4atx Citations

Molecular basis for specific regulation of neuronal kinesin-3 motors by doublecortin family proteins.

OpenAccess logo Mol Cell 47 707-21 (2012)
Related entries: 2xrp, 4atu

Cited: 80 times
EuropePMC logo PMID: 22857951

Abstract

Doublecortin (Dcx) defines a growing family of microtubule (MT)-associated proteins (MAPs) involved in neuronal migration and process outgrowth. We show that Dcx is essential for the function of Kif1a, a kinesin-3 motor protein that traffics synaptic vesicles. Neurons lacking Dcx and/or its structurally conserved paralogue, doublecortin-like kinase 1 (Dclk1), show impaired Kif1a-mediated transport of Vamp2, a cargo of Kif1a, with decreased run length. Human disease-associated mutations in Dcx's linker sequence (e.g., W146C, K174E) alter Kif1a/Vamp2 transport by disrupting Dcx/Kif1a interactions without affecting Dcx MT binding. Dcx specifically enhances binding of the ADP-bound Kif1a motor domain to MTs. Cryo-electron microscopy and subnanometer-resolution image reconstruction reveal the kinesin-dependent conformational variability of MT-bound Dcx and suggest a model for MAP-motor crosstalk on MTs. Alteration of kinesin run length by MAPs represents a previously undiscovered mode of control of kinesin transport and provides a mechanism for regulation of MT-based transport by local signals.

Articles - 4atx mentioned but not cited (2)

  1. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp S, Kenna KP, Scotter EL, Kost J, Keagle P, Miller JW, Calini D, Vance C, Danielson EW, Troakes C, Tiloca C, Al-Sarraj S, Lewis EA, King A, Colombrita C, Pensato V, Castellotti B, de Belleroche J, Baas F, ten Asbroek AL, Sapp PC, McKenna-Yasek D, McLaughlin RL, Polak M, Asress S, Esteban-Pérez J, Muñoz-Blanco JL, Simpson M, SLAGEN Consortium, van Rheenen W, Diekstra FP, Lauria G, Duga S, Corti S, Cereda C, Corrado L, Sorarù G, Morrison KE, Williams KL, Nicholson GA, Blair IP, Dion PA, Leblond CS, Rouleau GA, Hardiman O, Veldink JH, van den Berg LH, Al-Chalabi A, Pall H, Shaw PJ, Turner MR, Talbot K, Taroni F, García-Redondo A, Wu Z, Glass JD, Gellera C, Ratti A, Brown RH, Silani V, Shaw CE, Landers JE. Neuron 84 324-331 (2014)
  2. Kinesin Motor Enzymology: Chemistry, Structure, and Physics of Nanoscale Molecular Machines. Cochran JC. Biophys Rev 7 269-299 (2015)


Reviews citing this publication (26)

