4aph Citations

Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides.

OpenAccess logo Sci Rep 2 717 (2012)
Cited: 79 times
EuropePMC logo PMID: 23056909

Abstract

Angiotensin-I converting enzyme (ACE), a two-domain dipeptidylcarboxypeptidase, is a key regulator of blood pressure as a result of its critical role in the renin-angiotensin-aldosterone and kallikrein-kinin systems. Hence it is an important drug target in the treatment of cardiovascular diseases. ACE is primarily known for its ability to cleave angiotensin I (Ang I) to the vasoactive octapeptide angiotensin II (Ang II), but is also able to cleave a number of other substrates including the vasodilator bradykinin and N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a physiological modulator of hematopoiesis. For the first time we provide a detailed biochemical and structural basis for the domain selectivity of the natural peptide inhibitors of ACE, bradykinin potentiating peptide b and Ang II. Moreover, Ang II showed selective competitive inhibition of the carboxy-terminal domain of human somatic ACE providing evidence for a regulatory role in the human renin-angiotensin system (RAS).

Reviews - 4aph mentioned but not cited (4)

  1. Interactions of angiotensin-converting enzyme-2 (ACE2) and SARS-CoV-2 spike receptor-binding domain (RBD): a structural perspective. Borkotoky S, Dey D, Hazarika Z. Mol Biol Rep 50 2713-2721 (2023)
  2. Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review. de Matos PH, da Silva TP, Mansano AB, Gancedo NC, Tonin FS, Pelloso FC, Petruco MV, de Melo EB, Fernandez-Llimos F, Sanches ACC, de Mello JCP, Chierrito D, de Medeiros Araújo DC. Inflamm Res 71 1489-1500 (2022)
  3. Flavonoid as possible therapeutic targets against COVID-19: a scoping review of in silico studies. Toigo L, Dos Santos Teodoro EI, Guidi AC, Gancedo NC, Petruco MV, Melo EB, Tonin FS, Fernandez-Llimos F, Chierrito D, de Mello JCP, de Medeiros Araújo DC, Sanches ACC. Daru 31 51-68 (2023)
  4. Scrutinizing Coronaviruses Using Publicly Available Bioinformatic Tools: The Viral Structural Proteins as a Case Study. Beeckmans S, Van Driessche E. Front Mol Biosci 8 671923 (2021)

Articles - 4aph mentioned but not cited (20)

