4agm Citations

Halogen-enriched fragment libraries as leads for drug rescue of mutant p53.

OpenAccess logo J Am Chem Soc 134 6810-8 (2012)
Related entries: 2j1w, 2j1x, 2j1y, 2j1z, 2j20, 2j21, 4agl, 4agn, 4ago, 4agp, 4agq

Cited: 99 times
EuropePMC logo PMID: 22439615

Abstract

The destabilizing p53 cancer mutation Y220C creates a druggable surface crevice. We developed a strategy exploiting halogen bonding for lead discovery to stabilize the mutant with small molecules. We designed halogen-enriched fragment libraries (HEFLibs) as starting points to complement classical approaches. From screening of HEFLibs and subsequent structure-guided design, we developed substituted 2-(aminomethyl)-4-ethynyl-6-iodophenols as p53-Y220C stabilizers. Crystal structures of their complexes highlight two key features: (i) a central scaffold with a robust binding mode anchored by halogen bonding of an iodine with a main-chain carbonyl and (ii) an acetylene linker, enabling the targeting of an additional subsite in the crevice. The best binders showed induction of apoptosis in a human cancer cell line with homozygous Y220C mutation. Our structural and biophysical data suggest a more widespread applicability of HEFLibs in drug discovery.

Articles - 4agm mentioned but not cited (3)

  1. Halogen-enriched fragment libraries as leads for drug rescue of mutant p53. Wilcken R, Liu X, Zimmermann MO, Rutherford TJ, Fersht AR, Joerger AC, Boeckler FM. J Am Chem Soc 134 6810-6818 (2012)
  2. Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant Y220C and show anticancer activity in p53-Y220C cell lines. Baud MGJ, Bauer MR, Verduci L, Dingler FA, Patel KJ, Horil Roy D, Joerger AC, Fersht AR. Eur J Med Chem 152 101-114 (2018)
  3. Exploring the potential of a structural alphabet-based tool for mining multiple target conformations and target flexibility insight. Regad L, Chéron JB, Triki D, Senac C, Flatters D, Camproux AC. PLoS One 12 e0182972 (2017)


Reviews citing this publication (22)

  1. The Halogen Bond. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem Rev 116 2478-2601 (2016)
  2. Drugging the p53 pathway: understanding the route to clinical efficacy. Khoo KH, Verma CS, Lane DP. Nat Rev Drug Discov 13 217-236 (2014)
  3. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Joerger AC, Fersht AR. Annu Rev Biochem 85 375-404 (2016)
  4. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Chem Rev 114 6844-6879 (2014)
  5. Structural and Drug Targeting Insights on Mutant p53. Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Cancers (Basel) 13 3344 (2021)
  6. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Wang H, Guo M, Wei H, Chen Y. Signal Transduct Target Ther 8 92 (2023)
  7. Chemical biology of protein citrullination by the protein A arginine deiminases. Mondal S, Thompson PR. Curr Opin Chem Biol 63 19-27 (2021)
  8. Chemical Variations on the p53 Reactivation Theme. Ribeiro CJ, Rodrigues CM, Moreira R, Santos MM. Pharmaceuticals (Basel) 9 E25 (2016)
  9. Roles of computational modelling in understanding p53 structure, biology, and its therapeutic targeting. Tan YS, Mhoumadi Y, Verma CS. J Mol Cell Biol 11 306-316 (2019)
  10. Advances in the design of a multipurpose fragment screening library. Wilde F, Link A. Expert Opin Drug Discov 8 597-606 (2013)
  11. Follow the Mutations: Toward Class-Specific, Small-Molecule Reactivation of p53. Loh SN. Biomolecules 10 E303 (2020)
  12. Making Connections: p53 and the Cathepsin Proteases as Co-Regulators of Cancer and Apoptosis. Soond SM, Savvateeva LV, Makarov VA, Gorokhovets NV, Townsend PA, Zamyatnin AA. Cancers (Basel) 12 E3476 (2020)
  13. Liquid chromatography enantioseparations of halogenated compounds on polysaccharide-based chiral stationary phases: role of halogen substituents in molecular recognition. Peluso P, Mamane V, Cossu S. Chirality 27 667-684 (2015)
  14. Therapeutic Strategies to Activate p53. Aguilar A, Wang S. Pharmaceuticals (Basel) 16 24 (2022)
  15. p53 and Zinc: A Malleable Relationship. Ha JH, Prela O, Carpizo DR, Loh SN. Front Mol Biosci 9 895887 (2022)
  16. Anticancer Therapeutic Strategies Targeting p53 Aggregation. Ferretti GDS, Quarti J, Dos Santos G, Rangel LP, Silva JL. Int J Mol Sci 23 11023 (2022)
  17. Disease-modifying therapy for proteinopathies: Can the exception become the rule? Bitan G. Prog Mol Biol Transl Sci 168 277-287 (2019)
  18. A role for bioinorganic chemistry in the reactivation of mutant p53 in cancer. Miller JJ, Kwan K, Gaiddon C, Storr T. J Biol Inorg Chem 27 393-403 (2022)
  19. Small-molecule correctors and stabilizers to target p53. Fallatah MMJ, Law FV, Chow WA, Kaiser P. Trends Pharmacol Sci 44 274-289 (2023)
  20. A new wave of innovations within the DNA damage response. Li Q, Qian W, Zhang Y, Hu L, Chen S, Xia Y. Signal Transduct Target Ther 8 338 (2023)
  21. Conformational stable alleno-acetylenic cyclophanes bearing chiral axes. Lahoz IR, Castro-Fernández S, Navarro-Vázquez A, Alonso-Gómez JL, Magdalena Cid M. Chirality 26 563-573 (2014)
  22. Principles and Applications of CF2X Moieties as Unconventional Halogen Bond Donors in Medicinal Chemistry, Chemical Biology, and Drug Discovery. Vaas S, Zimmermann MO, Schollmeyer D, Stahlecker J, Engelhardt MU, Rheinganz J, Drotleff B, Olfert M, Lämmerhofer M, Kramer M, Stehle T, Boeckler FM. J Med Chem 66 10202-10225 (2023)