  1. Building the Neuronal Microtubule Cytoskeleton. Kapitein LC, Hoogenraad CC. Neuron 87 492-506 (2015)
  2. Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases. Hirokawa N, Tanaka Y. Exp Cell Res 334 16-25 (2015)
  3. The contribution of αβ-tubulin curvature to microtubule dynamics. Brouhard GJ, Rice LM. J Cell Biol 207 323-334 (2014)
  4. The diverse genetic landscape of neurodevelopmental disorders. Hu WF, Chahrour MH, Walsh CA. Annu Rev Genomics Hum Genet 15 195-213 (2014)
  5. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Ramkumar A, Jong BY, Ori-McKenney KM. Dev Dyn 247 138-155 (2018)
  6. Cellular and molecular introduction to brain development. Jiang X, Nardelli J. Neurobiol Dis 92 3-17 (2016)
  7. Cell biology in neuroscience: cellular and molecular mechanisms underlying presynapse formation. Chia PH, Li P, Shen K. J Cell Biol 203 11-22 (2013)
  8. Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Stouffer MA, Golden JA, Francis F. Neurobiol Dis 92 18-45 (2016)
  9. The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Prokop A. Neural Dev 8 17 (2013)
  10. MAPping out distribution routes for kinesin couriers. Atherton J, Houdusse A, Moores C. Biol Cell 105 465-487 (2013)
  11. Going Too Far Is the Same as Falling Short: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Gabrych DR, Lau VZ, Niwa S, Silverman MA. Front Cell Neurosci 13 419 (2019)
  12. A Case for Microtubule Vulnerability in Amyotrophic Lateral Sclerosis: Altered Dynamics During Disease. Clark JA, Yeaman EJ, Blizzard CA, Chuckowree JA, Dickson TC. Front Cell Neurosci 10 204 (2016)
  13. Microtubule structure by cryo-EM: snapshots of dynamic instability. Manka SW, Moores CA. Essays Biochem 62 737-751 (2018)
  14. LIS1 and DCX: Implications for Brain Development and Human Disease in Relation to Microtubules. Reiner O. Scientifica (Cairo) 2013 393975 (2013)
  15. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development. Yap CC, Winckler B. Front Cell Neurosci 9 119 (2015)
  16. Mechanisms of Polarized Organelle Distribution in Neurons. Britt DJ, Farías GG, Guardia CM, Bonifacino JS. Front Cell Neurosci 10 88 (2016)
  17. Structure and Mechanics of Dynein Motors. Canty JT, Tan R, Kusakci E, Fernandes J, Yildiz A. Annu Rev Biophys 50 549-574 (2021)
  18. Cytoskeletal regulation guides neuronal trafficking to effectively supply the synapse. Aiken J, Holzbaur ELF. Curr Biol 31 R633-R650 (2021)
  19. Spatial control of membrane traffic in neuronal dendrites. Radler MR, Suber A, Spiliotis ET. Mol Cell Neurosci 105 103492 (2020)
  20. Emerging roles for motor proteins in progenitor cell behavior and neuronal migration during brain development. Dantas TJ, Carabalona A, Hu DJ, Vallee RB. Cytoskeleton (Hoboken) 73 566-576 (2016)
  21. Microtubule-associated proteins (MAPs) in microtubule cytoskeletal dynamics and spermatogenesis. Wang L, Yan M, Wong CKC, Ge R, Wu X, Sun F, Cheng CY. Histol Histopathol 36 249-265 (2021)
  22. DCLK1 and its interaction partners: An effective therapeutic target for colorectal cancer. Vijai M, Baba M, Ramalingam S, Thiyagaraj A. Oncol Lett 22 850 (2021)
  23. Spatial regulation of endosomes in growing dendrites. Yap CC, Winckler B. Dev Biol 486 5-14 (2022)
  24. The organization and function of the Golgi apparatus in dendrite development and neurological disorders. Chen M, Xu L, Wu Y, Soba P, Hu C. Genes Dis 10 2425-2442 (2023)
  25. New insights into the mechanochemical coupling mechanism of kinesin-microtubule complexes from their high-resolution structures. Benoit MPMH, Hunter B, Allingham JS, Sosa H. Biochem Soc Trans 51 1505-1520 (2023)
  26. Structure-Guided Prediction of the Functional Impact of DCLK1 Mutations on Tumorigenesis. Carli ALE, Hardy JM, Hoblos H, Ernst M, Lucet IS, Buchert M. Biomedicines 11 990 (2023)

Articles citing this publication (52)

