4a0k Citations

The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation.

Abstract

The DDB1-CUL4-RBX1 (CRL4) ubiquitin ligase family regulates a diverse set of cellular pathways through dedicated substrate receptors (DCAFs). The DCAF DDB2 detects UV-induced pyrimidine dimers in the genome and facilitates nucleotide excision repair. We provide the molecular basis for DDB2 receptor-mediated cyclobutane pyrimidine dimer recognition in chromatin. The structures of the fully assembled DDB1-DDB2-CUL4A/B-RBX1 (CRL4(DDB2)) ligases reveal that the mobility of the ligase arm creates a defined ubiquitination zone around the damage, which precludes direct ligase activation by DNA lesions. Instead, the COP9 signalosome (CSN) mediates the CRL4(DDB2) inhibition in a CSN5 independent, nonenzymatic, fashion. In turn, CSN inhibition is relieved upon DNA damage binding to the DDB2 module within CSN-CRL4(DDB2). The Cockayne syndrome A DCAF complex crystal structure shows that CRL4(DCAF(WD40)) ligases share common architectural features. Our data support a general mechanism of ligase activation, which is induced by CSN displacement from CRL4(DCAF) on substrate binding to the DCAF.

Reviews - 4a0k mentioned but not cited (6)

  1. Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Wu T, Yoon H, Xiong Y, Dixon-Clarke SE, Nowak RP, Fischer ES. Nat Struct Mol Biol 27 605-614 (2020)
  2. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Kumar N, Raja S, Van Houten B. Nucleic Acids Res 48 11227-11243 (2020)
  3. Cullin-RING E3 Ubiquitin Ligases: Bridges to Destruction. Nguyen HC, Wang W, Xiong Y. Subcell Biochem 83 323-347 (2017)
  4. Expanding molecular roles of UV-DDB: Shining light on genome stability and cancer. Beecher M, Kumar N, Jang S, Rapić-Otrin V, Van Houten B. DNA Repair (Amst) 94 102860 (2020)
  5. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Blondelle J, Biju A, Lange S. Int J Mol Sci 21 E7936 (2020)
  6. Every protagonist has a sidekick: Structural aspects of human xeroderma pigmentosum-binding proteins in nucleotide excision repair. Feltes BC. Protein Sci 30 2187-2205 (2021)

Articles - 4a0k mentioned but not cited (12)

  1. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Fischer ES, Böhm K, Lydeard JR, Yang H, Stadler MB, Cavadini S, Nagel J, Serluca F, Acker V, Lingaraju GM, Tichkule RB, Schebesta M, Forrester WC, Schirle M, Hassiepen U, Ottl J, Hild M, Beckwith RE, Harper JW, Jenkins JL, Thomä NH. Nature 512 49-53 (2014)
  2. Crystal Structure of the Cul2-Rbx1-EloBC-VHL Ubiquitin Ligase Complex. Cardote TAF, Gadd MS, Ciulli A. Structure 25 901-911.e3 (2017)
  3. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Faust TB, Yoon H, Nowak RP, Donovan KA, Li Z, Cai Q, Eleuteri NA, Zhang T, Gray NS, Fischer ES. Nat Chem Biol 16 7-14 (2020)
  4. Single-molecule analysis reveals human UV-damaged DNA-binding protein (UV-DDB) dimerizes on DNA via multiple kinetic intermediates. Ghodke H, Wang H, Hsieh CL, Woldemeskel S, Watkins SC, Rapić-Otrin V, Van Houten B. Proc Natl Acad Sci U S A 111 E1862-71 (2014)
  5. Structural basis of human transcription-DNA repair coupling. Kokic G, Wagner FR, Chernev A, Urlaub H, Cramer P. Nature 598 368-372 (2021)
  6. The antiobesity factor WDTC1 suppresses adipogenesis via the CRL4WDTC1 E3 ligase. Groh BS, Yan F, Smith MD, Yu Y, Chen X, Xiong Y. EMBO Rep 17 638-647 (2016)
  7. CRL4-like Clr4 complex in Schizosaccharomyces pombe depends on an exposed surface of Dos1 for heterochromatin silencing. Kuscu C, Zaratiegui M, Kim HS, Wah DA, Martienssen RA, Schalch T, Joshua-Tor L. Proc Natl Acad Sci U S A 111 1795-1800 (2014)
  8. Tubulin Resists Degradation by Cereblon-Recruiting PROTACs. Gasic I, Groendyke BJ, Nowak RP, Yuan JC, Kalabathula J, Fischer ES, Gray NS, Mitchison TJ. Cells 9 E1083 (2020)
  9. Machine Learning Modeling of Protein-intrinsic Features Predicts Tractability of Targeted Protein Degradation. Zhang W, Roy Burman SS, Chen J, Donovan KA, Cao Y, Shu C, Zhang B, Zeng Z, Gu S, Zhang Y, Li D, Fischer ES, Tokheim C, Shirley Liu X. Genomics Proteomics Bioinformatics 20 882-898 (2022)
  10. Recognition of the CCT5 di-Glu degron by CRL4DCAF12 is dependent on TRiC assembly. Pla-Prats C, Cavadini S, Kempf G, Thomä NH. EMBO J 42 e112253 (2023)
  11. Systemwide disassembly and assembly of SCF ubiquitin ligase complexes. Baek K, Scott DC, Henneberg LT, King MT, Mann M, Schulman BA. Cell 186 1895-1911.e21 (2023)
  12. Chaperones for dancing on chromatin: Role of post-translational modifications in dynamic damage detection hand-offs during nucleotide excision repair. Van Houten B, Schnable B, Kumar N. Bioessays 43 e2100011 (2021)


Reviews citing this publication (78)

  1. Induced protein degradation: an emerging drug discovery paradigm. Lai AC, Crews CM. Nat Rev Drug Discov 16 101-114 (2017)
  2. Nucleotide excision repair in eukaryotes. Schärer OD. Cold Spring Harb Perspect Biol 5 a012609 (2013)
  3. DNA repair mechanisms in dividing and non-dividing cells. Iyama T, Wilson DM. DNA Repair (Amst) 12 620-636 (2013)
  4. Protein neddylation: beyond cullin-RING ligases. Enchev RI, Schulman BA, Peter M. Nat Rev Mol Cell Biol 16 30-44 (2015)
  5. Building and remodelling Cullin-RING E3 ubiquitin ligases. Lydeard JR, Schulman BA, Harper JW. EMBO Rep 14 1050-1061 (2013)
  6. Mechanisms and functions of ribosome-associated protein quality control. Joazeiro CAP. Nat Rev Mol Cell Biol 20 368-383 (2019)
  7. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Dinkova-Kostova AT, Kostov RV, Canning P. Arch Biochem Biophys 617 84-93 (2017)
  8. Advancing targeted protein degradation for cancer therapy. Dale B, Cheng M, Park KS, Kaniskan HÜ, Xiong Y, Jin J. Nat Rev Cancer 21 638-654 (2021)
  9. Cockayne syndrome: Clinical features, model systems and pathways. Karikkineth AC, Scheibye-Knudsen M, Fivenson E, Croteau DL, Bohr VA. Ageing Res Rev 33 3-17 (2017)
  10. Oxidative DNA damage and nucleotide excision repair. Melis JP, van Steeg H, Luijten M. Antioxid Redox Signal 18 2409-2419 (2013)
  11. Mammalian transcription-coupled excision repair. Vermeulen W, Fousteri M. Cold Spring Harb Perspect Biol 5 a012625 (2013)
  12. Lysine-targeting specificity in ubiquitin and ubiquitin-like modification pathways. Mattiroli F, Sixma TK. Nat Struct Mol Biol 21 308-316 (2014)
  13. Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Bulatov E, Ciulli A. Biochem J 467 365-386 (2015)
  14. Ubiquitylation, neddylation and the DNA damage response. Brown JS, Jackson SP. Open Biol 5 150018 (2015)
  15. Targeted Protein Degradation by Small Molecules. Bondeson DP, Crews CM. Annu Rev Pharmacol Toxicol 57 107-123 (2017)
  16. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Hannah J, Zhou P. Gene 573 33-45 (2015)
  17. Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Kusakabe M, Onishi Y, Tada H, Kurihara F, Kusao K, Furukawa M, Iwai S, Yokoi M, Sakai W, Sugasawa K. Genes Environ 41 2 (2019)
  18. Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair. Sugasawa K. DNA Repair (Amst) 44 110-117 (2016)
  19. CUL4A ubiquitin ligase: a promising drug target for cancer and other human diseases. Sharma P, Nag A. Open Biol 4 130217 (2014)