Articles citing this publication (74)

  1. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS, Stockwell BR. Elife 3 e02523 (2014)
  2. Halogen Bonding in Organic Synthesis and Organocatalysis. Bulfield D, Huber SM. Chemistry 22 14434-14450 (2016)
  3. Small molecule induced reactivation of mutant p53 in cancer cells. Liu X, Wilcken R, Joerger AC, Chuckowree IS, Amin J, Spencer J, Fersht AR. Nucleic Acids Res 41 6034-6044 (2013)
  4. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Wassman CD, Baronio R, Demir Ö, Wallentine BD, Chen CK, Hall LV, Salehi F, Lin DW, Chung BP, Hatfield GW, Richard Chamberlin A, Luecke H, Lathrop RH, Kaiser P, Amaro RE. Nat Commun 4 1407 (2013)
  5. Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition. Wilcken R, Wang G, Boeckler FM, Fersht AR. Proc Natl Acad Sci U S A 109 13584-13589 (2012)
  6. Parametrization of halogen bonds in the CHARMM general force field: Improved treatment of ligand-protein interactions. Soteras Gutiérrez I, Lin FY, Vanommeslaeghe K, Lemkul JA, Armacost KA, Brooks CL, MacKerell AD. Bioorg Med Chem 24 4812-4825 (2016)
  7. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells. Bauer MR, Joerger AC, Fersht AR. Proc Natl Acad Sci U S A 113 E5271-80 (2016)
  8. Supramolecular hierarchy among halogen-bond donors. Aakeröy CB, Baldrighi M, Desper J, Metrangolo P, Resnati G. Chemistry 19 16240-16247 (2013)
  9. Identification of a Small Molecule Inhibitor of RAD52 by Structure-Based Selection. Sullivan K, Cramer-Morales K, McElroy DL, Ostrov DA, Haas K, Childers W, Hromas R, Skorski T. PLoS One 11 e0147230 (2016)
  10. Structure of the SAS-6 cartwheel hub from Leishmania major. van Breugel M, Wilcken R, McLaughlin SH, Rutherford TJ, Johnson CM. Elife 3 e01812 (2014)
  11. Multisite aggregation of p53 and implications for drug rescue. Wang G, Fersht AR. Proc Natl Acad Sci U S A 114 E2634-E2643 (2017)
  12. First-order rate-determining aggregation mechanism of p53 and its implications. Wang G, Fersht AR. Proc Natl Acad Sci U S A 109 13590-13595 (2012)
  13. A structure-guided molecular chaperone approach for restoring the transcriptional activity of the p53 cancer mutant Y220C. Bauer MR, Jones RN, Tareque RK, Springett B, Dingler FA, Verduci L, Patel KJ, Fersht AR, Joerger AC, Spencer J. Future Med Chem 11 2491-2504 (2019)
  14. Harnessing Fluorine-Sulfur Contacts and Multipolar Interactions for the Design of p53 Mutant Y220C Rescue Drugs. Bauer MR, Jones RN, Baud MG, Wilcken R, Boeckler FM, Fersht AR, Joerger AC, Spencer J. ACS Chem Biol 11 2265-2274 (2016)
  15. Using halogen bonds to address the protein backbone: a systematic evaluation. Wilcken R, Zimmermann MO, Lange A, Zahn S, Boeckler FM. J Comput Aided Mol Des 26 935-945 (2012)
  16. Modeling organochlorine compounds and the σ-hole effect using a polarizable multipole force field. Mu X, Wang Q, Wang LP, Fried SD, Piquemal JP, Dalby KN, Ren P. J Phys Chem B 118 6456-6465 (2014)
  17. Conformational dynamics is key to understanding loss-of-function of NQO1 cancer-associated polymorphisms and its correction by pharmacological ligands. Medina-Carmona E, Palomino-Morales RJ, Fuchs JE, Padín-Gonzalez E, Mesa-Torres N, Salido E, Timson DJ, Pey AL. Sci Rep 6 20331 (2016)
