4b9k Citations

Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α.

Angew Chem Int Ed Engl 51 11463-7 (2012)
Cited: 108 times
EuropePMC logo PMID: 23065727

Abstract

E3 ubiquitin ligases, such as the therapeutically relevant VHL, are challenging targets for traditional medicinal chemistry, as their modulation requires targeting protein-protein interactions. We report novel small-molecule inhibitors of the interaction between VHL and its molecular target HIF1α, a transcription factor involved in oxygen sensing.

Reviews - 4b9k mentioned but not cited (2)

Articles - 4b9k mentioned but not cited (5)

  1. Surface Probing by Fragment-Based Screening and Computational Methods Identifies Ligandable Pockets on the von Hippel-Lindau (VHL) E3 Ubiquitin Ligase. Lucas X, Van Molle I, Ciulli A. J Med Chem 61 7387-7393 (2018)
  2. Worldwide Protein Data Bank validation information: usage and trends. Smart OS, Horský V, Gore S, Svobodová Vařeková R, Bendová V, Kleywegt GJ, Velankar S. Acta Crystallogr D Struct Biol 74 237-244 (2018)
  3. Discovery of novel inhibitors disrupting HIF-1α/von Hippel-Lindau interaction through shape-based screening and cascade docking. Xue X, Zhao NY, Yu HT, Sun Y, Kang C, Huang QB, Sun HP, Wang XL, Li NG. PeerJ 4 e2757 (2016)
  4. An Intriguing Correlation Based on the Superimposition of Residue Pairs with Inhibitors that Target Protein-Protein Interfaces. Nakadai M, Tomida S, Sekimizu K. Sci Rep 6 18543 (2016)
  5. Integrating Protein Interaction Surface Prediction with a Fragment-Based Drug Design: Automatic Design of New Leads with Fragments on Energy Surfaces. Torielli L, Serapian SA, Mussolin L, Moroni E, Colombo G. J Chem Inf Model 63 343-353 (2023)


Reviews citing this publication (66)