  20. Enzymatic Logic of Ubiquitin Chain Assembly. Deol KK, Lorenz S, Strieter ER. Front Physiol 10 835 (2019)
  21. Cullin E3 ligases and their rewiring by viral factors. Mahon C, Krogan NJ, Craik CS, Pick E. Biomolecules 4 897-930 (2014)
  22. Cullin-RING Ubiquitin Ligase Regulatory Circuits: A Quarter Century Beyond the F-Box Hypothesis. Harper JW, Schulman BA. Annu Rev Biochem 90 403-429 (2021)
  23. SCFs in the new millennium. Lee EK, Diehl JA. Oncogene 33 2011-2018 (2014)
  24. Macromolecular juggling by ubiquitylation enzymes. Lorenz S, Cantor AJ, Rape M, Kuriyan J. BMC Biol 11 65 (2013)
  25. Emerging roles of Jab1/CSN5 in DNA damage response, DNA repair, and cancer. Pan Y, Yang H, Claret FX. Cancer Biol Ther 15 256-262 (2014)
  26. DNA Oxidation and Excision Repair Pathways. Lee TH, Kang TH. Int J Mol Sci 20 E6092 (2019)
  27. The Multifunctions of WD40 Proteins in Genome Integrity and Cell Cycle Progression. Zhang C, Zhang F. J Genomics 3 40-50 (2015)
  28. Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair. Mu H, Geacintov NE, Broyde S, Yeo JE, Schärer OD. DNA Repair (Amst) 71 33-42 (2018)
  29. Heterochromatin: an epigenetic point of view in aging. Lee JH, Kim EW, Croteau DL, Bohr VA. Exp Mol Med 52 1466-1474 (2020)
  30. Where to cross? New insights into the location of meiotic crossovers. Mézard C, Jahns MT, Grelon M. Trends Genet 31 393-401 (2015)
  31. Dynamic regulation of ubiquitin-dependent cell cycle control. Craney A, Rape M. Curr Opin Cell Biol 25 704-710 (2013)
  32. Two-way communications between ubiquitin-like modifiers and DNA. Ulrich HD. Nat Struct Mol Biol 21 317-324 (2014)
  33. The role of Cockayne syndrome group A (CSA) protein in transcription-coupled nucleotide excision repair. Saijo M. Mech Ageing Dev 134 196-201 (2013)
  34. Design Principles Involving Protein Disorder Facilitate Specific Substrate Selection and Degradation by the Ubiquitin-Proteasome System. Guharoy M, Bhowmick P, Tompa P. J Biol Chem 291 6723-6731 (2016)
  35. Recent molecular insights into canonical pre-mRNA 3'-end processing. Sun Y, Hamilton K, Tong L. Transcription 11 83-96 (2020)
  36. Regulation of the Tumor-Suppressor BECLIN 1 by Distinct Ubiquitination Cascades. Boutouja F, Brinkmeier R, Mastalski T, El Magraoui F, Platta HW. Int J Mol Sci 18 E2541 (2017)
  37. Xeroderma pigmentosum group C sensor: unprecedented recognition strategy and tight spatiotemporal regulation. Puumalainen MR, Rüthemann P, Min JH, Naegeli H. Cell Mol Life Sci 73 547-566 (2016)
  38. Cockayne syndrome pathogenesis: lessons from mouse models. Jaarsma D, van der Pluijm I, van der Horst GT, Hoeijmakers JH. Mech Ageing Dev 134 180-195 (2013)
  39. Orchestral maneuvers at the damaged sites in nucleotide excision repair. Alekseev S, Coin F. Cell Mol Life Sci 72 2177-2186 (2015)
  40. VprBP (DCAF1): a promiscuous substrate recognition subunit that incorporates into both RING-family CRL4 and HECT-family EDD/UBR5 E3 ubiquitin ligases. Nakagawa T, Mondal K, Swanson PC. BMC Mol Biol 14 22 (2013)
  41. Overview of xeroderma pigmentosum proteins architecture, mutations and post-translational modifications. Feltes BC, Bonatto D. Mutat Res Rev Mutat Res 763 306-320 (2015)
  42. Plant COP9 signalosome subunit 5, CSN5. Jin D, Li B, Deng XW, Wei N. Plant Sci 224 54-61 (2014)
  43. Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. Wang W, Xu J, Chong J, Wang D. DNA Repair (Amst) 71 43-55 (2018)
  44. The Role of the COP9 Signalosome and Neddylation in DNA Damage Signaling and Repair. Chung D, Dellaire G. Biomolecules 5 2388-2416 (2015)
  45. Transcriptional and Posttranslational Regulation of Nucleotide Excision Repair: The Guardian of the Genome against Ultraviolet Radiation. Park JM, Kang TH. Int J Mol Sci 17 E1840 (2016)
  46. Ubiquitin-like modifications in the DNA damage response. Wang Z, Zhu WG, Xu X. Mutat Res 803-805 56-75 (2017)
  47. Nucleotide Excision Repair: Finely Tuned Molecular Orchestra of Early Pre-incision Events. Zhu Q, Wani AA. Photochem Photobiol 93 166-177 (2017)
  48. Small Molecule Modulators of RING-Type E3 Ligases: MDM and Cullin Families as Targets. Bulatov E, Zagidullin A, Valiullina A, Sayarova R, Rizvanov A. Front Pharmacol 9 450 (2018)
  49. Ubiquitin at work: the ubiquitous regulation of the damage recognition step of NER. van Cuijk L, Vermeulen W, Marteijn JA. Exp Cell Res 329 101-109 (2014)
  50. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO. Reidick C, El Magraoui F, Meyer HE, Stenmark H, Platta HW. Cancers (Basel) 7 1-29 (2014)
  51. Current and emerging roles of Cockayne syndrome group B (CSB) protein. Tiwari V, Baptiste BA, Okur MN, Bohr VA. Nucleic Acids Res 49 2418-2434 (2021)
  52. Insight in the multilevel regulation of NER. Dijk M, Typas D, Mullenders L, Pines A. Exp Cell Res 329 116-123 (2014)
  53. Role of the COP9 Signalosome (CSN) in Cardiovascular Diseases. Milic J, Tian Y, Bernhagen J. Biomolecules 9 E217 (2019)
  54. Deep structural insights into RNA-binding disordered protein regions. Zeke A, Schád É, Horváth T, Abukhairan R, Szabó B, Tantos A. Wiley Interdiscip Rev RNA 13 e1714 (2022)
  55. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation. Oh J, Xu J, Chong J, Wang D. Biochim Biophys Acta Gene Regul Mech 1864 194659 (2021)
  56. Arabidopsis CRL4 Complexes: Surveying Chromatin States and Gene Expression. Fonseca S, Rubio V. Front Plant Sci 10 1095 (2019)
  57. From laboratory tests to functional characterisation of Cockayne syndrome. Lanzafame M, Vaz B, Nardo T, Botta E, Orioli D, Stefanini M. Mech Ageing Dev 134 171-179 (2013)
  58. Global-genome Nucleotide Excision Repair Controlled by Ubiquitin/Sumo Modifiers. Rüthemann P, Balbo Pogliano C, Naegeli H. Front Genet 7 68 (2016)
  59. Control of craniofacial and brain development by Cullin3-RING ubiquitin ligases: Lessons from human disease genetics. Asmar AJ, Beck DB, Werner A. Exp Cell Res 396 112300 (2020)
  60. Guard the guardian: A CRL4 ligase stands watch over histone production. Lampert F, Brodersen MM, Peter M. Nucleus 8 134-143 (2017)
  61. Small molecule PROTACs: an emerging technology for targeted therapy in drug discovery. Pei H, Peng Y, Zhao Q, Chen Y. RSC Adv 9 16967-16976 (2019)
  62. The necessity of NEDD8/Rub1 for vitality and its association with mitochondria-derived oxidative stress. Pick E. Redox Biol 37 101765 (2020)
  63. Are Inositol Polyphosphates the Missing Link in Dynamic Cullin RING Ligase Regulation by the COP9 Signalosome? Zhang X, Rao F. Biomolecules 9 E349 (2019)
  64. Timely upstream events regulating nucleotide excision repair by ubiquitin-proteasome system: ubiquitin guides the way. Chauhan AK, Sun Y, Zhu Q, Wani AA. DNA Repair (Amst) 103 103128 (2021)
  65. XPG: a multitasking genome caretaker. Muniesa-Vargas A, Theil AF, Ribeiro-Silva C, Vermeulen W, Lans H. Cell Mol Life Sci 79 166 (2022)
  66. Mechanism of action of nucleotide excision repair machinery. D'Souza A, Blee AM, Chazin WJ. Biochem Soc Trans 50 375-386 (2022)
  67. Nucleotide excision repair: a versatile and smart toolkit. Zhang X, Yin M, Hu J. Acta Biochim Biophys Sin (Shanghai) 54 807-819 (2022)
