4ahi Citations

Structural and molecular insights into the mechanism of action of human angiogenin-ALS variants in neurons.

OpenAccess logo Nat Commun 3 1121 (2012)
Related entries: 4ahd, 4ahe, 4ahf, 4ahg, 4ahh, 4ahj, 4ahk, 4ahl, 4ahm, 4ahn, 4aoh

Cited: 55 times
EuropePMC logo PMID: 23047679

Abstract

Mutations in angiogenin (ANG), a member of the ribonuclease A superfamily, are associated with amyotrophic lateral sclerosis (ALS; sporadic and familial) and Parkinson's disease. We have previously shown that ANG is expressed in neurons during neuro-ectodermal differentiation, and that it has both neurotrophic and neuroprotective functions. Here we report the atomic resolution structure of native ANG and 11 ANG-ALS variants. We correlate the structural changes to the effects on neuronal survival and the ability to induce stress granules in neuronal cell lines. ANG-ALS variants that affect the structure of the catalytic site and either decrease or increase the RNase activity affect neuronal survival. Neuronal cell lines expressing the ANG-ALS variants also lack the ability to form stress granules. Our structure-function studies on these ANG-ALS variants are the first to provide insights into the cellular and molecular mechanisms underlying their role in ALS.

Articles - 4ahi mentioned but not cited (1)

  1. Structural and molecular insights into the mechanism of action of human angiogenin-ALS variants in neurons. Thiyagarajan N, Ferguson R, Subramanian V, Acharya KR. Nat Commun 3 1121 (2012)


Reviews citing this publication (16)

  1. A census of human RNA-binding proteins. Gerstberger S, Hafner M, Tuschl T. Nat Rev Genet 15 829-845 (2014)
  2. Stress granules in neurodegeneration--lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. Bentmann E, Haass C, Dormann D. FEBS J 280 4348-4370 (2013)
  3. Three decades of research on angiogenin: a review and perspective. Sheng J, Xu Z. Acta Biochim Biophys Sin (Shanghai) 48 399-410 (2016)
  4. Immune Modulation by Human Secreted RNases at the Extracellular Space. Lu L, Li J, Moussaoui M, Boix E. Front Immunol 9 1012 (2018)
  5. Genetics of Amyotrophic Lateral Sclerosis. Ghasemi M, Brown RH. Cold Spring Harb Perspect Med 8 a024125 (2018)
  6. On the expanding roles of tRNA fragments in modulating cell behavior. Magee R, Rigoutsos I. Nucleic Acids Res 48 9433-9448 (2020)
  7. Altered mRNP granule dynamics in FTLD pathogenesis. Bowden HA, Dormann D. J Neurochem 138 Suppl 1 112-133 (2016)
  8. Relationships between Stress Granules, Oxidative Stress, and Neurodegenerative Diseases. Chen L, Chen L, Liu B. Oxid Med Cell Longev 2017 1809592 (2017)
  9. A Systematic Review of Suggested Molecular Strata, Biomarkers and Their Tissue Sources in ALS. Vijayakumar UG, Milla V, Cynthia Stafford MY, Bjourson AJ, Duddy W, Duguez SM. Front Neurol 10 400 (2019)
  10. Generation of 2',3'-Cyclic Phosphate-Containing RNAs as a Hidden Layer of the Transcriptome. Shigematsu M, Kawamura T, Kirino Y. Front Genet 9 562 (2018)
  11. Recent progress in the genetics of motor neuron disease. Finsterer J, Burgunder JM. Eur J Med Genet 57 103-112 (2014)
  12. A Systematic Review of Genotype-Phenotype Correlation across Cohorts Having Causal Mutations of Different Genes in ALS. Connolly O, Le Gall L, McCluskey G, Donaghy CG, Duddy WJ, Duguez S. J Pers Med 10 E58 (2020)
  13. Angiogenin and tRNA fragments in Parkinson's disease and neurodegeneration. Prehn JHM, Jirström E. Acta Pharmacol Sin 41 442-446 (2020)
  14. Clinical neurogenetics: amyotrophic lateral sclerosis. Harms MB, Baloh RH. Neurol Clin 31 929-950 (2013)
  15. Biological Activities of Secretory RNases: Focus on Their Oligomerization to Design Antitumor Drugs. Gotte G, Menegazzi M. Front Immunol 10 2626 (2019)
  16. A novel ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases. Wang YN, Lee HH, Hung MC. J Biomed Sci 25 83 (2018)