  1. Induced protein degradation: an emerging drug discovery paradigm. Lai AC, Crews CM. Nat Rev Drug Discov 16 101-114 (2017)
  2. PROTAC targeted protein degraders: the past is prologue. Békés M, Langley DR, Crews CM. Nat Rev Drug Discov 21 181-200 (2022)
  3. Targeting transcription factors in cancer - from undruggable to reality. Bushweller JH. Nat Rev Cancer 19 611-624 (2019)
  4. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, Shi J. Signal Transduct Target Ther 5 213 (2020)
  5. PROteolysis TArgeting Chimeras (PROTACs) - Past, present and future. Pettersson M, Crews CM. Drug Discov Today Technol 31 15-27 (2019)
  6. Small-Molecule PROTACS: New Approaches to Protein Degradation. Toure M, Crews CM. Angew Chem Int Ed Engl 55 1966-1973 (2016)
  7. Targeted protein degradation: elements of PROTAC design. Paiva SL, Crews CM. Curr Opin Chem Biol 50 111-119 (2019)
  8. Targeted protein degradation by PROTACs. Neklesa TK, Winkler JD, Crews CM. Pharmacol Ther 174 138-144 (2017)
  9. Advancing targeted protein degradation for cancer therapy. Dale B, Cheng M, Park KS, Kaniskan HÜ, Xiong Y, Jin J. Nat Rev Cancer 21 638-654 (2021)
  10. Targeted Protein Degradation: from Chemical Biology to Drug Discovery. Cromm PM, Crews CM. Cell Chem Biol 24 1181-1190 (2017)
  11. PROTACs: An Emerging Therapeutic Modality in Precision Medicine. Nalawansha DA, Crews CM. Cell Chem Biol 27 998-1014 (2020)
  12. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. An S, Fu L. EBioMedicine 36 553-562 (2018)
  13. Waste disposal-An attractive strategy for cancer therapy. Salami J, Crews CM. Science 355 1163-1167 (2017)
  14. Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Bulatov E, Ciulli A. Biochem J 467 365-386 (2015)
  15. Degradation of proteins by PROTACs and other strategies. Wang Y, Jiang X, Feng F, Liu W, Sun H. Acta Pharm Sin B 10 207-238 (2020)
  16. PROTAC: An Effective Targeted Protein Degradation Strategy for Cancer Therapy. Qi SM, Dong J, Xu ZY, Cheng XD, Zhang WD, Qin JJ. Front Pharmacol 12 692574 (2021)
  17. Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. Hughes SJ, Ciulli A. Essays Biochem 61 505-516 (2017)
  18. PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics. Khan S, He Y, Zhang X, Yuan Y, Pu S, Kong Q, Zheng G, Zhou D. Oncogene 39 4909-4924 (2020)
  19. State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Sheng C, Dong G, Miao Z, Zhang W, Wang W. Chem Soc Rev 44 8238-8259 (2015)
  20. E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones. Ishida T, Ciulli A. SLAS Discov 26 484-502 (2021)
  21. PROTACs: past, present and future. Li K, Crews CM. Chem Soc Rev 51 5214-5236 (2022)
  22. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. Alabi SB, Crews CM. J Biol Chem 296 100647 (2021)
  23. Current strategies for the design of PROTAC linkers: a critical review. Troup RI, Fallan C, Baud MGJ. Explor Target Antitumor Ther 1 273-312 (2020)
  24. Screening for E3-ubiquitin ligase inhibitors: challenges and opportunities. Landré V, Rotblat B, Melino S, Bernassola F, Melino G. Oncotarget 5 7988-8013 (2014)
  25. Small-molecule control of intracellular protein levels through modulation of the ubiquitin proteasome system. Buckley DL, Crews CM. Angew Chem Int Ed Engl 53 2312-2330 (2014)