  68. Poxvirus Interactions with the Host Ubiquitin System. Lant S, Maluquer de Motes C. Pathogens 10 1034 (2021)
  69. Searching for DNA Damage: Insights From Single Molecule Analysis. Schaich MA, Van Houten B. Front Mol Biosci 8 772877 (2021)
  70. The emerging role of deubiquitination in nucleotide excision repair. Zhang L, Gong F. DNA Repair (Amst) 44 118-122 (2016)
  71. A protein with broad functions: damage-specific DNA-binding protein 2. Bao N, Han J, Zhou H. Mol Biol Rep 49 12181-12192 (2022)
  72. DNA Damage-Induced RNAPII Degradation and Its Consequences in Gene Expression. Muñoz JC, Beckerman I, Choudhary R, Bouvier LA, Muñoz MJ. Genes (Basel) 13 1951 (2022)
  73. A matter of delicate balance: Loss and gain of Cockayne syndrome proteins in premature aging and cancer. Paccosi E, Balajee AS, Proietti-De-Santis L. Front Aging 3 960662 (2022)
  74. CRL4Cdt2 Ubiquitin Ligase, A Genome Caretaker Controlled by Cdt2 Binding to PCNA and DNA. Mazian MA, Yamanishi K, Rahman MZA, Ganasen M, Nishitani H. Genes (Basel) 13 266 (2022)
  75. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Int J Mol Sci 23 9707 (2022)
  76. Targeting E3 ubiquitin ligases and their adaptors as a therapeutic strategy for metabolic diseases. Jeong Y, Oh AR, Jung YH, Gi H, Kim YU, Kim K. Exp Mol Med 55 2097-2104 (2023)
  77. The role of E3 ubiquitin ligases in bone homeostasis and related diseases. Dong Y, Chen Y, Ma G, Cao H. Acta Pharm Sin B 13 3963-3987 (2023)
  78. Ubiquitin-Dependent and Independent Proteasomal Degradation in Host-Pathogen Interactions. Bialek W, Collawn JF, Bartoszewski R. Molecules 28 6740 (2023)

Articles citing this publication (175)

  1. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, Bradner JE. Science 348 1376-1381 (2015)
  2. Structural basis of lenalidomide-induced CK1α degradation by the CRL4(CRBN) ubiquitin ligase. Petzold G, Fischer ES, Thomä NH. Nature 532 127-130 (2016)
  3. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. Donovan KA, An J, Nowak RP, Yuan JC, Fink EC, Berry BC, Ebert BL, Fischer ES. Elife 7 e38430 (2018)
  4. Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Pierce NW, Lee JE, Liu X, Sweredoski MJ, Graham RL, Larimore EA, Rome M, Zheng N, Clurman BE, Hess S, Shan SO, Deshaies RJ. Cell 153 206-215 (2013)
  5. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. Pines A, Vrouwe MG, Marteijn JA, Typas D, Luijsterburg MS, Cansoy M, Hensbergen P, Deelder A, de Groot A, Matsumoto S, Sugasawa K, Thoma N, Vermeulen W, Vrieling H, Mullenders L. J Cell Biol 199 235-249 (2012)
  6. Crystal structure of the human COP9 signalosome. Lingaraju GM, Bunker RD, Cavadini S, Hess D, Hassiepen U, Renatus M, Fischer ES, Thomä NH. Nature 512 161-165 (2014)
  7. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. Canning P, Cooper CDO, Krojer T, Murray JW, Pike ACW, Chaikuad A, Keates T, Thangaratnarajah C, Hojzan V, Marsden BD, Gileadi O, Knapp S, von Delft F, Bullock AN. J Biol Chem 288 7803-7814 (2013)
  8. HIV/simian immunodeficiency virus (SIV) accessory virulence factor Vpx loads the host cell restriction factor SAMHD1 onto the E3 ubiquitin ligase complex CRL4DCAF1. Ahn J, Hao C, Yan J, DeLucia M, Mehrens J, Wang C, Gronenborn AM, Skowronski J. J Biol Chem 287 12550-12558 (2012)
  9. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Zorba A, Nguyen C, Xu Y, Starr J, Borzilleri K, Smith J, Zhu H, Farley KA, Ding W, Schiemer J, Feng X, Chang JS, Uccello DP, Young JA, Garcia-Irrizary CN, Czabaniuk L, Schuff B, Oliver R, Montgomery J, Hayward MM, Coe J, Chen J, Niosi M, Luthra S, Shah JC, El-Kattan A, Qiu X, West GM, Noe MC, Shanmugasundaram V, Gilbert AM, Brown MF, Calabrese MF. Proc Natl Acad Sci U S A 115 E7285-E7292 (2018)
  10. WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. Xia P, Wang S, Du Y, Zhao Z, Shi L, Sun L, Huang G, Ye B, Li C, Dai Z, Hou N, Cheng X, Sun Q, Li L, Yang X, Fan Z. EMBO J 32 2685-2696 (2013)
  11. Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8. Scott DC, Sviderskiy VO, Monda JK, Lydeard JR, Cho SE, Harper JW, Schulman BA. Cell 157 1671-1684 (2014)
  12. Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Cavadini S, Fischer ES, Bunker RD, Potenza A, Lingaraju GM, Goldie KN, Mohamed WI, Faty M, Petzold G, Beckwith RE, Tichkule RB, Hassiepen U, Abdulrahman W, Pantelic RS, Matsumoto S, Sugasawa K, Stahlberg H, Thomä NH. Nature 531 598-603 (2016)
  13. Iterative Design and Optimization of Initially Inactive Proteolysis Targeting Chimeras (PROTACs) Identify VZ185 as a Potent, Fast, and Selective von Hippel-Lindau (VHL) Based Dual Degrader Probe of BRD9 and BRD7. Zoppi V, Hughes SJ, Maniaci C, Testa A, Gmaschitz T, Wieshofer C, Koegl M, Riching KM, Daniels DL, Spallarossa A, Ciulli A. J Med Chem 62 699-726 (2019)
  14. Structural basis for a reciprocal regulation between SCF and CSN. Enchev RI, Scott DC, da Fonseca PC, Schreiber A, Monda JK, Schulman BA, Peter M, Morris EP. Cell Rep 2 616-627 (2012)
  15. Deconjugation of Nedd8 from Cul1 is directly regulated by Skp1-F-box and substrate, and the COP9 signalosome inhibits deneddylated SCF by a noncatalytic mechanism. Emberley ED, Mosadeghi R, Deshaies RJ. J Biol Chem 287 29679-29689 (2012)
  16. Structural basis of lentiviral subversion of a cellular protein degradation pathway. Schwefel D, Groom HC, Boucherit VC, Christodoulou E, Walker PA, Stoye JP, Bishop KN, Taylor IA. Nature 505 234-238 (2014)
  17. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Słabicki M, Kozicka Z, Petzold G, Li YD, Manojkumar M, Bunker RD, Donovan KA, Sievers QL, Koeppel J, Suchyta D, Sperling AS, Fink EC, Gasser JA, Wang LR, Corsello SM, Sellar RS, Jan M, Gillingham D, Scholl C, Fröhling S, Golub TR, Fischer ES, Thomä NH, Ebert BL. Nature 585 293-297 (2020)
  18. Targeted inhibition of the COP9 signalosome for treatment of cancer. Schlierf A, Altmann E, Quancard J, Jefferson AB, Assenberg R, Renatus M, Jones M, Hassiepen U, Schaefer M, Kiffe M, Weiss A, Wiesmann C, Sedrani R, Eder J, Martoglio B. Nat Commun 7 13166 (2016)
  19. Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity. Puumalainen MR, Lessel D, Rüthemann P, Kaczmarek N, Bachmann K, Ramadan K, Naegeli H. Nat Commun 5 3695 (2014)
  20. CSN- and CAND1-dependent remodelling of the budding yeast SCF complex. Zemla A, Thomas Y, Kedziora S, Knebel A, Wood NT, Rabut G, Kurz T. Nat Commun 4 1641 (2013)
  21. Composition and Regulation of the Cellular Repertoire of SCF Ubiquitin Ligases. Reitsma JM, Liu X, Reichermeier KM, Moradian A, Sweredoski MJ, Hess S, Deshaies RJ. Cell 171 1326-1339.e14 (2017)
  22. RNF2 is recruited by WASH to ubiquitinate AMBRA1 leading to downregulation of autophagy. Xia P, Wang S, Huang G, Du Y, Zhu P, Li M, Fan Z. Cell Res 24 943-958 (2014)
  23. The nucleosome acidic patch plays a critical role in RNF168-dependent ubiquitination of histone H2A. Mattiroli F, Uckelmann M, Sahtoe DD, van Dijk WJ, Sixma TK. Nat Commun 5 3291 (2014)
  24. The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II. van der Weegen Y, Golan-Berman H, Mevissen TET, Apelt K, González-Prieto R, Goedhart J, Heilbrun EE, Vertegaal ACO, van den Heuvel D, Walter JC, Adar S, Luijsterburg MS. Nat Commun 11 2104 (2020)