  1. Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites. Lipka J, Kapitein LC, Jaworski J, Hoogenraad CC. EMBO J 35 302-318 (2016)
  2. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Thompson RF, Walker M, Siebert CA, Muench SP, Ranson NA. Methods 100 3-15 (2016)
  3. Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins. Atherton J, Farabella I, Yu IM, Rosenfeld SS, Houdusse A, Topf M, Moores CA. Elife 3 e03680 (2014)
  4. Curcumin promotes autophagic survival of a subset of colon cancer stem cells, which are ablated by DCLK1-siRNA. Kantara C, O'Connell M, Sarkar S, Moya S, Ullrich R, Singh P. Cancer Res 74 2487-2498 (2014)
  5. A Combinatorial MAP Code Dictates Polarized Microtubule Transport. Monroy BY, Tan TC, Oclaman JM, Han JS, Simó S, Niwa S, Nowakowski DW, McKenney RJ, Ori-McKenney KM. Dev Cell 53 60-72.e4 (2020)
  6. Doublecortin-like kinase enhances dendritic remodelling and negatively regulates synapse maturation. Shin E, Kashiwagi Y, Kuriu T, Iwasaki H, Tanaka T, Koizumi H, Gleeson JG, Okabe S. Nat Commun 4 1440 (2013)
  7. MicroRNA targeting of CoREST controls polarization of migrating cortical neurons. Volvert ML, Prévot PP, Close P, Laguesse S, Pirotte S, Hemphill J, Rogister F, Kruzy N, Sacheli R, Moonen G, Deiters A, Merkenschlager M, Chariot A, Malgrange B, Godin JD, Nguyen L. Cell Rep 7 1168-1183 (2014)
  8. Transport of a kinesin-cargo pair along microtubules into dendritic spines undergoing synaptic plasticity. McVicker DP, Awe AM, Richters KE, Wilson RL, Cowdrey DA, Hu X, Chapman ER, Dent EW. Nat Commun 7 12741 (2016)
  9. Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons. Fu X, Brown KJ, Yap CC, Winckler B, Jaiswal JK, Liu JS. J Neurosci 33 709-721 (2013)
  10. A new protocol to accurately determine microtubule lattice seam location. Zhang R, Nogales E. J Struct Biol 192 245-254 (2015)
  11. Polarity of Neuronal Membrane Traffic Requires Sorting of Kinesin Motor Cargo during Entry into Dendrites by a Microtubule-Associated Septin. Karasmanis EP, Phan CT, Angelis D, Kesisova IA, Hoogenraad CC, McKenney RJ, Spiliotis ET. Dev Cell 46 204-218.e7 (2018)
  12. TUBB4A mutations result in specific neuronal and oligodendrocytic defects that closely match clinically distinct phenotypes. Curiel J, Rodríguez Bey G, Takanohashi A, Bugiani M, Fu X, Wolf NI, Nmezi B, Schiffmann R, Bugaighis M, Pierson T, Helman G, Simons C, van der Knaap MS, Liu J, Padiath Q, Vanderver A. Hum Mol Genet 26 4506-4518 (2017)
  13. A reconstituted mammalian APC-kinesin complex selectively transports defined packages of axonal mRNAs. Baumann S, Komissarov A, Gili M, Ruprecht V, Wieser S, Maurer SP. Sci Adv 6 eaaz1588 (2020)
  14. A diagnostic approach for cerebral palsy in the genomic era. Lee RW, Poretti A, Cohen JS, Levey E, Gwynn H, Johnston MV, Hoon AH, Fatemi A. Neuromolecular Med 16 821-844 (2014)
  15. Biochemical and Structural Insights into Doublecortin-like Kinase Domain 1. Patel O, Dai W, Mentzel M, Griffin MD, Serindoux J, Gay Y, Fischer S, Sterle S, Kropp A, Burns CJ, Ernst M, Buchert M, Lucet IS. Structure 24 1550-1561 (2016)
  16. Structural and functional insight into regulation of kinesin-1 by microtubule-associated protein MAP7. Ferro LS, Fang Q, Eshun-Wilson L, Fernandes J, Jack A, Farrell DP, Golcuk M, Huijben T, Costa K, Gur M, DiMaio F, Nogales E, Yildiz A. Science 375 326-331 (2022)
  17. TOG-tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation. Byrnes AE, Slep KC. J Cell Biol 216 1641-1657 (2017)
  18. The vesicle protein SAM-4 regulates the processivity of synaptic vesicle transport. Zheng Q, Ahlawat S, Schaefer A, Mahoney T, Koushika SP, Nonet ML. PLoS Genet 10 e1004644 (2014)
  19. Concerted action of kinesins KIF5B and KIF13B promotes efficient secretory vesicle transport to microtubule plus ends. Serra-Marques A, Martin M, Katrukha EA, Grigoriev I, Peeters CA, Liu Q, Hooikaas PJ, Yao Y, Solianova V, Smal I, Pedersen LB, Meijering E, Kapitein LC, Akhmanova A. Elife 9 e61302 (2020)