  18. The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53. Madan E, Parker TM, Bauer MR, Dhiman A, Pelham CJ, Nagane M, Kuppusamy ML, Holmes M, Holmes TR, Shaik K, Shee K, Kiparoidze S, Smith SD, Park YA, Gomm JJ, Jones LJ, Tomás AR, Cunha AC, Selvendiran K, Hansen LA, Fersht AR, Hideg K, Gogna R, Kuppusamy P. J Biol Chem 293 4262-4276 (2018)
  19. Targeting Cavity-Creating p53 Cancer Mutations with Small-Molecule Stabilizers: the Y220X Paradigm. Bauer MR, Krämer A, Settanni G, Jones RN, Ni X, Khan Tareque R, Fersht AR, Spencer J, Joerger AC. ACS Chem Biol 15 657-668 (2020)
  20. Halogen-π Interactions in the Cytochrome P450 Active Site: Structural Insights into Human CYP2B6 Substrate Selectivity. Shah MB, Liu J, Zhang Q, Stout CD, Halpert JR. ACS Chem Biol 12 1204-1210 (2017)
  21. Mechanism of initiation of aggregation of p53 revealed by Φ-value analysis. Wang G, Fersht AR. Proc Natl Acad Sci U S A 112 2437-2442 (2015)
  22. Discovery of Nanomolar-Affinity Pharmacological Chaperones Stabilizing the Oncogenic p53 Mutant Y220C. Stephenson Clarke JR, Douglas LR, Duriez PJ, Balourdas DI, Joerger AC, Khadiullina R, Bulatov E, Baud MGJ. ACS Pharmacol Transl Sci 5 1169-1180 (2022)
  23. Bifunctional ligand design for modulating mutant p53 aggregation in cancer. Miller JJ, Blanchet A, Orvain C, Nouchikian L, Reviriot Y, Clarke RM, Martelino D, Wilson D, Gaiddon C, Storr T. Chem Sci 10 10802-10814 (2019)
  24. Embracing the Diversity of Halogen Bonding Motifs in Fragment-Based Drug Discovery-Construction of a Diversity-Optimized Halogen-Enriched Fragment Library. Heidrich J, Sperl LE, Boeckler FM. Front Chem 7 9 (2019)
  25. Identifying druggable targets by protein microenvironments matching: application to transcription factors. Liu T, Altman RB. CPT Pharmacometrics Syst Pharmacol 3 e93 (2014)
  26. Force Field Model of Periodic Trends in Biomolecular Halogen Bonds. Scholfield MR, Ford MC, Vander Zanden CM, Billman MM, Ho PS, Rappé AK. J Phys Chem B 119 9140-9149 (2015)
  27. Research Support, U.S. Gov't, Non-P.H.S. Halogen bonding in medicinal chemistry: from observation to prediction. Ho PS. Future Med Chem 9 637-640 (2017)
  28. Halogen-enriched fragment libraries as chemical probes for harnessing halogen bonding in fragment-based lead discovery. Zimmermann MO, Lange A, Wilcken R, Cieslik MB, Exner TE, Joerger AC, Koch P, Boeckler FM. Future Med Chem 6 617-639 (2014)
  29. Regioselective deiodination of iodothyronamines, endogenous thyroid hormone derivatives, by deiodinase mimics. Mondal S, Mugesh G. Chemistry 20 11120-11128 (2014)
  30. Experimental and Theoretical Evaluation of the Ethynyl Moiety as a Halogen Bioisostere. Wilcken R, Zimmermann MO, Bauer MR, Rutherford TJ, Fersht AR, Joerger AC, Boeckler FM. ACS Chem Biol 10 2725-2732 (2015)
  31. Is There a Single Ideal Parameter for Halogen-Bonding-Based Lewis Acidity? Engelage E, Reinhard D, Huber SM. Chemistry 26 3843-3861 (2020)