  25. Tumor-infiltrating, interleukin-33-producing effector-memory CD8(+) T cells in resected hepatocellular carcinoma prolong patient survival. Brunner SM, Rubner C, Kesselring R, Martin M, Griesshammer E, Ruemmele P, Stempfl T, Teufel A, Schlitt HJ, Fichtner-Feigl S. Hepatology 61 1957-1967 (2015)
  26. Damaged DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA repair. Yeh JI, Levine AS, Du S, Chinte U, Ghodke H, Wang H, Shi H, Hsieh CL, Conway JF, Van Houten B, Rapić-Otrin V. Proc Natl Acad Sci U S A 109 E2737-46 (2012)
  27. The DDB1-DCAF1-Vpr-UNG2 crystal structure reveals how HIV-1 Vpr steers human UNG2 toward destruction. Wu Y, Zhou X, Barnes CO, DeLucia M, Cohen AE, Gronenborn AM, Ahn J, Calero G. Nat Struct Mol Biol 23 933-940 (2016)
  28. Structure of a glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface. Duda DM, Olszewski JL, Tron AE, Hammel M, Lambert LJ, Waddell MB, Mittag T, DeCaprio JA, Schulman BA. Mol Cell 47 371-382 (2012)
  29. Genome-wide screen identifies cullin-RING ligase machinery required for lenalidomide-dependent CRL4CRBN activity. Sievers QL, Gasser JA, Cowley GS, Fischer ES, Ebert BL. Blood 132 1293-1303 (2018)
  30. Pathogenic Role of the CRL4 Ubiquitin Ligase in Human Disease. Lee J, Zhou P. Front Oncol 2 21 (2012)
  31. Structural Basis for Substrate Selectivity of the E3 Ligase COP1. Uljon S, Xu X, Durzynska I, Stein S, Adelmant G, Marto JA, Pear WS, Blacklow SC. Structure 24 687-696 (2016)
  32. Ubiquitin ligation to F-box protein targets by SCF-RBR E3-E3 super-assembly. Horn-Ghetko D, Krist DT, Prabu JR, Baek K, Mulder MPC, Klügel M, Scott DC, Ovaa H, Kleiger G, Schulman BA. Nature 590 671-676 (2021)
  33. DNA damage detection in nucleosomes involves DNA register shifting. Matsumoto S, Cavadini S, Bunker RD, Grand RS, Potenza A, Rabl J, Yamamoto J, Schenk AD, Schübeler D, Iwai S, Sugasawa K, Kurumizaka H, Thomä NH. Nature 571 79-84 (2019)
  34. Crystal structure of KLHL3 in complex with Cullin3. Ji AX, Privé GG. PLoS One 8 e60445 (2013)
  35. Monoubiquitinated histone H2A destabilizes photolesion-containing nucleosomes with concomitant release of UV-damaged DNA-binding protein E3 ligase. Lan L, Nakajima S, Kapetanaki MG, Hsieh CL, Fagerburg M, Thickman K, Rodriguez-Collazo P, Leuba SH, Levine AS, Rapić-Otrin V. J Biol Chem 287 12036-12049 (2012)
  36. Insights into Cullin-RING E3 ubiquitin ligase recruitment: structure of the VHL-EloBC-Cul2 complex. Nguyen HC, Yang H, Fribourgh JL, Wolfe LS, Xiong Y. Structure 23 441-449 (2015)
  37. Blinded by the UV light: how the focus on transcription-coupled NER has distracted from understanding the mechanisms of Cockayne syndrome neurologic disease. Brooks PJ. DNA Repair (Amst) 12 656-671 (2013)
  38. Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle. Mosadeghi R, Reichermeier KM, Winkler M, Schreiber A, Reitsma JM, Zhang Y, Stengel F, Cao J, Kim M, Sweredoski MJ, Hess S, Leitner A, Aebersold R, Peter M, Deshaies RJ, Enchev RI. Elife 5 e12102 (2016)
  39. Damage sensor role of UV-DDB during base excision repair. Jang S, Kumar N, Beckwitt EC, Kong M, Fouquerel E, Rapić-Otrin V, Prasad R, Watkins SC, Khuu C, Majumdar C, David SS, Wilson SH, Bruchez MP, Opresko PL, Van Houten B. Nat Struct Mol Biol 26 695-703 (2019)
  40. Global site-specific neddylation profiling reveals that NEDDylated cofilin regulates actin dynamics. Vogl AM, Phu L, Becerra R, Giusti SA, Verschueren E, Hinkle TB, Bordenave MD, Adrian M, Heidersbach A, Yankilevich P, Stefani FD, Wurst W, Hoogenraad CC, Kirkpatrick DS, Refojo D, Sheng M. Nat Struct Mol Biol 27 210-220 (2020)
  41. KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR). Fei J, Chen J. J Biol Chem 287 35118-35126 (2012)
  42. Structural dynamics of the human COP9 signalosome revealed by cross-linking mass spectrometry and integrative modeling. Gutierrez C, Chemmama IE, Mao H, Yu C, Echeverria I, Block SA, Rychnovsky SD, Zheng N, Sali A, Huang L. Proc Natl Acad Sci U S A 117 4088-4098 (2020)
  43. Structural Insights into the Human Pre-mRNA 3'-End Processing Machinery. Zhang Y, Sun Y, Shi Y, Walz T, Tong L. Mol Cell 77 800-809.e6 (2020)
  44. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes. Chymkowitch P, Nguéa AP, Aanes H, Koehler CJ, Thiede B, Lorenz S, Meza-Zepeda LA, Klungland A, Enserink JM. Genome Res 25 897-906 (2015)
  45. Molecular determinants for recognition of divergent SAMHD1 proteins by the lentiviral accessory protein Vpx. Schwefel D, Boucherit VC, Christodoulou E, Walker PA, Stoye JP, Bishop KN, Taylor IA. Cell Host Microbe 17 489-499 (2015)
  46. Neurospora COP9 signalosome integrity plays major roles for hyphal growth, conidial development, and circadian function. Zhou Z, Wang Y, Cai G, He Q. PLoS Genet 8 e1002712 (2012)
  47. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. Gschweitl M, Ulbricht A, Barnes CA, Enchev RI, Stoffel-Studer I, Meyer-Schaller N, Huotari J, Yamauchi Y, Greber UF, Helenius A, Peter M. Elife 5 e13841 (2016)
  48. The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability. Zhang L, Lubin A, Chen H, Sun Z, Gong F. Cell Cycle 11 4378-4384 (2012)
  49. Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction. Winkler M, Niemeyer M, Hellmuth A, Janitza P, Christ G, Samodelov SL, Wilde V, Majovsky P, Trujillo M, Zurbriggen MD, Hoehenwarter W, Quint M, Calderón Villalobos LIA. Nat Commun 8 15706 (2017)
  50. ARID2 is a pomalidomide-dependent CRL4CRBN substrate in multiple myeloma cells. Yamamoto J, Suwa T, Murase Y, Tateno S, Mizutome H, Asatsuma-Okumura T, Shimizu N, Kishi T, Momose S, Kizaki M, Ito T, Yamaguchi Y, Handa H. Nat Chem Biol 16 1208-1217 (2020)
  51. CSNAP Is a Stoichiometric Subunit of the COP9 Signalosome. Rozen S, Füzesi-Levi MG, Ben-Nissan G, Mizrachi L, Gabashvili A, Levin Y, Ben-Dor S, Eisenstein M, Sharon M. Cell Rep 13 585-598 (2015)
  52. Identifying the hotspots on the top faces of WD40-repeat proteins from their primary sequences by β-bulges and DHSW tetrads. Wu XH, Wang Y, Zhuo Z, Jiang F, Wu YD. PLoS One 7 e43005 (2012)
  53. Inositol hexakisphosphate kinase-1 mediates assembly/disassembly of the CRL4-signalosome complex to regulate DNA repair and cell death. Rao F, Xu J, Khan AB, Gadalla MM, Cha JY, Xu R, Tyagi R, Dang Y, Chakraborty A, Snyder SH. Proc Natl Acad Sci U S A 111 16005-16010 (2014)
  54. Single-particle EM reveals extensive conformational variability of the Ltn1 E3 ligase. Lyumkis D, Doamekpor SK, Bengtson MH, Lee JW, Toro TB, Petroski MD, Lima CD, Potter CS, Carragher B, Joazeiro CA. Proc Natl Acad Sci U S A 110 1702-1707 (2013)
  55. Crossover localisation is regulated by the neddylation posttranslational regulatory pathway. Jahns MT, Vezon D, Chambon A, Pereira L, Falque M, Martin OC, Chelysheva L, Grelon M. PLoS Biol 12 e1001930 (2014)
  56. Composition, roles, and regulation of cullin-based ubiquitin e3 ligases. Choi CM, Gray WM, Mooney S, Hellmann H. Arabidopsis Book 12 e0175 (2014)
  57. Functional regulation of the DNA damage-recognition factor DDB2 by ubiquitination and interaction with xeroderma pigmentosum group C protein. Matsumoto S, Fischer ES, Yasuda T, Dohmae N, Iwai S, Mori T, Nishi R, Yoshino K, Sakai W, Hanaoka F, Thomä NH, Sugasawa K. Nucleic Acids Res 43 1700-1713 (2015)
