4bes Citations

Structure of the Legionella effector AnkX reveals the mechanism of phosphocholine transfer by the FIC domain.

EMBO J 32 1469-77 (2013)
Related entries: 4bep, 4ber, 4bet

Cited: 49 times
EuropePMC logo PMID: 23572077

Abstract

The FIC motif and the eukaryotic-like ankyrin repeats are found in many bacterial type IV effectors, yet little is known about how these domains enable bacteria to modulate host cell functions. Bacterial FIC domains typically bind ATP and transfer adenosine monophosphate moiety onto target proteins. The ankyrin repeat-containing protein AnkX encoded by the intracellular pathogen Legionella pneumophila is unique in that its FIC domain binds to CDP-choline and transfers a phosphocholine residue onto proteins in the Rab1 GTPase family. By determining the structures of unbound AnkX and AnkX with bound CDP-choline, CMP/phosphocholine and CMP, we demonstrate that the orientation of substrate binding in relation to the catalytic FIC motif enables this protein to function as a phosphocholinating enzyme rather than a nucleotidyl transferase. Additionally, the structure reveals that the ankyrin repeats mediate scaffolding interactions that resemble those found in protein-protein interactions, but are unprecedented in intramolecular interactions. Together with phosphocholination experiments, our structures unify a general phosphoryl transferase mechanism common to all FIC enzymes that should be conserved from bacteria to human.

Reviews - 4bes mentioned but not cited (1)

Articles - 4bes mentioned but not cited (4)

  1. Doc toxin is a kinase that inactivates elongation factor Tu. Cruz JW, Rothenbacher FP, Maehigashi T, Lane WS, Dunham CM, Woychik NA. J Biol Chem 289 7788-7798 (2014)
  2. Structure of the Legionella effector AnkX reveals the mechanism of phosphocholine transfer by the FIC domain. Campanacci V, Mukherjee S, Roy CR, Cherfils J. EMBO J 32 1469-1477 (2013)
  3. Legionella effector AnkX displaces the switch II region for Rab1b phosphocholination. Ernst S, Ecker F, Kaspers MS, Ochtrop P, Hedberg C, Groll M, Itzen A. Sci Adv 6 eaaz8041 (2020)
  4. Fic and non-Fic AMPylases: protein AMPylation in metazoans. Chatterjee BK, Truttmann MC. Open Biol 11 210009 (2021)


Reviews citing this publication (22)