  26. PROTACs- a game-changing technology. Konstantinidou M, Li J, Zhang B, Wang Z, Shaabani S, Ter Brake F, Essa K, Dömling A. Expert Opin Drug Discov 14 1255-1268 (2019)
  27. Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. Bond MJ, Crews CM. RSC Chem Biol 2 725-742 (2021)
  28. Recent Developments in PROTAC-Mediated Protein Degradation: From Bench to Clinic. Hu Z, Crews CM. Chembiochem 23 e202100270 (2022)
  29. Recognition of substrate degrons by E3 ubiquitin ligases and modulation by small-molecule mimicry strategies. Lucas X, Ciulli A. Curr Opin Struct Biol 44 101-110 (2017)
  30. E3 Ligase Ligands in Successful PROTACs: An Overview of Syntheses and Linker Attachment Points. Bricelj A, Steinebach C, Kuchta R, Gütschow M, Sosič I. Front Chem 9 707317 (2021)
  31. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Li X, Pu W, Zheng Q, Ai M, Chen S, Peng Y. Mol Cancer 21 99 (2022)
  32. Advances in targeted degradation of endogenous proteins. Röth S, Fulcher LJ, Sapkota GP. Cell Mol Life Sci 76 2761-2777 (2019)
  33. Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. He Y, Khan S, Huo Z, Lv D, Zhang X, Liu X, Yuan Y, Hromas R, Xu M, Zheng G, Zhou D. J Hematol Oncol 13 103 (2020)
  34. Emerging drug development technologies targeting ubiquitination for cancer therapeutics. Veggiani G, Gerpe MCR, Sidhu SS, Zhang W. Pharmacol Ther 199 139-154 (2019)
  35. Protein degraders enter the clinic - a new approach to cancer therapy. Chirnomas D, Hornberger KR, Crews CM. Nat Rev Clin Oncol 20 265-278 (2023)
  36. An overview of PROTACs: a promising drug discovery paradigm. Liu Z, Hu M, Yang Y, Du C, Zhou H, Liu C, Chen Y, Fan L, Ma H, Gong Y, Xie Y. Mol Biomed 3 46 (2022)
  37. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors. LaPlante G, Zhang W. Cancers (Basel) 13 3079 (2021)
  38. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Cheng J, Guo J, North BJ, Tao K, Zhou P, Wei W. Biochim Biophys Acta Rev Cancer 1871 138-159 (2019)
  39. Molecular Glues: The Adhesive Connecting Targeted Protein Degradation to the Clinic. Sasso JM, Tenchov R, Wang D, Johnson LS, Wang X, Zhou QA. Biochemistry 62 601-623 (2023)
  40. Targeted Protein Degradation by Chimeric Small Molecules, PROTACs and SNIPERs. Naito M, Ohoka N, Shibata N, Tsukumo Y. Front Chem 7 849 (2019)
  41. Assays and technologies for developing proteolysis targeting chimera degraders. Liu X, Zhang X, Lv D, Yuan Y, Zheng G, Zhou D. Future Med Chem 12 1155-1179 (2020)
  42. Targeting Protein Kinases Degradation by PROTACs. Yu F, Cai M, Shao L, Zhang J. Front Chem 9 679120 (2021)
  43. Targeting the Ubiquitin Signaling Cascade in Tumor Microenvironment for Cancer Therapy. Liu Q, Aminu B, Roscow O, Zhang W. Int J Mol Sci 22 E791 (2021)
  44. Chemical Protein Degradation Approach and its Application to Epigenetic Targets. Itoh Y. Chem Rec 18 1681-1700 (2018)
  45. Potential of E3 Ubiquitin Ligases in Cancer Immunity: Opportunities and Challenges. Ye P, Chi X, Cha JH, Luo S, Yang G, Yan X, Yang WH. Cells 10 3309 (2021)
  46. Targeting TRIM Proteins: A Quest towards Drugging an Emerging Protein Class. D'Amico F, Mukhopadhyay R, Ovaa H, Mulder MPC. Chembiochem 22 2011-2031 (2021)
  47. Light-Controllable PROTACs for Temporospatial Control of Protein Degradation. Liu J, Peng Y, Wei W. Front Cell Dev Biol 9 678077 (2021)