  58. ARIH2 Is a Vif-Dependent Regulator of CUL5-Mediated APOBEC3G Degradation in HIV Infection. Hüttenhain R, Xu J, Burton LA, Gordon DE, Hultquist JF, Johnson JR, Satkamp L, Hiatt J, Rhee DY, Baek K, Crosby DC, Frankel AD, Marson A, Harper JW, Alpi AF, Schulman BA, Gross JD, Krogan NJ. Cell Host Microbe 26 86-99.e7 (2019)
  59. Letter IKZF1/3 and CRL4CRBN E3 ubiquitin ligase mutations and resistance to immunomodulatory drugs in multiple myeloma. Barrio S, Munawar U, Zhu YX, Giesen N, Shi CX, Viá MD, Sanchez R, Bruins L, Demler T, Müller N, Haertle L, Garitano A, Steinbrunn T, Danhof S, Cuenca I, Barrio-Garcia C, Braggio E, Rosenwald A, Martinez-Lopez J, Rasche L, Raab MS, Stewart AK, Einsele H, Stühmer T, Kortüm KM. Haematologica 105 e237-e241 (2020)
  60. A novel effect of thalidomide and its analogs: suppression of cereblon ubiquitination enhances ubiquitin ligase function. Liu Y, Huang X, He X, Zhou Y, Jiang X, Chen-Kiang S, Jaffrey SR, Xu G. FASEB J 29 4829-4839 (2015)
  61. Functional and clinical relevance of novel mutations in a large cohort of patients with Cockayne syndrome. Calmels N, Botta E, Jia N, Fawcett H, Nardo T, Nakazawa Y, Lanzafame M, Moriwaki S, Sugita K, Kubota M, Obringer C, Spitz MA, Stefanini M, Laugel V, Orioli D, Ogi T, Lehmann AR. J Med Genet 55 329-343 (2018)
  62. Structure-function analysis of the EF-hand protein centrin-2 for its intracellular localization and nucleotide excision repair. Nishi R, Sakai W, Tone D, Hanaoka F, Sugasawa K. Nucleic Acids Res 41 6917-6929 (2013)
  63. SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair. Akita M, Tak YS, Shimura T, Matsumoto S, Okuda-Shimizu Y, Shimizu Y, Nishi R, Saitoh H, Iwai S, Mori T, Ikura T, Sakai W, Hanaoka F, Sugasawa K. Sci Rep 5 10984 (2015)
  64. Structural basis of pyrimidine-pyrimidone (6-4) photoproduct recognition by UV-DDB in the nucleosome. Osakabe A, Tachiwana H, Kagawa W, Horikoshi N, Matsumoto S, Hasegawa M, Matsumoto N, Toga T, Yamamoto J, Hanaoka F, Thomä NH, Sugasawa K, Iwai S, Kurumizaka H. Sci Rep 5 16330 (2015)
  65. The minimal deneddylase core of the COP9 signalosome excludes the Csn6 MPN- domain. Pick E, Golan A, Zimbler JZ, Guo L, Sharaby Y, Tsuge T, Hofmann K, Wei N. PLoS One 7 e43980 (2012)
  66. A mental retardation-linked nonsense mutation in cereblon is rescued by proteasome inhibition. Xu G, Jiang X, Jaffrey SR. J Biol Chem 288 29573-29585 (2013)
  67. The COP9 signalosome: its regulation of cullin-based E3 ubiquitin ligases and role in photomorphogenesis. Nezames CD, Deng XW. Plant Physiol 160 38-46 (2012)
  68. CRL4(WDR23)-Mediated SLBP Ubiquitylation Ensures Histone Supply during DNA Replication. Brodersen MM, Lampert F, Barnes CA, Soste M, Piwko W, Peter M. Mol Cell 62 627-635 (2016)
  69. DNA damage-binding complex recruits HDAC1 to repress Bcl-2 transcription in human ovarian cancer cells. Zhao R, Han C, Eisenhauer E, Kroger J, Zhao W, Yu J, Selvendiran K, Liu X, Wani AA, Wang QE. Mol Cancer Res 12 370-380 (2014)
  70. Functional Genomics Identify Distinct and Overlapping Genes Mediating Resistance to Different Classes of Heterobifunctional Degraders of Oncoproteins. Shirasaki R, Matthews GM, Gandolfi S, de Matos Simoes R, Buckley DL, Raja Vora J, Sievers QL, Brüggenthies JB, Dashevsky O, Poarch H, Tang H, Bariteau MA, Sheffer M, Hu Y, Downey-Kopyscinski SL, Hengeveld PJ, Glassner BJ, Dhimolea E, Ott CJ, Zhang T, Kwiatkowski NP, Laubach JP, Schlossman RL, Richardson PG, Culhane AC, Groen RWJ, Fischer ES, Vazquez F, Tsherniak A, Hahn WC, Levy J, Auclair D, Licht JD, Keats JJ, Boise LH, Ebert BL, Bradner JE, Gray NS, Mitsiades CS. Cell Rep 34 108532 (2021)
  71. Molecular architecture of the ankyrin SOCS box family of Cul5-dependent E3 ubiquitin ligases. Muniz JR, Guo K, Kershaw NJ, Ayinampudi V, von Delft F, Babon JJ, Bullock AN. J Mol Biol 425 3166-3177 (2013)
  72. Patterns of substrate affinity, competition, and degradation kinetics underlie biological activity of thalidomide analogs. Sperling AS, Burgess M, Keshishian H, Gasser JA, Bhatt S, Jan M, Słabicki M, Sellar RS, Fink EC, Miller PG, Liddicoat BJ, Sievers QL, Sharma R, Adams DN, Olesinski EA, Fulciniti M, Udeshi ND, Kuhn E, Letai A, Munshi NC, Carr SA, Ebert BL. Blood 134 160-170 (2019)
  73. Robust cullin-RING ligase function is established by a multiplicity of poly-ubiquitylation pathways. Hill S, Reichermeier K, Scott DC, Samentar L, Coulombe-Huntington J, Izzi L, Tang X, Ibarra R, Bertomeu T, Moradian A, Sweredoski MJ, Caberoy N, Schulman BA, Sicheri F, Tyers M, Kleiger G. Elife 8 e51163 (2019)
  74. The organization of a CSN5-containing subcomplex of the COP9 signalosome. Kotiguda GG, Weinberg D, Dessau M, Salvi C, Serino G, Chamovitz DA, Hirsch JA. J Biol Chem 287 42031-42041 (2012)
  75. Combined Inhibition of NEDD8-Activating Enzyme and mTOR Suppresses NF2 Loss-Driven Tumorigenesis. Cooper J, Xu Q, Zhou L, Pavlovic M, Ojeda V, Moulick K, de Stanchina E, Poirier JT, Zauderer M, Rudin CM, Karajannis MA, Hanemann CO, Giancotti FG. Mol Cancer Ther 16 1693-1704 (2017)
  76. The COP9 signalosome is vital for timely repair of DNA double-strand breaks. Meir M, Galanty Y, Kashani L, Blank M, Khosravi R, Fernández-Ávila MJ, Cruz-García A, Star A, Shochot L, Thomas Y, Garrett LJ, Chamovitz DA, Bodine DM, Kurz T, Huertas P, Ziv Y, Shiloh Y. Nucleic Acids Res 43 4517-4530 (2015)
  77. Ubiquitin and TFIIH-stimulated DDB2 dissociation drives DNA damage handover in nucleotide excision repair. Ribeiro-Silva C, Sabatella M, Helfricht A, Marteijn JA, Theil AF, Vermeulen W, Lans H. Nat Commun 11 4868 (2020)
  78. Biophysical studies on interactions and assembly of full-size E3 ubiquitin ligase: suppressor of cytokine signaling 2 (SOCS2)-elongin BC-cullin 5-ring box protein 2 (RBX2). Bulatov E, Martin EM, Chatterjee S, Knebel A, Shimamura S, Konijnenberg A, Johnson C, Zinn N, Grandi P, Sobott F, Ciulli A. J Biol Chem 290 4178-4191 (2015)
  79. Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function. Scherer PC, Ding Y, Liu Z, Xu J, Mao H, Barrow JC, Wei N, Zheng N, Snyder SH, Rao F. Proc Natl Acad Sci U S A 113 3503-3508 (2016)
  80. Non-canonical ubiquitination of the cholesterol-regulated degron of squalene monooxygenase. Chua NK, Hart-Smith G, Brown AJ. J Biol Chem 294 8134-8147 (2019)
  81. Structural basis of specific H2A K13/K15 ubiquitination by RNF168. Horn V, Uckelmann M, Zhang H, Eerland J, Aarsman I, le Paige UB, Davidovich C, Sixma TK, van Ingen H. Nat Commun 10 1751 (2019)
  82. The Arabidopsis COP9 SIGNALOSOME INTERACTING F-BOX KELCH 1 protein forms an SCF ubiquitin ligase and regulates hypocotyl elongation. Franciosini A, Lombardi B, Iafrate S, Pecce V, Mele G, Lupacchini L, Rinaldi G, Kondou Y, Gusmaroli G, Aki S, Tsuge T, Deng XW, Matsui M, Vittorioso P, Costantino P, Serino G. Mol Plant 6 1616-1629 (2013)
  83. Activation of TNF-α/NF-κB axis enhances CRL4BDCAF11 E3 ligase activity and regulates cell cycle progression in human osteosarcoma cells. Zhang C, Chen B, Jiang K, Lao L, Shen H, Chen Z. Mol Oncol 12 476-494 (2018)