  32. Modular and Selective Arylation of Aryl Germanes (C-GeEt3 ) over C-Bpin, C-SiR3 and Halogens Enabled by Light-Activated Gold Catalysis. Sherborne GJ, Gevondian AG, Funes-Ardoiz I, Dahiya A, Fricke C, Schoenebeck F. Angew Chem Int Ed Engl 59 15543-15548 (2020)
  33. An in silico algorithm for identifying stabilizing pockets in proteins: test case, the Y220C mutant of the p53 tumor suppressor protein. Bromley D, Bauer MR, Fersht AR, Daggett V. Protein Eng Des Sel 29 377-390 (2016)
  34. Dissecting the low catalytic capability of flavin-dependent halogenases. Phintha A, Prakinee K, Jaruwat A, Lawan N, Visitsatthawong S, Kantiwiriyawanitch C, Songsungthong W, Trisrivirat D, Chenprakhon P, Mulholland A, van Pée KH, Chitnumsub P, Chaiyen P. J Biol Chem 296 100068 (2021)
  35. Data quality in drug discovery: the role of analytical performance in ligand binding assays. Wätzig H, Oltmann-Norden I, Steinicke F, Alhazmi HA, Nachbar M, El-Hady DA, Albishri HM, Baumann K, Exner T, Böckler FM, El Deeb S. J Comput Aided Mol Des 29 847-865 (2015)
  36. Evaluating Drosophila p53 as a model system for studying cancer mutations. Herzog G, Joerger AC, Shmueli MD, Fersht AR, Gazit E, Segal D. J Biol Chem 287 44330-44337 (2012)
  37. Polysaccharide-based chiral stationary phases as halogen bond acceptors: A novel strategy for detection of stereoselective σ-hole bonds in solution. Peluso P, Mamane V, Dallocchio R, Dessì A, Villano R, Sanna D, Aubert E, Pale P, Cossu S. J Sep Sci 41 1247-1256 (2018)
  38. Halogen Bonding Increases the Potency and Isozyme Selectivity of Protein Arginine Deiminase 1 Inhibitors. Mondal S, Gong X, Zhang X, Salinger AJ, Zheng L, Sen S, Weerapana E, Zhang X, Thompson PR. Angew Chem Int Ed Engl 58 12476-12480 (2019)
  39. Multifunctional Compounds for Activation of the p53-Y220C Mutant in Cancer. Miller JJ, Orvain C, Jozi S, Clarke RM, Smith JR, Blanchet A, Gaiddon C, Warren JJ, Storr T. Chemistry 24 17734-17742 (2018)
  40. The properties of substituted 3D-aromatic neutral carboranes: the potential for σ-hole bonding. Lo R, Fanfrlík J, Lepšík M, Hobza P. Phys Chem Chem Phys 17 20814-20821 (2015)
  41. Wrapping effects within a proposed function-rescue strategy for the Y220C oncogenic mutation of protein p53. Accordino SR, Rodríguez Fris JA, Appignanesi GA. PLoS One 8 e55123 (2013)
  42. Benchmarking of Halogen Bond Strength in Solution with Nickel Fluorides: Bromine versus Iodine and Perfluoroaryl versus Perfluoroalkyl Donors. Pike SJ, Hunter CA, Brammer L, Perutz RN. Chemistry 25 9237-9241 (2019)
  43. Discovering protein-ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets. Mitchell MO. J Mol Model 23 287 (2017)
  44. Markov state models and NMR uncover an overlooked allosteric loop in p53. Barros EP, Demir Ö, Soto J, Cocco MJ, Amaro RE. Chem Sci 12 1891-1900 (2020)
  45. Structure-based design, synthesis and crystallization of 2-arylquinazolines as lipid pocket ligands of p38α MAPK. Bührmann M, Wiedemann BM, Müller MP, Hardick J, Ecke M, Rauh D. PLoS One 12 e0184627 (2017)
  46. Hot-spot identification on a broad class of proteins and RNA suggest unifying principles of molecular recognition. Kulp JL, Cloudsdale IS, Kulp JL, Guarnieri F. PLoS One 12 e0183327 (2017)