  48. Emerging modes-of-action in drug discovery. Valeur E, Narjes F, Ottmann C, Plowright AT. Medchemcomm 10 1550-1568 (2019)
  49. Inhibitors, PROTACs and Molecular Glues as Diverse Therapeutic Modalities to Target Cyclin-Dependent Kinase. Rana S, Mallareddy JR, Singh S, Boghean L, Natarajan A. Cancers (Basel) 13 5506 (2021)
  50. Roles of Cullin-RING Ubiquitin Ligases in Cardiovascular Diseases. Diaz S, Wang K, Sjögren B, Liu X. Biomolecules 12 416 (2022)
  51. Chemical Methods to Knock Down the Amyloid Proteins. Gao N, Chen YX, Zhao YF, Li YM. Molecules 22 E916 (2017)
  52. Options to Improve the Action of PROTACs in Cancer: Development of Controlled Delivery Nanoparticles. Juan A, Del Mar Noblejas-López M, Arenas-Moreira M, Alonso-Moreno C, Ocaña A. Front Cell Dev Biol 9 805336 (2021)
  53. PROTACs in gastrointestinal cancers. Chen Y, Yang Q, Xu J, Tang L, Zhang Y, Du F, Zhao Y, Wu X, Li M, Shen J, Ding R, Cao H, Li W, Li X, Chen M, Wu Z, Cho CH, Du Y, Wen Q, Xiao Z. Mol Ther Oncolytics 27 204-223 (2022)
  54. Proteolysis-Targeting Chimeras (PROTACs) in Cancer Therapy: Present and Future. Li R, Liu M, Yang Z, Li J, Gao Y, Tan R. Molecules 27 8828 (2022)
  55. MDM2-Based Proteolysis-Targeting Chimeras (PROTACs): An Innovative Drug Strategy for Cancer Treatment. Vicente ATS, Salvador JAR. Int J Mol Sci 23 11068 (2022)
  56. PROTAC: targeted drug strategy. Principles and limitations. Koroleva OA, Dutikova YV, Trubnikov AV, Zenov FA, Manasova EV, Shtil AA, Kurkin AV. Russ Chem Bull 71 2310-2334 (2022)
  57. PROTACs: Emerging Targeted Protein Degradation Approaches for Advanced Druggable Strategies. Sincere NI, Anand K, Ashique S, Yang J, You C. Molecules 28 4014 (2023)
  58. Targeted Protein Degradation to Overcome Resistance in Cancer Therapies: PROTAC and N-Degron Pathway. Kim H, Park J, Kim JM. Biomedicines 10 2100 (2022)
  59. Beyond canonical PROTAC: biological targeted protein degradation (bioTPD). Wang H, Zhou R, Xu F, Yang K, Zheng L, Zhao P, Shi G, Dai L, Xu C, Yu L, Li Z, Wang J, Wang J. Biomater Res 27 72 (2023)
  60. Recent advancements in the discovery of cereblon-based protease-targeted chimeras with potential for therapeutic intervention. Singh H, Agrawal DK. Future Med Chem 14 1403-1416 (2022)
  61. Targeting Oncoproteins for Degradation by Small Molecule-Based Proteolysis-Targeting Chimeras (PROTACs) in Sex Hormone-Dependent Cancers. Liu L, Shi L, Wang Z, Zeng J, Wang Y, Xiao H, Zhu Y. Front Endocrinol (Lausanne) 13 839857 (2022)
  62. E3 Ligases Meet Their Match: Fragment-Based Approaches to Discover New E3 Ligands and to Unravel E3 Biology. Michaelides IN, Collie GW. J Med Chem 66 3173-3194 (2023)
  63. Exploiting Ubiquitin Ligases for Induced Target Degradation as an Antiviral Strategy. Verma R. Adv Exp Med Biol 1322 339-357 (2021)
  64. PROTACs in Epigenetic Cancer Therapy: Current Status and Future Opportunities. Liu X, Wang A, Shi Y, Dai M, Liu M, Cai HB. Molecules 28 1217 (2023)
  65. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Jiang Y, Ni S, Xiao B, Jia L. Acta Pharm Sin B 13 4341-4372 (2023)
  66. PROTACs: Walking through hematological malignancies. Bou Malhab LJ, Alsafar H, Ibrahim S, Rahmani M. Front Pharmacol 14 1086946 (2023)