  84. Asymmetric repair of UV damage in nucleosomes imposes a DNA strand polarity on somatic mutations in skin cancer. Mao P, Smerdon MJ, Roberts SA, Wyrick JJ. Genome Res 30 12-21 (2020)
  85. DCAF1 (VprBP): emerging physiological roles for a unique dual-service E3 ubiquitin ligase substrate receptor. Schabla NM, Mondal K, Swanson PC. J Mol Cell Biol 11 725-735 (2019)
  86. Characterization of the interactions of PARP-1 with UV-damaged DNA in vivo and in vitro. Purohit NK, Robu M, Shah RG, Geacintov NE, Shah GM. Sci Rep 6 19020 (2016)
  87. FACT subunit Spt16 controls UVSSA recruitment to lesion-stalled RNA Pol II and stimulates TC-NER. Wienholz F, Zhou D, Turkyilmaz Y, Schwertman P, Tresini M, Pines A, van Toorn M, Bezstarosti K, Demmers JAA, Marteijn JA. Nucleic Acids Res 47 4011-4025 (2019)
  88. COP1 regulates plant growth and development in response to light at the post-translational level. Kim JY, Song JT, Seo HS. J Exp Bot 68 4737-4748 (2017)
  89. EZH2 has a non-catalytic and PRC2-independent role in stabilizing DDB2 to promote nucleotide excision repair. Koyen AE, Madden MZ, Park D, Minten EV, Kapoor-Vazirani P, Werner E, Pfister NT, Haji-Seyed-Javadi R, Zhang H, Xu J, Deng N, Duong DM, Pecen TJ, Frazier Z, Nagel ZD, Lazaro JB, Mouw KW, Seyfried NT, Moreno CS, Owonikoko TK, Deng X, Yu DS. Oncogene 39 4798-4813 (2020)
  90. Xeroderma pigmentosum group C protein interacts with histones: regulation by acetylated states of histone H3. Kakumu E, Nakanishi S, Shiratori HM, Kato A, Kobayashi W, Machida S, Yasuda T, Adachi N, Saito N, Ikura T, Kurumizaka H, Kimura H, Yokoi M, Sakai W, Sugasawa K. Genes Cells 22 310-327 (2017)
  91. A systematic genetic screen identifies new factors influencing centromeric heterochromatin integrity in fission yeast. Bayne EH, Bijos DA, White SA, de Lima Alves F, Rappsilber J, Allshire RC. Genome Biol 15 481 (2014)
  92. TRiC controls transcription resumption after UV damage by regulating Cockayne syndrome protein A. Pines A, Dijk M, Makowski M, Meulenbroek EM, Vrouwe MG, van der Weegen Y, Baltissen M, French PJ, van Royen ME, Luijsterburg MS, Mullenders LH, Vermeulen M, Vermeulen W, Pannu NS, van Attikum H. Nat Commun 9 1040 (2018)
  93. A chromatin scaffold for DNA damage recognition: how histone methyltransferases prime nucleosomes for repair of ultraviolet light-induced lesions. Gsell C, Richly H, Coin F, Naegeli H. Nucleic Acids Res 48 1652-1668 (2020)
  94. Drosophila COP9 signalosome subunit 7 interacts with multiple genomic loci to regulate development. Singer R, Atar S, Atias O, Oron E, Segal D, Hirsch JA, Tuller T, Orian A, Chamovitz DA. Nucleic Acids Res 42 9761-9770 (2014)
  95. HBx affects CUL4-DDB1 function in both positive and negative manners. Guo L, Wang X, Ren L, Zeng M, Wang S, Weng Y, Tang Z, Wang X, Tang Y, Hu H, Li M, Zhang C, Liu C. Biochem Biophys Res Commun 450 1492-1497 (2014)
  96. Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status. Bramasole L, Sinha A, Gurevich S, Radzinski M, Klein Y, Panat N, Gefen E, Rinaldi T, Jimenez-Morales D, Johnson J, Krogan NJ, Reis N, Reichmann D, Glickman MH, Pick E. Redox Biol 20 533-543 (2019)
  97. COP9 signalosome subunit Csn8 is involved in maintaining proper duration of the G1 phase. Liu C, Guo LQ, Menon S, Jin D, Pick E, Wang X, Deng XW, Wei N. J Biol Chem 288 20443-20452 (2013)
  98. CRL4AMBRA1 targets Elongin C for ubiquitination and degradation to modulate CRL5 signaling. Chen SH, Jang GM, Hüttenhain R, Gordon DE, Du D, Newton BW, Johnson JR, Hiatt J, Hultquist JF, Johnson TL, Liu YL, Burton LA, Ye J, Reichermeier KM, Stroud RM, Marson A, Debnath J, Gross JD, Krogan NJ. EMBO J 37 e97508 (2018)
  99. CSNAP, the smallest CSN subunit, modulates proteostasis through cullin-RING ubiquitin ligases. Füzesi-Levi MG, Fainer I, Ivanov Enchev R, Ben-Nissan G, Levin Y, Kupervaser M, Friedlander G, Salame TM, Nevo R, Peter M, Sharon M. Cell Death Differ 27 984-998 (2020)
  100. Cockayne syndrome: varied requirement of transcription-coupled nucleotide excision repair for the removal of three structurally different adducts from transcribed DNA. Kitsera N, Gasteiger K, Lühnsdorf B, Allgayer J, Epe B, Carell T, Khobta A. PLoS One 9 e94405 (2014)
  101. Novel CUL3 Variant Causing Familial Hyperkalemic Hypertension Impairs Regulation and Function of Ubiquitin Ligase Activity. Chatrathi HE, Collins JC, Wolfe LA, Markello TC, Adams DR, Gahl WA, Werner A, Sharma P. Hypertension 79 60-75 (2022)
  102. The COP9 signalosome is involved in the regulation of lipid metabolism and of transition metals uptake in Saccharomyces cerevisiae. Licursi V, Salvi C, De Cesare V, Rinaldi T, Mattei B, Fabbri C, Serino G, Bramasole L, Zimbler JZ, Pick E, Barnes BM, Bard M, Negri R. FEBS J 281 175-190 (2014)
  103. Molecular dynamics simulations elucidate the mode of protein recognition by Skp1 and the F-box domain in the SCF complex. Chandra Dantu S, Nathubhai Kachariya N, Kumar A. Proteins 84 159-171 (2016)
  104. Molecular mechanisms of xeroderma pigmentosum (XP) proteins. Koch SC, Simon N, Ebert C, Carell T. Q Rev Biophys 49 e5 (2016)
  105. Letter Ribonucleotides as nucleotide excision repair substrates. Cai Y, Geacintov NE, Broyde S. DNA Repair (Amst) 13 55-60 (2014)
  106. The Cockayne syndrome group A and B proteins are part of a ubiquitin-proteasome degradation complex regulating cell division. Paccosi E, Costanzo F, Costantino M, Balzerano A, Monteonofrio L, Soddu S, Prantera G, Brancorsini S, Egly JM, Proietti-De-Santis L. Proc Natl Acad Sci U S A 117 30498-30508 (2020)
  107. Direct binding of Cdt2 to PCNA is important for targeting the CRL4Cdt2 E3 ligase activity to Cdt1. Hayashi A, Giakoumakis NN, Heidebrecht T, Ishii T, Panagopoulos A, Caillat C, Takahara M, Hibbert RG, Suenaga N, Stadnik-Spiewak M, Takahashi T, Shiomi Y, Taraviras S, von Castelmur E, Lygerou Z, Perrakis A, Nishitani H. Life Sci Alliance 1 e201800238 (2018)
  108. Functional impacts of the ubiquitin-proteasome system on DNA damage recognition in global genome nucleotide excision repair. Sakai W, Yuasa-Sunagawa M, Kusakabe M, Kishimoto A, Matsui T, Kaneko Y, Akagi JI, Huyghe N, Ikura M, Ikura T, Hanaoka F, Yokoi M, Sugasawa K. Sci Rep 10 19704 (2020)
  109. Gossypol inhibits cullin neddylation by targeting SAG-CUL5 and RBX1-CUL1 complexes. Yu Q, Hu Z, Shen Y, Jiang Y, Pan P, Hou T, Pan ZQ, Huang J, Sun Y. Neoplasia 22 179-191 (2020)
  110. A novel cis-acting element from the 3'UTR of DNA damage-binding protein 2 mRNA links transcriptional and post-transcriptional regulation of gene expression. Melanson BD, Cabrita MA, Bose R, Hamill JD, Pan E, Brochu C, Marcellus KA, Zhao TT, Holcik M, McKay BC. Nucleic Acids Res 41 5692-5703 (2013)
  111. Modeling the CRL4A ligase complex to predict target protein ubiquitination induced by cereblon-recruiting PROTACs. Bai N, Riching KM, Makaju A, Wu H, Acker TM, Ou SC, Zhang Y, Shen X, Bulloch DN, Rui H, Gibson BW, Daniels DL, Urh M, Rock BM, Humphreys SC. J Biol Chem 298 101653 (2022)