  20. KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration. Carabalona A, Hu DJ, Vallee RB. Nat Neurosci 19 253-262 (2016)
  21. Regulated Dynamic Trafficking of Neurexins Inside and Outside of Synaptic Terminals. Neupert C, Schneider R, Klatt O, Reissner C, Repetto D, Biermann B, Niesmann K, Missler M, Heine M. J Neurosci 35 13629-13647 (2015)
  22. Regulation of microtubule-based transport by MAP4. Semenova I, Ikeda K, Resaul K, Kraikivski P, Aguiar M, Gygi S, Zaliapin I, Cowan A, Rodionov V. Mol Biol Cell 25 3119-3132 (2014)
  23. MAP7 regulates organelle transport by recruiting kinesin-1 to microtubules. Chaudhary AR, Lu H, Krementsova EB, Bookwalter CS, Trybus KM, Hendricks AG. J Biol Chem 294 10160-10171 (2019)
  24. DCLK1 phosphorylates the microtubule-associated protein MAP7D1 to promote axon elongation in cortical neurons. Koizumi H, Fujioka H, Togashi K, Thompson J, Yates JR, Gleeson JG, Emoto K. Dev Neurobiol 77 493-510 (2017)
  25. Podosome-regulating kinesin KIF1C translocates to the cell periphery in a CLASP-dependent manner. Efimova N, Grimaldi A, Bachmann A, Frye K, Zhu X, Feoktistov A, Straube A, Kaverina I. J Cell Sci 127 5179-5188 (2014)
  26. A doublecortin-domain protein of Toxoplasma and its orthologues bind to and modify the structure and organization of tubulin polymers. Leung JM, Nagayasu E, Hwang YC, Liu J, Pierce PG, Phan IQ, Prentice RA, Murray JM, Hu K. BMC Mol Cell Biol 21 8 (2020)
  27. Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons. Seifert B, Eckenstaler R, Rönicke R, Leschik J, Lutz B, Reymann K, Lessmann V, Brigadski T. Neural Plast 2016 4145708 (2016)
  28. Non-cell autonomous and non-catalytic activities of ATX in the developing brain. Greenman R, Gorelik A, Sapir T, Baumgart J, Zamor V, Segal-Salto M, Levin-Zaidman S, Aidinis V, Aoki J, Nitsch R, Vogt J, Reiner O. Front Neurosci 9 53 (2015)
  29. Pseudo-repeats in doublecortin make distinct mechanistic contributions to microtubule regulation. Manka SW, Moores CA. EMBO Rep 21 e51534 (2020)
  30. Autoregulatory control of microtubule binding in doublecortin-like kinase 1. Agulto RL, Rogers MM, Tan TC, Ramkumar A, Downing AM, Bodin H, Castro J, Nowakowski DW, Ori-McKenney KM. Elife 10 e60126 (2021)
  31. Chemical Biology Toolkit for DCLK1 Reveals Connection to RNA Processing. Liu Y, Ferguson FM, Li L, Kuljanin M, Mills CE, Subramanian K, Harshbarger W, Gondi S, Wang J, Sorger PK, Mancias JD, Gray NS, Westover KD. Cell Chem Biol 27 1229-1240.e4 (2020)
  32. Everolimus Stabilizes Podocyte Microtubules via Enhancing TUBB2B and DCDC2 Expression. Jeruschke S, Jeruschke K, DiStasio A, Karaterzi S, Büscher AK, Nalbant P, Klein-Hitpass L, Hoyer PF, Weiss J, Stottmann RW, Weber S. PLoS One 10 e0137043 (2015)
  33. A critical and previously unsuspected role for doublecortin at the neuromuscular junction in mouse and human. Bourgeois F, Messéant J, Messéant J, Kordeli E, Petit JM, Delers P, Bahi-Buisson N, Bernard V, Sigoillot SM, Gitiaux C, Stouffer M, Francis F, Legay C. Neuromuscul Disord 25 461-473 (2015)
  34. DCLK1 autoinhibition and activation in tumorigenesis. Cheng L, Yang Z, Guo W, Wu C, Liang S, Tong A, Cao Z, Thorne RF, Yang SY, Yu Y, Chen Q. Innovation (Camb) 3 100191 (2022)
  35. Crystal Structures of the Human Doublecortin C- and N-terminal Domains in Complex with Specific Antibodies. Burger D, Stihle M, Sharma A, Di Lello P, Benz J, D'Arcy B, Debulpaep M, Fry D, Huber W, Kremer T, Laeremans T, Matile H, Ross A, Rufer AC, Schoch G, Steinmetz MO, Steyaert J, Rudolph MG, Thoma R, Ruf A. J Biol Chem 291 16292-16306 (2016)
  36. Organelle and cellular abnormalities associated with hippocampal heterotopia in neonatal doublecortin knockout mice. Khalaf-Nazzal R, Bruel-Jungerman E, Rio JP, Bureau J, Irinopoulou T, Sumia I, Roumegous A, Martin E, Olaso R, Parras C, Cifuentes-Diaz C, Francis F. PLoS One 8 e72622 (2013)