Articles citing this publication (35)

  1. Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead. Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, Jaime-Figueroa S, Wang J, Hamman BD, Ishchenko A, Crews CM. Cell Chem Biol 25 78-87.e5 (2018)
  2. Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL. Lai AC, Toure M, Hellerschmied D, Salami J, Jaime-Figueroa S, Ko E, Hines J, Crews CM. Angew Chem Int Ed Engl 55 807-810 (2016)
  3. The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP, Toure M, Dong H, Qian Y, Wang J, Crew AP, Hines J, Crews CM. Cell Chem Biol 25 67-77.e3 (2018)
  4. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nowak RP, DeAngelo SL, Buckley D, He Z, Donovan KA, An J, Safaee N, Jedrychowski MP, Ponthier CM, Ishoey M, Zhang T, Mancias JD, Gray NS, Bradner JE, Fischer ES. Nat Chem Biol 14 706-714 (2018)
  5. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. Canning P, Cooper CDO, Krojer T, Murray JW, Pike ACW, Chaikuad A, Keates T, Thangaratnarajah C, Hojzan V, Marsden BD, Gileadi O, Knapp S, von Delft F, Bullock AN. J Biol Chem 288 7803-7814 (2013)
  6. Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition. Frost J, Galdeano C, Soares P, Gadd MS, Grzes KM, Ellis L, Epemolu O, Shimamura S, Bantscheff M, Grandi P, Read KD, Cantrell DA, Rocha S, Ciulli A. Nat Commun 7 13312 (2016)
  7. MDM2-Recruiting PROTAC Offers Superior, Synergistic Antiproliferative Activity via Simultaneous Degradation of BRD4 and Stabilization of p53. Hines J, Lartigue S, Dong H, Qian Y, Crews CM. Cancer Res 79 251-262 (2019)
  8. Targeting BCR-ABL1 in Chronic Myeloid Leukemia by PROTAC-Mediated Targeted Protein Degradation. Burslem GM, Schultz AR, Bondeson DP, Eide CA, Savage Stevens SL, Druker BJ, Crews CM. Cancer Res 79 4744-4753 (2019)
  9. Group-Based Optimization of Potent and Cell-Active Inhibitors of the von Hippel-Lindau (VHL) E3 Ubiquitin Ligase: Structure-Activity Relationships Leading to the Chemical Probe (2S,4R)-1-((S)-2-(1-Cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298). Soares P, Gadd MS, Frost J, Galdeano C, Ellis L, Epemolu O, Rocha S, Read KD, Ciulli A. J Med Chem 61 599-618 (2018)
  10. Discovery of Potent and Selective Epidermal Growth Factor Receptor (EGFR) Bifunctional Small-Molecule Degraders. Cheng M, Yu X, Lu K, Xie L, Wang L, Meng F, Han X, Chen X, Liu J, Xiong Y, Jin J. J Med Chem 63 1216-1232 (2020)
  11. An affinity-directed protein missile system for targeted proteolysis. Fulcher LJ, Macartney T, Bozatzi P, Hornberger A, Rojas-Fernandez A, Sapkota GP. Open Biol 6 160255 (2016)
  12. Functional characterization of a PROTAC directed against BRAF mutant V600E. Posternak G, Tang X, Maisonneuve P, Jin T, Lavoie H, Daou S, Orlicky S, Goullet de Rugy T, Caldwell L, Chan K, Aman A, Prakesch M, Poda G, Mader P, Wong C, Maier S, Kitaygorodsky J, Larsen B, Colwill K, Yin Z, Ceccarelli DF, Batey RA, Taipale M, Kurinov I, Uehling D, Wrana J, Durocher D, Gingras AC, Al-Awar R, Therrien M, Sicheri F. Nat Chem Biol 16 1170-1178 (2020)
  13. A small molecule HIF-1α stabilizer that accelerates diabetic wound healing. Li G, Ko CN, Li D, Yang C, Wang W, Yang GJ, Di Primo C, Wong VKW, Xiang Y, Lin L, Ma DL, Leung CH. Nat Commun 12 3363 (2021)
  14. Is NMR Fragment Screening Fine-Tuned to Assess Druggability of Protein-Protein Interactions? Dias DM, Van Molle I, Baud MG, Galdeano C, Geraldes CF, Ciulli A. ACS Med Chem Lett 5 23-28 (2014)
  15. Discovery of a VHL and HIF1α interaction inhibitor with in vivo angiogenic activity via structure-based virtual screening. Yang C, Wang W, Chen L, Liang J, Lin S, Lee MY, Ma DL, Leung CH. Chem Commun (Camb) 52 12837-12840 (2016)
  16. Disordered region of cereblon is required for efficient degradation by proteolysis-targeting chimera. Kim K, Lee DH, Park S, Jo SH, Ku B, Park SG, Park BC, Jeon YU, Ahn S, Kang CH, Hwang D, Chae S, Ha JD, Kim S, Hwang JY, Kim JH. Sci Rep 9 19654 (2019)
  17. Synthesis of 7-benzylguanosine cap-analogue conjugates for eIF4E targeted degradation. Kaur T, Menon A, Garner AL. Eur J Med Chem 166 339-350 (2019)