  47. Orthogonal Stability and Reactivity of Aryl Germanes Enables Rapid and Selective (Multi)Halogenations. Fricke C, Deckers K, Schoenebeck F. Angew Chem Int Ed Engl 59 18717-18722 (2020)
  48. Perspectives of Halogen Bonding Description in Scoring Functions and QSAR/QSPR: Substituent Effects in Aromatic Core. Titov OI, Shulga DA, Palyulin VA, Zefirov NS. Mol Inform 34 404-416 (2015)
  49. Solving the enigma of weak fluorine contacts in the solid state: a periodic DFT study of fluorinated organic crystals. Levina EO, Chernyshov IY, Voronin AP, Alekseiko LN, Stash AI, Vener MV. RSC Adv 9 12520-12537 (2019)
  50. The role of the σ-holes in stability of non-bonded chalcogenidebenzene interactions: the ground and excited states. Sedlak R, Eyrilmez SM, Hobza P, Nachtigallova D. Phys Chem Chem Phys 20 299-306 (2017)
  51. Hybrid Molecular Dynamics for Elucidating Cooperativity Between Halogen Bond and Water Molecules During the Interaction of p53-Y220C and the PhiKan5196 Complex. Dong TG, Peng H, He XF, Wang X, Gao J. Front Chem 8 344 (2020)
  52. Modeling halogen bonding with planewave density functional theory: Accuracy and challenges. Ang SJ, Ser CT, Wong MW. J Comput Chem 40 1829-1835 (2019)
  53. Modular Generation of (Iodinated) Polyarenes Using Triethylgermane as Orthogonal Masking Group. Kreisel T, Mendel M, Queen AE, Deckers K, Hupperich D, Riegger J, Fricke C, Schoenebeck F. Angew Chem Int Ed Engl 61 e202201475 (2022)
  54. Quadruple Target Evaluation of Diversity-Optimized Halogen-Enriched Fragments (HEFLibs) Reveals Substantial Ligand Efficiency for AP2-Associated Protein Kinase 1 (AAK1). Dammann M, Kramer M, Zimmermann MO, Boeckler FM. Front Chem 9 815567 (2021)
  55. Revisiting a challenging p53 binding site: a diversity-optimized HEFLib reveals diverse binding modes in T-p53C-Y220C. Stahlecker J, Klett T, Schwer M, Jaag S, Dammann M, Ernst LN, Braun MB, Zimmermann MO, Kramer M, Lämmerhofer M, Stehle T, Coles M, Boeckler FM. RSC Med Chem 13 1575-1586 (2022)
  56. Tumorigenic p53 mutants undergo common structural disruptions including conversion to α-sheet structure. Bromley D, Daggett V. Protein Sci 29 1983-1999 (2020)
  57. σ-Hole···π and lone pair···π interactions in benzylic halides. Montoro T, Tardajos G, Guerrero A, Torres Mdel R, Salgado C, Fernández I, Osío Barcina J. Org Biomol Chem 13 6194-6202 (2015)
  58. 3-Chlorotyramine Acting as Ligand of the D2 Dopamine Receptor. Molecular Modeling, Synthesis and D2 Receptor Affinity. Angelina E, Andujar S, Moreno L, Garibotto F, Párraga J, Peruchena N, Cabedo N, Villecco M, Cortes D, Enriz RD. Mol Inform 34 28-43 (2015)
  59. Concerted halogen bonding and orthogonal metal-halogen interactions in dimers of lithium formamidinate and halogenated formamidines: an ab initio study. Parra RD. Molecules 19 1069-1084 (2014)
  60. Iodide Discrimination by Tetra-Iodotriazole Halogen Bonding Interlocked Hosts. Klein HA, Beer PD. Chemistry 25 3125-3130 (2019)
  61. Synthesis and Antiproliferative Effect of Halogenated Coumarin Derivatives. Dettori T, Sanna G, Cocco A, Serreli G, Deiana M, Palmas V, Onnis V, Pilia L, Melis N, Moi D, Caria P, Secci F. Molecules 27 8897 (2022)