  1. Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Masuyer G, Schwager SL, Sturrock ED, Isaac RE, Acharya KR. Sci Rep 2 717 (2012)
  2. High affinity binding of SARS-CoV-2 spike protein enhances ACE2 carboxypeptidase activity. Lu J, Sun PD. J Biol Chem 295 18579-18588 (2020)
  3. Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: Bioinformatics and molecular docking study. Maiti S, Banerjee A. Drug Dev Res 82 86-96 (2021)
  4. Characterization of AusA: a dimodular nonribosomal peptide synthetase responsible for the production of aureusimine pyrazinones. Wilson DJ, Shi C, Teitelbaum AM, Gulick AM, Aldrich CC. Biochemistry 52 926-937 (2013)
  5. Molecular and thermodynamic mechanisms of the chloride-dependent human angiotensin-I-converting enzyme (ACE). Yates CJ, Masuyer G, Schwager SL, Akif M, Sturrock ED, Acharya KR. J Biol Chem 289 1798-1814 (2014)
  6. A heptameric peptide purified from Spirulina sp. gastrointestinal hydrolysate inhibits angiotensin I-converting enzyme- and angiotensin II-induced vascular dysfunction in human endothelial cells. Heo SY, Ko SC, Kim CS, Oh GW, Ryu B, Qian ZJ, Kim G, Park WS, Choi IW, Phan TT, Heo SJ, Kang DH, Yi M, Jung WK. Int J Mol Med 39 1072-1082 (2017)
  7. Assessment of the Multifunctional Behavior of Lupin Peptide P7 and Its Metabolite Using an Integrated Strategy. Lammi C, Aiello G, Dellafiora L, Bollati C, Boschin G, Ranaldi G, Ferruzza S, Sambuy Y, Galaverna G, Arnoldi A. J Agric Food Chem 68 13179-13188 (2020)
  8. Understanding the Driving Forces That Trigger Mutations in SARS-CoV-2: Mutational Energetics and the Role of Arginine Blockers in COVID-19 Therapy. Ridgway H, Chasapis CT, Kelaidonis K, Ligielli I, Moore GJ, Gadanec LK, Zulli A, Apostolopoulos V, Mavromoustakos T, Matsoukas JM. Viruses 14 1029 (2022)
  9. Structural basis of Ac-SDKP hydrolysis by Angiotensin-I converting enzyme. Masuyer G, Douglas RG, Sturrock ED, Acharya KR. Sci Rep 5 13742 (2015)
  10. Simulated Gastrointestinal Digestion of Cocoa: Detection of Resistant Peptides and In Silico/In Vitro Prediction of Their Ace Inhibitory Activity. Marseglia A, Dellafiora L, Prandi B, Lolli V, Sforza S, Cozzini P, Tedeschi T, Galaverna G, Caligiani A. Nutrients 11 E985 (2019)
  11. Antihypertensive Effects of Corn Silk Extract and Its Novel Bioactive Constituent in Spontaneously Hypertensive Rats: The Involvement of Angiotensin-Converting Enzyme Inhibition. Li CC, Lee YC, Lo HY, Huang YW, Hsiang CY, Ho TY. Molecules 24 E1886 (2019)
  12. Structural basis of peptide recognition by the angiotensin-1 converting enzyme homologue AnCE from Drosophila melanogaster. Akif M, Masuyer G, Bingham RJ, Sturrock ED, Isaac RE, Acharya KR. FEBS J 279 4525-4534 (2012)
  13. In silico Nigellidine (N. sativa) bind to viral spike/active-sites of ACE1/2, AT1/2 to prevent COVID-19 induced vaso-tumult/vascular-damage/comorbidity. Maiti S, Banerjee A, Kanwar M. Vascul Pharmacol 138 106856 (2021)
  14. Effects of theaflavin-gallate in-silico binding with different proteins of SARS-CoV-2 and host inflammation and vasoregulations referring an experimental rat-lung injury. Maiti S, Banerjee A, Kanwar M. Phytomed Plus 2 100237 (2022)
  15. Inhibitory mechanism of angiotensin-converting enzyme inhibitory peptides from black tea. Lu Y, Wang Y, Huang D, Bian Z, Lu P, Fan D, Wang X. J Zhejiang Univ Sci B 22 575-589 (2021)
  16. Spontaneous Hinge-Bending Motions of Angiotensin I Converting Enzyme: Role in Activation and Inhibition. Vy TT, Heo SY, Jung WK, Yi M. Molecules 25 E1288 (2020)
  17. Computational evaluation of the reactivity and pharmaceutical potential of an organic amine: A DFT, molecular dynamics simulations and molecular docking approach. Abraham CS, Muthu S, Prasana JC, Armaković S, Armaković SJ, Rizwana B F, Geoffrey B, David R HA. Spectrochim Acta A Mol Biomol Spectrosc 222 117188 (2019)
  18. Molecular dynamic simulation suggests stronger interaction of Omicron-spike with ACE2 than wild but weaker than Delta SARS-CoV-2 can be blocked by engineered S1-RBD fraction. Santra D, Maiti S. Struct Chem 33 1755-1769 (2022)
  19. research-article High affinity binding of SARS-CoV-2 spike protein enhances ACE2 carboxypeptidase activity. Lu J, Sun PD. bioRxiv 2020.07.01.182659 (2020)
  20. Mechanistic Insights into Angiotensin I-Converting Enzyme Inhibitory Tripeptides to Decipher the Chemical Basis of Their Activity. Lammi C, Boschin G, Bartolomei M, Arnoldi A, Galaverna G, Dellafiora L. J Agric Food Chem 70 11572-11578 (2022)


Reviews citing this publication (12)