Articles citing this publication (38)

  1. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Saikia M, Jobava R, Parisien M, Putnam A, Krokowski D, Gao XH, Guan BJ, Yuan Y, Jankowsky E, Feng Z, Hu GF, Pusztai-Carey M, Gorla M, Sepuri NB, Pan T, Hatzoglou M. Mol Cell Biol 34 2450-2463 (2014)
  2. Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin to control growth and survival. Pizzo E, Sarcinelli C, Sheng J, Fusco S, Formiggini F, Netti P, Yu W, D'Alessio G, Hu GF. J Cell Sci 126 4308-4319 (2013)
  3. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics. Gal J, Kuang L, Barnett KR, Zhu BZ, Shissler SC, Korotkov KV, Hayward LJ, Kasarskis EJ, Zhu H. Acta Neuropathol 132 563-576 (2016)
  4. Oxidative stress diverts tRNA synthetase to nucleus for protection against DNA damage. Wei N, Shi Y, Truong LN, Fisch KM, Xu T, Gardiner E, Fu G, Hsu YO, Kishi S, Su AI, Wu X, Yang XL. Mol Cell 56 323-332 (2014)
  5. Endothelial Progenitor Cell Secretome and Oligovascular Repair in a Mouse Model of Prolonged Cerebral Hypoperfusion. Maki T, Morancho A, Martinez-San Segundo P, Hayakawa K, Takase H, Liang AC, Gabriel-Salazar M, Medina-Gutiérrez E, Washida K, Montaner J, Lok J, Lo EH, Arai K, Rosell A. Stroke 49 1003-1010 (2018)
  6. Prediction of functional loss of human angiogenin mutants associated with ALS by molecular dynamics simulations. Padhi AK, Jayaram B, Gomes J. Sci Rep 3 1225 (2013)
  7. Angiogenin Mediates Cell-Autonomous Translational Control under Endoplasmic Reticulum Stress and Attenuates Kidney Injury. Mami I, Bouvier N, El Karoui K, Gallazzini M, Rabant M, Laurent-Puig P, Li S, Tharaux PL, Beaune P, Thervet E, Chevet E, Hu GF, Pallet N. J Am Soc Nephrol 27 863-876 (2016)
  8. Chronically stressed or stress-preconditioned neurons fail to maintain stress granule assembly. Shelkovnikova TA, Dimasi P, Kukharsky MS, An H, Quintiero A, Schirmer C, Buée L, Galas MC, Buchman VL. Cell Death Dis 8 e2788 (2017)
  9. Structural insights into human angiogenin variants implicated in Parkinson's disease and Amyotrophic Lateral Sclerosis. Bradshaw WJ, Rehman S, Pham TT, Thiyagarajan N, Lee RL, Subramanian V, Acharya KR. Sci Rep 7 41996 (2017)
  10. Angiogenin Prevents Progranulin A9D Mutation-Induced Neuronal-Like Cell Apoptosis Through Cleaving tRNAs into tiRNAs. Li S, Chen Y, Sun D, Bai R, Gao X, Yang Y, Sheng J, Xu Z. Mol Neurobiol 55 1338-1351 (2018)
  11. Angiogenin activates the astrocytic Nrf2/antioxidant-response element pathway and thereby protects murine neurons from oxidative stress. Hoang TT, Johnson DA, Raines RT, Johnson JA. J Biol Chem 294 15095-15103 (2019)
  12. Identification and characterization of novel and rare susceptible variants in Indian amyotrophic lateral sclerosis patients. Narain P, Padhi AK, Dave U, Mishra D, Bhatia R, Vivekanandan P, Gomes J. Neurogenetics 20 197-208 (2019)