  37. Different Doublecortin (DCX) Patient Alleles Show Distinct Phenotypes in Cultured Neurons: EVIDENCE FOR DIVERGENT LOSS-OF-FUNCTION AND "OFF-PATHWAY" CELLULAR MECHANISMS. Yap CC, Digilio L, McMahon L, Roszkowska M, Bott CJ, Kruczek K, Winckler B. J Biol Chem 291 26613-26626 (2016)
  38. NgCAM and VAMP2 reveal that direct delivery and dendritic degradation maintain axonal polarity. Nabb AT, Bentley M. Mol Biol Cell 33 ar3 (2022)
  39. Doublecortin-Like Is Implicated in Adult Hippocampal Neurogenesis and in Motivational Aspects to Escape from an Aversive Environment in Male Mice. Saaltink DJ, van Zwet EW, Vreugdenhil E. eNeuro 7 ENEURO.0324-19.2020 (2020)
  40. Bridging the Gap: The Importance of TUBA1A α-Tubulin in Forming Midline Commissures. Buscaglia G, Northington KR, Aiken J, Hoff KJ, Bates EA. Front Cell Dev Biol 9 789438 (2021)
  41. Domain swap in the C-terminal ubiquitin-like domain of human doublecortin. Rufer AC, Kusznir E, Burger D, Stihle M, Ruf A, Rudolph MG. Acta Crystallogr D Struct Biol 74 450-462 (2018)
  42. Doublecortin and JIP3 are neural-specific counteracting regulators of dynein-mediated retrograde trafficking. Fu X, Rao L, Li P, Liu X, Wang Q, Son AI, Gennerich A, Liu JS. Elife 11 e82218 (2022)
  43. Doublecortin facilitates the elongation of the somatic Golgi apparatus into proximal dendrites. Li P, Li L, Yu B, Wang X, Wang Q, Lin J, Zheng Y, Zhu J, He M, Xia Z, Tu M, Liu JS, Lin Z, Fu X. Mol Biol Cell 32 422-434 (2021)
  44. Doublecortin-like kinase 1 compromises DNA repair and induces chromosomal instability. Lu Y, Maruyama J, Kuwata K, Fukuda H, Iwasa H, Arimoto-Matsuzaki K, Sugimura H, Hata Y. Biochem Biophys Rep 16 130-137 (2018)
  45. Early born neurons are abnormally positioned in the doublecortin knockout hippocampus. Khalaf-Nazzal R, Stouffer MA, Olaso R, Muresan L, Roumegous A, Lavilla V, Carpentier W, Moutkine I, Dumont S, Albaud B, Cagnard N, Roest Crollius H, Francis F. Hum Mol Genet 26 90-108 (2017)
  46. A dominant dendrite phenotype caused by the disease-associated G253D mutation in doublecortin (DCX) is not due to its endocytosis defect. Yap CC, Digilio L, Kruczek K, Roszkowska M, Fu XQ, Liu JS, Winckler B. J Biol Chem 293 18890-18902 (2018)
  47. Doublecortin-like expressing astrocytes of the suprachiasmatic nucleus are implicated in the biosynthesis of vasopressin and influences circadian rhythms. Coomans C, Saaltink DJ, Deboer T, Tersteeg M, Lanooij S, Schneider AF, Mulder A, van Minnen J, Jost C, Koster AJ, Vreugdenhil E. Glia 69 2752-2766 (2021)
  48. Case Reports Doublecortin Mutation in an Adolescent Male. Zare I, Paul D, Moody S. Child Neurol Open 6 2329048X19836589 (2019)
  49. Doublecortin engages the microtubule lattice through a cooperative binding mode involving its C-terminal domain. Rafiei A, Cruz Tetlalmatzi S, Edrington CH, Lee L, Crowder DA, Saltzberg DJ, Sali A, Brouhard G, Schriemer DC. Elife 11 e66975 (2022)
  50. A two-kinesin mechanism controls neurogenesis in the developing brain. Helmer P, Vallee RB. Commun Biol 6 1219 (2023)
  51. Molecular Mechanism of Mutational Disruption of DCLK1 Autoinhibition Provides a Rationale for Inhibitor Screening. Chen W, Liu R, Yu Y, Wei D, Chen Q, Xu Q. Int J Mol Sci 24 14020 (2023)
  52. [JNK/c-Jun signaling pathway mediates arginine vasopressin neuron regeneration by promoting cytoskeleton reconstruction in rats with electrical lesions of the pituitary stalk]. Li K, Feng Z, Ou Y, Zhou M, Peng J, Gong H, Wu G, Liu Y, Qi S. Nan Fang Yi Ke Da Xue Xue Bao 39 1099-1106 (2019)


Related citations provided by authors (1)

  1. Template-free 13-protofilament microtubule-MAP assembly visualized at 8 A resolution.. Fourniol FJ, Sindelar CV, Amigues B, Clare DK, Thomas G, Perderiset M, Francis F, Houdusse A, Moores CA J Cell Biol 191 463-70 (2010)