  1. Review series: Rab GTPases and membrane identity: causal or inconsequential? Barr FA. J Cell Biol 202 191-199 (2013)
  2. Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones. Finsel I, Hilbi H. Cell Microbiol 17 935-950 (2015)
  3. A Rab-centric perspective of bacterial pathogen-occupied vacuoles. Sherwood RK, Roy CR. Cell Host Microbe 14 256-268 (2013)
  4. Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Steiner B, Weber S, Hilbi H. Int J Med Microbiol 308 49-57 (2018)
  5. The many faces of Fic: structural and functional aspects of Fic enzymes. Garcia-Pino A, Zenkin N, Loris R. Trends Biochem Sci 39 121-129 (2014)
  6. What pathogens have taught us about posttranslational modifications. Salomon D, Orth K. Cell Host Microbe 14 269-279 (2013)
  7. Enzymes Involved in AMPylation and deAMPylation. Casey AK, Orth K. Chem Rev 118 1199-1215 (2018)
  8. Taking control: Hijacking of Rab GTPases by intracellular bacterial pathogens. Spanò S, Galán JE. Small GTPases 9 182-191 (2018)
  9. Biological Diversity and Molecular Plasticity of FIC Domain Proteins. Harms A, Stanger FV, Dehio C. Annu Rev Microbiol 70 341-360 (2016)
  10. Structure and function of Fic proteins. Roy CR, Cherfils J. Nat Rev Microbiol 13 631-640 (2015)
  11. Legionella pneumophila: homeward bound away from the phagosome. Prashar A, Terebiznik MR. Curr Opin Microbiol 23 86-93 (2015)
  12. Phosphoinositides and the Fate of Legionella in Phagocytes. Swart AL, Hilbi H. Front Immunol 11 25 (2020)
  13. Diversity and function of arthropod endosymbiont toxins. Massey JH, Newton ILG. Trends Microbiol 30 185-198 (2022)
  14. Protein and DNA modifications: evolutionary imprints of bacterial biochemical diversification and geochemistry on the provenance of eukaryotic epigenetics. Aravind L, Burroughs AM, Zhang D, Iyer LM. Cold Spring Harb Perspect Biol 6 a016063 (2014)
  15. rAMPing Up Stress Signaling: Protein AMPylation in Metazoans. Truttmann MC, Ploegh HL. Trends Cell Biol 27 608-620 (2017)
  16. Bacterial virulence mediated by orthogonal post-translational modification. Chambers KA, Scheck RA. Nat Chem Biol 16 1043-1051 (2020)
  17. Exploring adenylylation and phosphocholination as post-translational modifications. Müller MP, Albers MF, Itzen A, Hedberg C. Chembiochem 15 19-26 (2014)
  18. Subversion of Cell-Autonomous Immunity and Cell Migration by Legionella pneumophila Effectors. Simon S, Hilbi H. Front Immunol 6 447 (2015)
  19. Interesting Biochemistries in the Structure and Function of Bacterial Effectors. Mak H, Thurston TLM. Front Cell Infect Microbiol 11 608860 (2021)
  20. Post-modern pathogens: surprising activities of translocated effectors from E. coli and Legionella. Pearson JS, Zhang Y, Newton HJ, Hartland EL. Curr Opin Microbiol 23 73-79 (2015)
  21. AMPylation of small GTPases by Fic enzymes. Gulen B, Casey A, Orth K. FEBS Lett 597 883-891 (2023)
  22. Legionella pneumophila-mediated host posttranslational modifications. Yang Y, Mei L, Chen J, Chen X, Wang Z, Liu L, Yang A. J Mol Cell Biol 15 mjad032 (2023)

Articles citing this publication (22)