  1. Novel Therapeutic Approaches Targeting the Renin-Angiotensin System and Associated Peptides in Hypertension and Heart Failure. Arendse LB, Danser AHJ, Poglitsch M, Touyz RM, Burnett JC, Llorens-Cortes C, Ehlers MR, Sturrock ED. Pharmacol Rev 71 539-570 (2019)
  2. ACE2 and ACE: structure-based insights into mechanism, regulation and receptor recognition by SARS-CoV. Lubbe L, Cozier GE, Oosthuizen D, Acharya KR, Sturrock ED. Clin Sci (Lond) 134 2851-2871 (2020)
  3. Unraveling the Pivotal Role of Bradykinin in ACE Inhibitor Activity. Taddei S, Bortolotto L. Am J Cardiovasc Drugs 16 309-321 (2016)
  4. Angiotensin-I converting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence. Masuyer G, Yates CJ, Sturrock ED, Acharya KR. Biol Chem 395 1135-1149 (2014)
  5. How to design a potent, specific, and stable angiotensin-converting enzyme inhibitor. Regulska K, Stanisz B, Regulski M, Murias M. Drug Discov Today 19 1731-1743 (2014)
  6. Amaranth as a Source of Antihypertensive Peptides. Nardo AE, Suárez S, Quiroga AV, Añón MC. Front Plant Sci 11 578631 (2020)
  7. Reviewing Mechanistic Peptidomics in Body Fluids Focusing on Proteases. Magalhães B, Trindade F, Barros AS, Klein J, Amado F, Ferreira R, Vitorino R. Proteomics 18 e1800187 (2018)
  8. Natural products and drug discovery. Newman DJ. Natl Sci Rev 9 nwac206 (2022)
  9. Snake Venom Components: Tools and Cures to Target Cardiovascular Diseases. Frangieh J, Rima M, Fajloun Z, Henrion D, Sabatier JM, Legros C, Mattei C. Molecules 26 2223 (2021)
  10. Small molecule angiotensin converting enzyme inhibitors: A medicinal chemistry perspective. Zheng W, Tian E, Liu Z, Zhou C, Yang P, Tian K, Liao W, Li J, Ren C. Front Pharmacol 13 968104 (2022)
  11. Joseph Rudinger memorial lecture: Unexpected functions of angiotensin converting enzyme, beyond its enzymatic activity. Martinez J. J Pept Sci 23 741-748 (2017)
  12. Snake Venom Components as Therapeutic Drugs in Ischemic Heart Disease. Messadi E. Biomolecules 13 1539 (2023)

Articles citing this publication (43)