  112. Novel inactivating mutations of the DCAF17 gene in American and Turkish families cause male infertility and female subfertility in the mouse model. Gurbuz F, Desai S, Diao F, Turkkahraman D, Wranitz F, Wood-Trageser M, Shin YH, Kotan LD, Jiang H, Witchel S, Gurtunca N, Yatsenko S, Mysliwec D, Topaloglu K, Rajkovic A. Clin Genet 93 853-859 (2018)
  113. The Antiresection Activity of the X Protein Encoded by Hepatitis Virus B. Ren L, Zeng M, Tang Z, Li M, Wang X, Xu Y, Weng Y, Wang X, Wang H, Guo L, Zuo B, Wang X, Wang S, Lou J, Tang Y, Mu D, Zheng N, Wu X, Han J, Carr AM, Jeggo P, Liu C. Hepatology 69 2546-2561 (2019)
  114. CSN5A Subunit of COP9 Signalosome Is Required for Resetting Transcriptional Stress Memory after Recurrent Heat Stress in Arabidopsis. Singh AK, Dhanapal S, Finkelshtein A, Chamovitz DA. Biomolecules 11 668 (2021)
  115. Can hyperthermic intraperitoneal chemotherapy efficiency be improved by blocking the DNA repair factor COP9 signalosome? Feist M, Huang X, Müller JM, Rau B, Dubiel W. Int J Colorectal Dis 29 673-680 (2014)
  116. Cullin 4A and 4B ubiquitin ligases interact with γ-tubulin and induce its polyubiquitination. Thirunavukarasou A, Govindarajalu G, Singh P, Bandi V, Muthu K, Baluchamy S. Mol Cell Biochem 401 219-228 (2015)
  117. Monitoring repair of UV-induced 6-4-photoproducts with a purified DDB2 protein complex. Dreze M, Calkins AS, Gálicza J, Echelman DJ, Schnorenberg MR, Fell GL, Iwai S, Fisher DE, Szüts D, Iglehart JD, Lazaro JB. PLoS One 9 e85896 (2014)
  118. Set them free: F-box protein exchange by Cand1. Flick K, Kaiser P. Cell Res 23 870-871 (2013)
  119. The CRL4DCAF1 cullin-RING ubiquitin ligase is activated following a switch in oligomerization state. Mohamed WI, Schenk AD, Kempf G, Cavadini S, Basters A, Potenza A, Abdul Rahman W, Rabl J, Reichermeier K, Thomä NH. EMBO J 40 e108008 (2021)
  120. Formation of alternative proteasomes: same lady, different cap? Pick E, Berman TS. FEBS Lett 587 389-393 (2013)
  121. Intellectual disability-associated dBRWD3 regulates gene expression through inhibition of HIRA/YEM-mediated chromatin deposition of histone H3.3. Chen WY, Shih HT, Liu KY, Shih ZS, Chen LK, Tsai TH, Chen MJ, Liu H, Tan BC, Chen CY, Lee HH, Loppin B, Aït-Ahmed O, Wu JT. EMBO Rep 16 528-538 (2015)
  122. Structural biology: Corralling a protein-degradation regulator. Deshaies RJ. Nature 512 145-146 (2014)
  123. Structural insights into Fe-S protein biogenesis by the CIA targeting complex. Kassube SA, Thomä NH. Nat Struct Mol Biol 27 735-742 (2020)
  124. Adaptive exchange sustains cullin-RING ubiquitin ligase networks and proper licensing of DNA replication. Zhang Y, Jost M, Pak RA, Lu D, Li J, Lomenick B, Garbis SD, Li CM, Weissman JS, Lipford JR, Deshaies RJ. Proc Natl Acad Sci U S A 119 e2205608119 (2022)
  125. E3 ligase autoinhibition by C-degron mimicry maintains C-degron substrate fidelity. Scott DC, King MT, Baek K, Gee CT, Kalathur R, Li J, Purser N, Nourse A, Chai SC, Vaithiyalingam S, Chen T, Lee RE, Elledge SJ, Kleiger G, Schulman BA. Mol Cell 83 770-786.e9 (2023)
  126. Molecular spectrum of excision repair cross-complementation group 8 gene defects in Chinese patients with Cockayne syndrome type A. Wang X, Huang Y, Yan M, Li J, Ding C, Jin H, Fang F, Yang Y, Wu B, Chen D. Sci Rep 7 13686 (2017)
  127. Structural insights into Cullin4-RING ubiquitin ligase remodelling by Vpr from simian immunodeficiency viruses. Banchenko S, Krupp F, Gotthold C, Bürger J, Graziadei A, O'Reilly FJ, Sinn L, Ruda O, Rappsilber J, Spahn CMT, Mielke T, Taylor IA, Schwefel D. PLoS Pathog 17 e1009775 (2021)
  128. The CRL4DCAF6 E3 ligase ubiquitinates CtBP1/2 to induce apoptotic signalling and promote intervertebral disc degeneration. Tseng C, Han Y, Lv Z, Song Q, Wang K, Shen H, Chen Z. J Mol Med (Berl) 101 171-181 (2023)
  129. Letter Whole genome CRISPR screening identifies TOP2B as a potential target for IMiD sensitization in multiple myeloma. Costacurta M, Vervoort SJ, Hogg SJ, Martin BP, Johnstone RW, Shortt J. Haematologica 106 2013-2017 (2021)
  130. Cockayne syndrome group A and ferrochelatase finely tune ribosomal gene transcription and its response to UV irradiation. Lanzafame M, Branca G, Landi C, Qiang M, Vaz B, Nardo T, Ferri D, Mura M, Iben S, Stefanini M, Peverali FA, Bini L, Orioli D. Nucleic Acids Res 49 10911-10930 (2021)
  131. Regulation of the Intranuclear Distribution of the Cockayne Syndrome Proteins. Iyama T, Okur MN, Golato T, McNeill DR, Lu H, Hamilton R, Raja A, Bohr VA, Wilson DM. Sci Rep 8 17490 (2018)
  132. SCFFbxw5 targets kinesin-13 proteins to facilitate ciliogenesis. Schweiggert J, Habeck G, Hess S, Mikus F, Beloshistov R, Meese K, Hata S, Knobeloch KP, Melchior F. EMBO J 40 e107735 (2021)
  133. A new CUL4B variant associated with a mild phenotype and an exceptional pattern of leukoencephalopathy. Weissbach S, Reinert MC, Altmüller J, Krätzner R, Thiele H, Rosenbaum T, Nürnberg P, Gärtner J. Am J Med Genet A 173 2803-2807 (2017)
  134. Letter An association study of CASQ1 gene polymorphisms and heat stroke. Li Y, Wang Y, Ma L. Genomics Proteomics Bioinformatics 12 127-132 (2014)
  135. Cooperative interaction between AAG and UV-DDB in the removal of modified bases. Jang S, Kumar N, Schaich MA, Zhong Z, van Loon B, Watkins SC, Van Houten B. Nucleic Acids Res 50 12856-12871 (2022)
  136. Histone deacetylation regulates nucleotide excision repair through an interaction with the XPC protein. Kusakabe M, Kakumu E, Kurihara F, Tsuchida K, Maeda T, Tada H, Kusao K, Kato A, Yasuda T, Matsuda T, Nakao M, Yokoi M, Sakai W, Sugasawa K. iScience 25 104040 (2022)
  137. IKK-Mediated Regulation of the COP9 Signalosome via Phosphorylation of CSN5. Zhang J, Zhao R, Yu C, Bryant CLN, Wu K, Liu Z, Ding Y, Zhao Y, Xue B, Pan ZQ, Li C, Huang L, Fang L. J Proteome Res 19 1119-1130 (2020)
  138. LEO1 is a partner for Cockayne syndrome protein B (CSB) in response to transcription-blocking DNA damage. Tiwari V, Kulikowicz T, Wilson DM, Bohr VA. Nucleic Acids Res 49 6331-6346 (2021)
  139. The CRBN, CUL4A and DDB1 Expression Predicts the Response to Immunomodulatory Drugs and Survival of Multiple Myeloma Patients. Barankiewicz J, Szumera-Ciećkiewicz A, Salomon-Perzyński A, Wieszczy P, Malenda A, Garbicz F, Prochorec-Sobieszek M, Misiewicz-Krzemińska I, Juszczyński P, Lech-Marańda E. J Clin Med 10 2683 (2021)
  140. A novel DDB2 mutation causes defective recognition of UV-induced DNA damages and prevalent equine squamous cell carcinoma. Chen L, Bellone RR, Wang Y, Singer-Berk M, Sugasawa K, Ford JM, Artandi SE. DNA Repair (Amst) 97 103022 (2021)
  141. Aberrant repair initiated by the adenine-DNA glycosylase does not play a role in UV-induced mutagenesis in Escherichia coli. Zutterling C, Mursalimov A, Talhaoui I, Koshenov Z, Akishev Z, Bissenbaev AK, Mazon G, Geacintov NE, Gasparutto D, Groisman R, Groisman R, Zharkov DO, Matkarimov BT, Saparbaev M. PeerJ 6 e6029 (2018)
  142. Atypical features and de novo heterozygous mutations in two siblings with Cockayne syndrome. Wu S, Liu Y, Zhang Q, Meng X, Huang L, Xu Z, Zhang C, Li Y, Chen T, Bai Z. Mol Genet Genomic Med 8 e1204 (2020)