  18. Anticancer osmium complex inhibitors of the HIF-1α and p300 protein-protein interaction. Yang C, Wang W, Li GD, Zhong HJ, Dong ZZ, Wong CY, Kwong DW, Ma DL, Leung CH. Sci Rep 7 42860 (2017)
  19. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs. Li F, Hu Q, Zhang X, Sun R, Liu Z, Wu S, Tian S, Ma X, Dai Z, Yang X, Gao S, Bai F. Nat Commun 13 7133 (2022)
  20. Design, Synthesis, and Characterization of Brequinar Conjugates as Probes to Study DHODH Inhibition. Madak JT, Cuthbertson CR, Chen W, Showalter HD, Neamati N. Chemistry 23 13875-13878 (2017)
  21. Selective Degradation of Polo-like Kinase 1 by a Hydrophobically Tagged Inhibitor of the Polo-Box Domain. Rubner S, Scharow A, Schubert S, Berg T. Angew Chem Int Ed Engl 57 17043-17047 (2018)
  22. Tumor reoxygenation for enhanced combination of radiation therapy and microwave thermal therapy using oxygen generation in situ by CuO nanosuperparticles under microwave irradiation. Chen Z, Guo W, Wu Q, Tan L, Ma T, Fu C, Yu J, Ren X, Wang J, Liang P, Meng X. Theranostics 10 4659-4675 (2020)
  23. Investigation of the intermolecular recognition mechanism between the E3 ubiquitin ligase Keap1 and substrate based on multiple substrates analysis. Jiang ZY, Xu LL, Lu MC, Pan Y, Huang HZ, Zhang XJ, Sun HP, You QD. J Comput Aided Mol Des 28 1233-1245 (2014)
  24. PROTACs technology for treatment of Alzheimer's disease: Advances and perspectives. Inuzuka H, Liu J, Wei W, Rezaeian AH. Acta Mater Med 1 24-41 (2022)
  25. Development of BODIPY FL VH032 as a High-Affinity and Selective von Hippel-Lindau E3 Ligase Fluorescent Probe and Its Application in a Time-Resolved Fluorescence Resonance Energy-Transfer Assay. Lin W, Li Y, Yang L, Chen T. ACS Omega 6 680-695 (2021)
  26. Nature Biotechnology's academic spinouts of 2013. Bouchie A, Allison M, Webb S, DeFrancesco L. Nat Biotechnol 32 229-238 (2014)
  27. Expression and purification of functional recombinant CUL2•RBX1 from E. coli. Diaz S, Li L, Wang K, Liu X. Sci Rep 11 11224 (2021)
  28. PROTAC Degrader of Estrogen Receptor α Targeting DNA-Binding Domain in Breast Cancer. Zhang X, Zhang Z, Xue X, Fan T, Tan C, Liu F, Tan Y, Jiang Y. ACS Pharmacol Transl Sci 5 1109-1118 (2022)
  29. Limiting Mrs2-dependent mitochondrial Mg2+ uptake induces metabolic programming in prolonged dietary stress. Madaris TR, Venkatesan M, Maity S, Stein MC, Vishnu N, Venkateswaran MK, Davis JG, Ramachandran K, Uthayabalan S, Allen C, Osidele A, Stanley K, Bigham NP, Bakewell TM, Narkunan M, Le A, Karanam V, Li K, Mhapankar A, Norton L, Ross J, Aslam MI, Reeves WB, Singh BB, Caplan J, Wilson JJ, Stathopulos PB, Baur JA, Madesh M. Cell Rep 42 112155 (2023)
  30. Targeted kinase degradation via the KLHDC2 ubiquitin E3 ligase. Kim Y, Seo P, Jeon E, You I, Hwang K, Kim N, Tse J, Bae J, Choi HS, Hinshaw SM, Gray NS, Sim T. Cell Chem Biol 30 1414-1420.e5 (2023)
  31. Targeting oncoproteins for degradation by small molecules in myeloid leukemia. Lei H, Wang W, Wu Y. Leuk Lymphoma 59 2297-2304 (2018)
  32. Feasible Column Chromatography-Free, Multi-Gram Scale Synthetic Process of VH032 Amine, Which Could Enable Rapid PROTAC Library Construction. Yan W, Pan BS, Shao J, Lin HK, Li HY. ACS Omega 7 26015-26020 (2022)
  33. Expanding the Structural Diversity at the Phenylene Core of Ligands for the von Hippel-Lindau E3 Ubiquitin Ligase: Development of Highly Potent Hypoxia-Inducible Factor-1α Stabilizers. Vu LP, Diehl CJ, Casement R, Bond AG, Steinebach C, Strašek N, Bricelj A, Perdih A, Schnakenburg G, Sosič I, Ciulli A, Gütschow M. J Med Chem 66 12776-12811 (2023)
  34. QSAR modeling and in silico design of small-molecule inhibitors targeting the interaction between E3 ligase VHL and HIF-1α. Pan J, Zhang Y, Ran T, Xu A, Qiao X, Yin L, Zhou W, Zhu L, Zhao J, Lu T, Chen Y, Jiang Y. Mol Divers 21 719-739 (2017)
  35. Targeted Degradation of mRNA Decapping Enzyme DcpS by a VHL-Recruiting PROTAC. Swartzel JC, Bond MJ, Pintado-Urbanc AP, Daftary M, Krone MW, Douglas T, Carder EJ, Zimmer JT, Maeda T, Simon MD, Crews CM. ACS Chem Biol 17 1789-1798 (2022)