  1. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus. Eleftheriou P, Amanatidou D, Petrou A, Geronikaki A. Molecules 25 E2529 (2020)
  2. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. García-Mora P, Martín-Martínez M, Angeles Bonache M, González-Múniz R, Peñas E, Frias J, Martinez-Villaluenga C. Food Chem 221 464-472 (2017)
  3. Preparation and identification of novel inhibitory angiotensin-I-converting enzyme peptides from tilapia skin gelatin hydrolysates: inhibition kinetics and molecular docking. Ling Y, Liping S, Yongliang Z. Food Funct 9 5251-5259 (2018)
  4. What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach. Zhou P, Yang C, Ren Y, Wang C, Tian F. Food Chem 141 2967-2973 (2013)
  5. Animal protein toxins: origins and therapeutic applications. Chen N, Xu S, Zhang Y, Wang F. Biophys Rep 4 233-242 (2018)
  6. Crystal structures of highly specific phosphinic tripeptide enantiomers in complex with the angiotensin-I converting enzyme. Masuyer G, Akif M, Czarny B, Beau F, Schwager SL, Sturrock ED, Isaac RE, Dive V, Acharya KR. FEBS J 281 943-956 (2014)
  7. Tryptophan-containing dipeptides are C-domain selective inhibitors of angiotensin converting enzyme. Lunow D, Kaiser S, Rückriemen J, Pohl C, Henle T. Food Chem 166 596-602 (2015)
  8. Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration. Alvarenga EC, Fonseca MC, Carvalho CC, Florentino RM, França A, Matias E, Guimarães PB, Batista C, Freire V, Carmona AK, Pesquero JB, de Paula AM, Foureaux G, Leite MF. PLoS One 11 e0165371 (2016)
  9. Isolation and characterization of Bradykinin potentiating peptides from Agkistrodon bilineatus venom. Munawar A, Zahid A, Negm A, Akrem A, Spencer P, Betzel C. Proteome Sci 14 1 (2016)
  10. Insight into the interactive residues between two domains of human somatic Angiotensin-converting enzyme and Angiotensin II by MM-PBSA calculation and steered molecular dynamics simulation. Guan SS, Han WW, Zhang H, Wang S, Shan YM. J Biomol Struct Dyn 34 15-28 (2016)
  11. Isolation, purification and the anti-hypertensive effect of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from Ruditapes philippinarum fermented with Bacillus natto. Chen Y, Gao X, Wei Y, Liu Q, Jiang Y, Zhao L, Ulaah S. Food Funct 9 5230-5237 (2018)
  12. Probiotic Features of Lactic Acid Bacteria Isolated from a Diverse Pool of Traditional Greek Dairy Products Regarding Specific Strain-Host Interactions. Zoumpopoulou G, Tzouvanou A, Mavrogonatou E, Alexandraki V, Georgalaki M, Anastasiou R, Papadelli M, Manolopoulou E, Kazou M, Kletsas D, Papadimitriou K, Tsakalidou E. Probiotics Antimicrob Proteins 10 313-322 (2018)
  13. Rational design of angiotensin-I-converting enzyme inhibitory peptides by integrating in silico modeling and an in vitro assay. Jing T, Feng J, Li D, Liu J, He G. ChemMedChem 8 1057-1066 (2013)
  14. ACE for all - a molecular perspective. Harrison C, Acharya KR. J Cell Commun Signal 8 195-210 (2014)
  15. Elapid snake venom analyses show the specificity of the peptide composition at the level of genera Naja and Notechis. Munawar A, Trusch M, Georgieva D, Hildebrand D, Kwiatkowski M, Behnken H, Harder S, Arni R, Spencer P, Schlüter H, Betzel C. Toxins (Basel) 6 850-868 (2014)
  16. Broken Rice as a Potential Functional Ingredient with Inhibitory Activity of Renin and Angiotensin-Converting Enzyme(ACE). Pinciroli M, Aphalo P, Nardo AE, Añón MC, Quiroga AV. Plant Foods Hum Nutr 74 405-413 (2019)
  17. Structural characterization and in-silico analysis of Momordica charantia 7S globulin for stability and ACE inhibition. Kesari P, Pratap S, Dhankhar P, Dalal V, Mishra M, Singh PK, Chauhan H, Kumar P. Sci Rep 10 1160 (2020)
  18. Identification of an ACE-Inhibitory Peptide from Walnut Protein and Its Evaluation of the Inhibitory Mechanism. Wang C, Tu M, Wu D, Chen H, Chen C, Wang Z, Jiang L. Int J Mol Sci 19 E1156 (2018)
  19. Kinetic and structural characterization of amyloid-β peptide hydrolysis by human angiotensin-1-converting enzyme. Larmuth KM, Masuyer G, Douglas RG, Schwager SL, Acharya KR, Sturrock ED. FEBS J 283 1060-1076 (2016)
  20. Angiotensin-converting enzyme open for business: structural insights into the subdomain dynamics. Cozier GE, Lubbe L, Sturrock ED, Acharya KR. FEBS J 288 2238-2256 (2021)
  21. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium. Arcanjo DD, Vasconcelos AG, Comerma-Steffensen SG, Jesus JR, Silva LP, Pires Júnior OR, Costa-Neto CM, Oliveira EB, Migliolo L, Franco OL, Restini CB, Paulo M, Bendhack LM, Bemquerer MP, Oliveira AP, Simonsen U, Leite JR. PLoS One 10 e0145071 (2015)