  13. The cellular uptake of angiogenin, an angiogenic and neurotrophic factor is through multiple pathways and largely dynamin independent. Ferguson R, Subramanian V. PLoS One 13 e0193302 (2018)
  14. Ribonuclease 5 facilitates corneal endothelial wound healing via activation of PI3-kinase/Akt pathway. Kim KW, Park SH, Lee SJ, Kim JC. Sci Rep 6 31162 (2016)
  15. A Tunable Nanoplatform of Nanogold Functionalised with Angiogenin Peptides for Anti-Angiogenic Therapy of Brain Tumours. Naletova I, Cucci LM, D'Angeli F, Anfuso CD, Magrì A, La Mendola D, Lupo G, Satriano C. Cancers (Basel) 11 E1322 (2019)
  16. Fast prediction of deleterious angiogenin mutations causing amyotrophic lateral sclerosis. Padhi AK, Vasaikar SV, Jayaram B, Gomes J. FEBS Lett 587 1762-1766 (2013)
  17. Crystal structures of murine angiogenin-2 and -3-probing 'structure--function' relationships amongst angiogenin homologues. Iyer S, Holloway DE, Acharya KR. FEBS J 280 302-318 (2013)
  18. PA6 Stromal Cell Co-Culture Enhances SH-SY5Y and VSC4.1 Neuroblastoma Differentiation to Mature Phenotypes. Ferguson R, Subramanian V. PLoS One 11 e0159051 (2016)
  19. 5'ValCAC tRNA fragment generated as part of a protective angiogenin response provides prognostic value in amyotrophic lateral sclerosis. Hogg MC, Rayner M, Susdalzew S, Monsefi N, Crivello M, Woods I, Resler A, Blackbourn L, Fabbrizio P, Trolese MC, Nardo G, Bendotti C, van den Berg LH, van Es MA, Prehn JHM. Brain Commun 2 fcaa138 (2020)
  20. A droplet-based fluorescence polarization immunoassay (dFPIA) platform for rapid and quantitative analysis of biomarkers. Choi JW, Kim GJ, Lee S, Kim J, deMello AJ, Chang SI. Biosens Bioelectron 67 497-502 (2015)
  21. Evidence for Novel Action at the Cell-Binding Site of Human Angiogenin Revealed by Heteronuclear NMR Spectroscopy, in silico and in vivo Studies. Chatzileontiadou DSM, Tsika AC, Diamantopoulou Z, Delbé J, Badet J, Courty J, Skamnaki VT, Parmenopoulou V, Komiotis D, Hayes JM, Spyroulias GA, Leonidas DD. ChemMedChem 13 259-269 (2018)
  22. Loss of angiogenin function is related to earlier ALS onset and a paradoxical increase in ALS duration. Aluri KC, Salisbury JP, Prehn JHM, Agar JN. Sci Rep 10 3715 (2020)
  23. Letter The ammonium sulfate inhibition of human angiogenin. Chatzileontiadou DS, Tsirkone VG, Dossi K, Kassouni AG, Liggri PG, Kantsadi AL, Stravodimos GA, Balatsos NA, Skamnaki VT, Leonidas DD. FEBS Lett 590 3005-3018 (2016)
  24. The dual binding site of angiogenin and its inhibition mechanism: the crystal structure of the rat angiogenin-heparin complex. Yeo KJ, Hwang E, Min KM, Jee JG, Lee CK, Hwang KY, Jeon YH, Chang SI, Cheong HK. Chem Commun (Camb) 50 12966-12969 (2014)
  25. Crystal structure of human angiogenin with an engineered loop exhibits conformational flexibility at the functional regions of the molecule. Thiyagarajan N, Acharya KR. FEBS Open Bio 3 65-70 (2013)
