Nemade HN, von Stein P, Winkels H, Rudolph V, Baldus S, Adam M, Mollenhauer M. Antioxidants (Basel) 12 33 (2022)