  62. Synthesis, SAR and molecular docking study of novel non-β-lactam inhibitors of TEM type β-lactamase. Antipin RL, Beshnova DA, Petrov RA, Shiryaeva AS, Andreeva IP, Grigorenko VG, Rubtsova MY, Majouga AG, Lamzin VS, Egorov AM. Bioorg Med Chem Lett 27 1588-1592 (2017)
  63. Chalcones as Anti-Glioblastoma Stem Cell Agent Alone or as Nanoparticle Formulation Using Carbon Dots as Nanocarrier. Veliz EA, Kaplina A, Hettiarachchi SD, Yoham AL, Matta C, Safar S, Sankaran M, Abadi EL, Cilingir EK, Vallejo FA, Walters WM, Vanni S, Leblanc RM, Graham RM. Pharmaceutics 14 1465 (2022)
  64. Discovery of novel druggable pockets on polyomavirus VP1 through crystallographic fragment-based screening to develop capsid assembly inhibitors. Osipov EM, Munawar AH, Beelen S, Fearon D, Douangamath A, Wild C, Weeks SD, Van Aerschot A, von Delft F, Strelkov SV. RSC Chem Biol 3 1013-1027 (2022)
  65. Halogen bonding for the design of inhibitors by targeting the S1 pocket of serine proteases. Jiang L, Zhang X, Zhou Y, Chen Y, Luo Z, Li J, Yuan C, Huang M. RSC Adv 8 28189-28197 (2018)
  66. Hydroquinones Including Tetrachlorohydroquinone Inhibit Candida albicans Biofilm Formation by Repressing Hyphae-Related Genes. Kim YG, Lee JH, Park S, Khadke SK, Shim JJ, Lee J. Microbiol Spectr 10 e0253622 (2022)
  67. AI-powered discovery of a novel p53-Y220C reactivator. Zhou S, Chai D, Wang X, Neeli P, Yu X, Davtyan A, Young K, Li Y. Front Oncol 13 1229696 (2023)
  68. Acetylation Targeting Chimera Enables Acetylation of the Tumor Suppressor p53. Kabir M, Sun N, Hu X, Martin TC, Yi J, Zhong Y, Xiong Y, Kaniskan HÜ, Gu W, Parsons R, Jin J. J Am Chem Soc 145 14932-14944 (2023)
  69. Analyzing disease-associated protein structures with visual analytics. Bromley D, Daggett V. AMIA Jt Summits Transl Sci Proc 2013 33 (2013)
  70. Crystal structures of four δ-keto esters and a Cambridge Structural Database analysis of cyano-halogen interactions. Kamal K, Maurya HK, Gupta A, Vasudev PG. Acta Crystallogr C Struct Chem 71 921-928 (2015)
  71. Halo Library, a Tool for Rapid Identification of Ligand Binding Sites on Proteins Using Crystallographic Fragment Screening. Chopra A, Bauman JD, Ruiz FX, Arnold E. J Med Chem 66 6013-6024 (2023)
  72. In Vitro α-Glucosidase and α-Amylase Inhibition, Cytotoxicity and Free Radical Scavenging Profiling of the 6-Halogeno and Mixed 6,8-Dihalogenated 2-Aryl-4-methyl-1,2-dihydroquinazoline 3-Oxides. Magwaza NM, More GK, Gildenhuys S, Mphahlele MJ. Antioxidants (Basel) 12 1971 (2023)
  73. Synthesis of Amino Acids Bearing Halodifluoromethyl Moieties and Their Application to p53-Derived Peptides Binding to Mdm2/Mdm4. Vaas S, Zimmermann MO, Klett T, Boeckler FM. Drug Des Devel Ther 17 1247-1274 (2023)
  74. Weak hydrogen and halogen bonding in 4-[(2,2-difluoroethoxy)methyl]pyridinium iodide and 4-[(3-chloro-2,2,3,3-tetrafluoropropoxy)methyl]pyridinium iodide. Lu N, Wei RJ, Chiang HF, Thrasher JS, Wen YS, Liu LK. Acta Crystallogr C Struct Chem 73 682-687 (2017)


Related citations provided by authors (1)

  1. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs.. Joerger AC, Ang HC, Fersht AR Proc Natl Acad Sci U S A 103 15056-61 (2006)