  22. A Proline-Based Tectons and Supramolecular Synthons for Drug Design 2.0: A Case Study of ACEI. Bojarska J, Remko M, Breza M, Madura I, Fruziński A, Wolf WM. Pharmaceuticals (Basel) 13 E338 (2020)
  23. Efficacy of Chondroprotective Food Supplements Based on Collagen Hydrolysate and Compounds Isolated from Marine Organisms. Eckert T, Jährling-Butkus M, Louton H, Burg-Roderfeld M, Zhang R, Zhang N, Hesse K, Petridis AK, Kožár T, Steinmeyer J, Schauer R, Engelhard P, Kozarova A, Hudson JW, Siebert HC. Mar Drugs 19 542 (2021)
  24. The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae. Abu Hasan Z', Williams H, Ismail NM, Othman H, Cozier GE, Acharya KR, Isaac RE. Sci Rep 7 45409 (2017)
  25. Multifunctional Peptides from Spanish Dry-Cured Pork Ham: Endothelial Responses and Molecular Modeling Studies. Martínez-Sánchez SM, Pérez-Sánchez H, Antonio Gabaldón J, Abellán-Alemán J, Montoro-García S. Int J Mol Sci 20 E4204 (2019)
  26. N-domain of angiotensin-converting enzyme hydrolyzes human and rat amyloid-β(1-16) peptides as arginine specific endopeptidase potentially enhancing risk of Alzheimer's disease. Kugaevskaya EV, Veselovsky AV, Indeykina MI, Solovyeva NI, Zharkova MS, Popov IA, Nikolaev EN, Mantsyzov AB, Makarov AA, Kozin SA. Sci Rep 8 298 (2018)
  27. Novel Angiotensin-I Converting Enzyme Inhibitory Peptides Isolated From Rice Wine Lees: Purification, Characterization, and Structure-Activity Relationship. He Z, Liu G, Qiao Z, Cao Y, Song M. Front Nutr 8 746113 (2021)
  28. ACE in the hole. Luft FC. J Mol Med (Berl) 92 793-795 (2014)
  29. Angiotensin-Converting Enzyme Gene D/I Polymorphism in Relation to Endothelial Function and Endothelial-Released Factors in Chinese Women. Lv Y, Zhao W, Yu L, Yu JG, Zhao L. Front Physiol 11 951 (2020)
  30. Correlation of angiotensin I-converting enzyme gene insertion/deletion polymorphism with rheumatic heart disease: a meta-analysis. Tian Y, Ge Z, Xing Y, Sun Y, Ying J. Biosci Rep 36 e00412 (2016)
  31. Electrostatically induced pKa shifts in oligopeptides: the upshot of neighboring side chains. Norouzy A, Lazar AI, Karimi-Jafari MH, Firouzi R, Nau WM. Amino Acids 54 277-287 (2022)
  32. Influence of the interaction between Ac‑SDKP and Ang II on the pathogenesis and development of silicotic fibrosis. Zhang Y, Yang F, Liu Y, Peng HB, Geng YC, Li SF, Xu H, Zhu LY, Yang XH, Brann D. Mol Med Rep 17 7467-7476 (2018)
  33. Structure-based design and optimization of antihypertensive peptides to obtain high inhibitory potency against both renin and angiotensin I-converting enzyme. Zhou Z, Cheng C, Li Y. SAR QSAR Environ Res 26 1001-1016 (2015)
  34. The Gene Polymorphism of Angiotensin-Converting Enzyme Intron Deletion and Angiotensin-Converting Enzyme G2350A in Patients With Left Ventricular Hypertrophy: A Meta-analysis. Fajar JK, Pikir BS, Sidarta EP, Berlinda Saka PN, Akbar RR, Heriansyah T. Indian Heart J 71 199-206 (2019)
  35. Diurnal opposite variation between angiotensinase activities in photo-neuro-endocrine tissues of rats. Domínguez-Vías G, Aretxaga-Maza G, Prieto I, Luna JD, De Gasparo M, Ramírez-Sánchez M. Chronobiol Int 34 1180-1186 (2017)
  36. Engineering an ACE2-Derived Fragment as a Decoy for Novel SARS-CoV-2 Virus. Renzi F, Seamann A, Ganguly K, Pandey K, Byrareddy SN, Batra S, Kumar S, Ghersi D. ACS Pharmacol Transl Sci 6 857-867 (2023)
  37. Establishment of the method for screening the potential targets and effective components of huatuo reconstruction pill. Wu KZ, Jiang YG, Zuo Y, Li AX. Interdiscip Sci 6 125-132 (2014)
  38. Design, Synthesis, and Study of a Novel RXPA380-Proline Hybrid (RXPA380-P) as an Antihypertensive Agent. Abdou MM, Dong D, O'Neill PM, Amigues E, Matziari M. ACS Omega 7 35035-35043 (2022)
  39. Seafood Paramyosins as Sources of Anti-Angiotensin-Converting-Enzyme and Anti-Dipeptidyl-Peptidase Peptides after Gastrointestinal Digestion: A Cheminformatic Investigation. Chai TT, Wong CC, Sabri MZ, Wong FC. Molecules 27 3864 (2022)
  40. Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization. Lubbe L, Sewell BT, Woodward JD, Sturrock ED. EMBO J 41 e110550 (2022)
  41. Discovery of ACE Inhibitory Peptides Derived from Green Coffee Using In Silico and In Vitro Methods. Dai H, He M, Hu G, Li Z, Al-Romaima A, Wu Z, Liu X, Qiu M. Foods 12 3480 (2023)
  42. Integrating Computational Modeling and Experimental Assay to Discover New Potent ACE-Inhibitory Peptides. Ren Y, Wang Q, Chen S, Cao H. Mol Inform 33 43-52 (2014)
  43. Protection against Oxidative Stress and Metabolic Alterations by Synthetic Peptides Derived from Erythrina edulis Seed Protein. Rodríguez-Arana N, Jiménez-Aliaga K, Intiquilla A, León JA, Flores E, Zavaleta AI, Izaguirre V, Solis-Calero C, Hernández-Ledesma B. Antioxidants (Basel) 11 2101 (2022)