  143. CSA Antisense Targeting Enhances Anticancer Drug Sensitivity in Breast Cancer Cells, including the Triple-Negative Subtype. Filippi S, Paccosi E, Balzerano A, Ferretti M, Poli G, Taborri J, Brancorsini S, Proietti-De-Santis L. Cancers (Basel) 14 1687 (2022)
  144. Cockayne syndrome without UV-sensitivity in Vietnamese siblings with novel ERCC8 variants. Duong NT, Dinh TH, Möhl BS, Hintze S, Quynh DH, Ha DTT, Ngoc ND, Dung VC, Miyake N, Hai NV, Matsumoto N, Meinke P. Aging (Albany NY) 14 5299-5310 (2022)
  145. DNA Repair. Carell T. Angew Chem Int Ed Engl 54 15330-15333 (2015)
  146. Deformable nature of various damaged DNA duplexes estimated by an electrochemical analysis on electrodes. Chiba J, Aoki S, Yamamoto J, Iwai S, Inouye M. Chem Commun (Camb) 50 11126-11128 (2014)
  147. Evolutionary conservation of the structure and function of meiotic Rec114-Mei4 and Mer2 complexes. Daccache D, De Jonge E, Liloku P, Mechleb K, Haddad M, Corthaut S, Sterckx YG, Volkov AN, Claeys Bouuaert C. Genes Dev 37 535-553 (2023)
  148. Heterogeneous clinical features in Cockayne syndrome patients and siblings carrying the same CSA mutations. Chikhaoui A, Kraoua I, Calmels N, Bouchoucha S, Obringer C, Zayoud K, Montagne B, M'rad R, Abdelhak S, Laugel V, Ricchetti M, Turki I, Yacoub-Youssef H. Orphanet J Rare Dis 17 121 (2022)
  149. Hypoxia-inducible CircPFKFB4 Promotes Breast Cancer Progression by Facilitating the CRL4DDB2 E3 Ubiquitin Ligase-mediated p27 Degradation. Chen H, Yang R, Xing L, Wang B, Liu D, Ou X, Deng Y, Jiang R, Chen J. Int J Biol Sci 18 3888-3907 (2022)
  150. Influence of a cis,syn-cyclobutane pyrimidine dimer damage on DNA conformation studied by molecular dynamics simulations. Knips A, Zacharias M. Biopolymers 103 215-222 (2015)
  151. Interaction between NSMCE4A and GPS1 links the SMC5/6 complex to the COP9 signalosome. Horváth A, Rona G, Pagano M, Jordan PW. BMC Mol Cell Biol 21 36 (2020)
  152. The COP9 signalosome inhibits Cullin-RING E3 ubiquitin ligases independently of its deneddylase activity. Suisse A, Békés M, Huang TT, Treisman JE. Fly (Austin) 12 118-126 (2018)
  153. The CUL4B-based E3 ubiquitin ligase regulates mitosis and brain development by recruiting phospho-specific DCAFs. Stier A, Gilberto S, Mohamed WI, Royall LN, Helenius J, Mikicic I, Sajic T, Beli P, Müller DJ, Jessberger S, Peter M. EMBO J 42 e112847 (2023)
  154. The Proteasome Lid Triggers COP9 Signalosome Activity during the Transition of Saccharomyces cerevisiae Cells into Quiescence. Bramasole L, Sinha A, Harshuk D, Cirigliano A, Gurevich S, Yu Z, Carmeli RL, Glickman MH, Rinaldi T, Pick E. Biomolecules 9 E449 (2019)
  155. The Rad9-Rad1-Hus1 DNA Repair Clamp is Found in Microsporidia. Mascarenhas Dos Santos AC, Julian AT, Pombert JF. Genome Biol Evol 14 evac053 (2022)
  156. Biophysical and functional study of CRL5Ozz, a muscle specific ubiquitin ligase complex. Campos Y, Nourse A, Tanwar A, Kalathur R, Bonten E, d'Azzo A. Sci Rep 12 7820 (2022)
  157. CRL4 ubiquitin ligase stimulates Fanconi anemia pathway-induced single-stranded DNA-RPA signaling. Codilupi T, Taube D, Naegeli H. BMC Cancer 19 1042 (2019)
  158. Discovery of a Novel DCAF1 Ligand Using a Drug-Target Interaction Prediction Model: Generalizing Machine Learning to New Drug Targets. Kimani SW, Owen J, Green SR, Li F, Li Y, Dong A, Brown PJ, Ackloo S, Kuter D, Yang C, MacAskill M, MacKinnon SS, Arrowsmith CH, Schapira M, Shahani V, Halabelian L. J Chem Inf Model 63 4070-4078 (2023)
  159. Insight into Viral Hijacking of CRL4 Ubiquitin Ligase through Structural Analysis of the pUL145-DDB1 Complex. Wick ET, Treadway CJ, Li Z, Nicely NI, Ren Z, Baldwin AS, Xiong Y, Harrison JS, Brown NG. J Virol 96 e0082622 (2022)
  160. Structural mechanism of CRL4-instructed STAT2 degradation via a novel cytomegaloviral DCAF receptor. Le-Trilling VTK, Banchenko S, Paydar D, Leipe PM, Binting L, Lauer S, Graziadei A, Klingen R, Gotthold C, Bürger J, Bracht T, Sitek B, Jan Lebbink R, Malyshkina A, Mielke T, Rappsilber J, Spahn CM, Voigt S, Trilling M, Schwefel D. EMBO J 42 e112351 (2023)
  161. The NEDD8 E3 ligase DCNL5 is phosphorylated by IKK alpha during Toll-like receptor activation. Thomas Y, Scott DC, Kristariyanto YA, Rinehart J, Clark K, Cohen P, Kurz T. PLoS One 13 e0199197 (2018)
  162. The Roles of Cullins E3 Ubiquitin Ligases in the Lipid Biosynthesis of the Green Microalgae Chlamydomonas reinhardtii. Luo Q, Zou X, Wang C, Li Y, Hu Z. Int J Mol Sci 22 4695 (2021)
  163. You can "tail" them apart: paralog-specific functions of CRL4B ubiquitin ligases during mitosis and brain development. Baxi A, Werner A. EMBO J 42 e114931 (2023)
  164. A Novel Missense Mutation in ERCC8 Co-Segregates with Cerebellar Ataxia in a Consanguineous Pakistani Family. Gauhar Z, Tejwani L, Abdullah U, Saeed S, Shafique S, Badshah M, Choi J, Dong W, Nelson-Williams C, Lifton RP, Lim J, Raja GK. Cells 11 3090 (2022)
  165. ASH1L-MRG15 methyltransferase deposits H3K4me3 and FACT for damage verification in nucleotide excision repair. Maritz C, Khaleghi R, Yancoskie MN, Diethelm S, Brülisauer S, Ferreira NS, Jiang Y, Sturla SJ, Naegeli H. Nat Commun 14 3892 (2023)
  166. Activity-based profiling of cullin-RING E3 networks by conformation-specific probes. Henneberg LT, Singh J, Duda DM, Baek K, Yanishevski D, Murray PJ, Mann M, Sidhu SS, Schulman BA. Nat Chem Biol 19 1513-1523 (2023)
  167. Automatic Inference of Sequence from Low-Resolution Crystallographic Data. Ben-Aharon Z, Levitt M, Kalisman N. Structure 26 1546-1554.e2 (2018)
  168. CAND1 inhibits Cullin-2-RING ubiquitin ligases for enhanced substrate specificity. Wang K, Diaz S, Li L, Lohman JR, Liu X. Nat Struct Mol Biol (2024)
  169. Detection of oxaliplatin- and cisplatin-DNA lesions requires different global genome repair mechanisms that affect their clinical efficacy. Slyskova J, Muniesa-Vargas A, da Silva IT, Drummond R, Park J, Häckes D, Poetsch I, Ribeiro-Silva C, Moretton A, Heffeter P, Schärer OD, Vermeulen W, Lans H, Loizou JI. NAR Cancer 5 zcad057 (2023)
  170. HOS15 represses flowering by promoting GIGANTEA degradation in response to low temperature in Arabidopsis. Ahn G, Park HJ, Jeong SY, Shin GI, Ji MG, Cha JY, Kim J, Kim MG, Yun DJ, Kim WY. Plant Commun 4 100570 (2023)
  171. HPVE6-USP46 Mediated Cdt2 Stabilization Reduces Set8 Mediated H4K20-Methylation to Induce Gene Expression Changes. Kiran S, Wilson B, Saha S, Graff JA, Dutta A. Cancers (Basel) 14 30 (2021)
  172. Immunofluorescence studies to dissect the impact of Cockayne syndrome A alterations on the protein interaction and cellular localization. Ghit A. J Genet Eng Biotechnol 19 88 (2021)
  173. Pulse-SILAC and Interactomics Reveal Distinct DDB1-CUL4-Associated Factors, Cellular Functions, and Protein Substrates. Raisch J, Dubois ML, Groleau M, Lévesque D, Burger T, Jurkovic CM, Brailly R, Marbach G, McKenna A, Barrette C, Jacques PÉ, Boisvert FM. Mol Cell Proteomics 22 100644 (2023)
  174. Rpb7 represses transcription-coupled nucleotide excision repair. Gong W, Li S. J Biol Chem 299 104969 (2023)
  175. circSNTB2 and CUL4A Induces Dysfunction of Nucleus Pulposus Cells by Competitively Binding miR-665. Jia Y, Huo X, Wu L, Zhang H, Xu W, Leng H. Biochem Genet (2023)