  26. Dimerization of Human Angiogenin and of Variants Involved in Neurodegenerative Diseases. Fasoli S, Bettin I, Montioli R, Fagagnini A, Peterle D, Laurents DV, Gotte G. Int J Mol Sci 22 10068 (2021)
  27. Angiogenin mutations in Hungarian patients with amyotrophic lateral sclerosis: Clinical, genetic, computational, and functional analyses. Tripolszki K, Danis J, Padhi AK, Gomes J, Bozó R, Nagy ZF, Nagy D, Klivényi P, Engelhardt JI, Széll M. Brain Behav 9 e01293 (2019)
  28. Rare Angiogenin and Ribonuclease 4 variants associated with amyotrophic lateral sclerosis exhibit loss-of-function: a comprehensive in silico study. Padhi AK, Narain P, Gomes J. Metab Brain Dis 34 1661-1677 (2019)
  29. The catalytic activity and secretion of zebrafish RNases are essential for their in vivo function in motor neurons and vasculature. Ferguson R, Holloway DE, Chandrasekhar A, Acharya KR, Subramanian V. Sci Rep 9 1107 (2019)
  30. Angiogenin promotes angiogenesis via the endonucleolytic decay of miR-141 in colorectal cancer. Weng C, Dong H, Bai R, Sheng J, Chen G, Ding K, Lin W, Chen J, Xu Z. Mol Ther Nucleic Acids 27 1010-1022 (2022)
  31. Mutational analysis of angiogenin gene in Parkinson's disease. Chen ML, Wu RM, Tai CH, Lin CH. PLoS One 9 e112661 (2014)
  32. NMR Characterization of Angiogenin Variants and tRNAAla Products Impacting Aberrant Protein Oligomerization. Fagagnini A, Garavís M, Gómez-Pinto I, Fasoli S, Gotte G, Laurents DV. Int J Mol Sci 22 1439 (2021)
  33. Properties that rank protein:protein docking poses with high accuracy. Simões ICM, Coimbra JTS, Neves RPP, Costa IPD, Ramos MJ, Fernandes PA. Phys Chem Chem Phys 20 20927-20942 (2018)
  34. ANGDelMut - a web-based tool for predicting and analyzing functional loss mechanisms of amyotrophic lateral sclerosis-associated angiogenin mutations. Padhi AK, Vasaikar SV, Jayaram B, Gomes J. F1000Res 2 227 (2013)
  35. SLM2 Is A Novel Cardiac Splicing Factor Involved in Heart Failure due to Dilated Cardiomyopathy. Boeckel JN, Möbius-Winkler M, Müller M, Rebs S, Eger N, Schoppe L, Tappu R, Kokot KE, Kneuer JM, Gaul S, Bordalo DM, Lai A, Haas J, Ghanbari M, Drewe-Boss P, Liss M, Katus HA, Ohler U, Gotthardt M, Laufs U, Streckfuss-Bömeke K, Meder B. Genomics Proteomics Bioinformatics 20 129-146 (2022)
  36. Characterization of a new L-carnosine synthase mined from deep-sea sediment metagenome. She J, Fu L, Zheng X, Li J, Wang L, Yu B, Ju J. Microb Cell Fact 21 129 (2022)
  37. Human motor neurons derived from induced pluripotent stem cells are susceptible to SARS-CoV-2 infection. Cappelletti G, Colombrita C, Limanaqi F, Invernizzi S, Garziano M, Vanetti C, Moscheni C, Santangelo S, Zecchini S, Trabattoni D, Silani V, Clerici M, Ratti A, Biasin M. Front Cell Neurosci 17 1285836 (2023)
  38. Phospho-RNA sequencing with circAID-p-seq. Del Piano A, Kecman T, Schmid M, Barbieri R, Brocchieri L, Tornaletti S, Firrito C, Minati L, Bernabo P, Signoria I, Lauria F, Gillingwater TH, Viero G, Clamer M. Nucleic Acids Res 50 e23 (2022)