  1. Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum. VieBrock L, Evans SM, Beyer AR, Larson CL, Beare PA, Ge H, Singh S, Rodino KG, Heinzen RA, Richards AL, Carlyon JA. Front Cell Infect Microbiol 4 186 (2014)
  2. Crystal structure of the human, FIC-domain containing protein HYPE and implications for its functions. Bunney TD, Cole AR, Broncel M, Esposito D, Tate EW, Katan M. Structure 22 1831-1843 (2014)
  3. HypE-specific nanobodies as tools to modulate HypE-mediated target AMPylation. Truttmann MC, Wu Q, Stiegeler S, Duarte JN, Ingram J, Ploegh HL. J Biol Chem 290 9087-9100 (2015)
  4. Yersinia pestis Requires Host Rab1b for Survival in Macrophages. Connor MG, Pulsifer AR, Price CT, Abu Kwaik Y, Lawrenz MB. PLoS Pathog 11 e1005241 (2015)
  5. In silico identification of AMPylating enzymes and study of their divergent evolution. Khater S, Mohanty D. Sci Rep 5 10804 (2015)
  6. Creating a customized intracellular niche: subversion of host cell signaling by Legionella type IV secretion system effectors. So EC, Mattheis C, Tate EW, Frankel G, Schroeder GN. Can J Microbiol 61 617-635 (2015)
  7. Legionella Effector AnkX Disrupts Host Cell Endocytic Recycling in a Phosphocholination-Dependent Manner. Allgood SC, Romero Dueñas BP, Noll RR, Pike C, Lein S, Neunuebel MR. Front Cell Infect Microbiol 7 397 (2017)
  8. New role for the ankyrin repeat revealed by a study of the N-formyltransferase from Providencia alcalifaciens. Woodford CR, Thoden JB, Holden HM. Biochemistry 54 631-638 (2015)
  9. A Ca2+-regulated deAMPylation switch in human and bacterial FIC proteins. Veyron S, Oliva G, Rolando M, Buchrieser C, Peyroche G, Cherfils J. Nat Commun 10 1142 (2019)
  10. Covalent Protein Labeling by Enzymatic Phosphocholination. Heller K, Ochtrop P, Albers MF, Zauner FB, Itzen A, Hedberg C. Angew Chem Int Ed Engl 54 10327-10330 (2015)
  11. Revealing the inventory of type III effectors in Pantoea agglomerans gall-forming pathovars using draft genome sequences and a machine-learning approach. Nissan G, Gershovits M, Morozov M, Chalupowicz L, Sessa G, Manulis-Sasson S, Barash I, Pupko T. Mol Plant Pathol 19 381-392 (2018)
  12. Composite aromatic boxes for enzymatic transformations of quaternary ammonium substrates. Nagy GN, Marton L, Contet A, Ozohanics O, Ardelean LM, Révész A, Vékey K, Irimie FD, Vial H, Cerdan R, Vértessy BG. Angew Chem Int Ed Engl 53 13471-13476 (2014)
  13. Study of Legionella Effector Domains Revealed Novel and Prevalent Phosphatidylinositol 3-Phosphate Binding Domains. Nachmias N, Zusman T, Segal G. Infect Immun 87 e00153-19 (2019)
  14. A Novel Fic (Filamentation Induced by cAMP) Protein from Clostridium difficile Reveals an Inhibitory Motif-independent Adenylylation/AMPylation Mechanism. Dedic E, Alsarraf H, Welner DH, Østergaard O, Klychnikov OI, Hensbergen PJ, Corver J, van Leeuwen HC, Jørgensen R. J Biol Chem 291 13286-13300 (2016)
  15. Legionella- and host-driven lipid flux at LCV-ER membrane contact sites promotes vacuole remodeling. Vormittag S, Hüsler D, Haneburger I, Kroniger T, Anand A, Prantl M, Barisch C, Maaß S, Becher D, Letourneur F, Hilbi H. EMBO Rep 24 e56007 (2023)
  16. Teaching Fido new ModiFICation tricks. Cruz JW, Woychik NA. PLoS Pathog 10 e1004349 (2014)
  17. Bioinformatic Exploration of Metal-Binding Proteome of Zoonotic Pathogen Orientia tsutsugamushi. Sharma D, Sharma A, Singh B, Verma SK. Front Genet 10 797 (2019)
  18. Evolutionary Diversification of Host-Targeted Bartonella Effectors Proteins Derived from a Conserved FicTA Toxin-Antitoxin Module. Schirmer T, de Beer TAP, Tamegger S, Harms A, Dietz N, Dranow DM, Edwards TE, Myler PJ, Phan I, Dehio C. Microorganisms 9 1645 (2021)
  19. Manipulation of IRE1-Dependent MAPK Signaling by a Vibrio Agonist-Antagonist Effector Pair. De Nisco NJ, Casey AK, Kanchwala M, Lafrance AE, Coskun FS, Kinch LN, Grishin NV, Xing C, Orth K. mSystems 6 e00872-20 (2021)
  20. Crystal Structure of the Escherichia coli Fic Toxin-Like Protein in Complex with Its Cognate Antitoxin. Stanger FV, Harms A, Dehio C, Schirmer T. PLoS One 11 e0163654 (2016)
  21. Analysis of the Type 4 Effectome across the Genus Rickettsia. Aspinwall JA, Brayton KA. Int J Mol Sci 23 15513 (2022)
  22. Remnants of horizontal transfers of Wolbachia genes in a Wolbachia-free woodwasp. Queffelec J, Postma A, Allison JD, Slippers B. BMC Ecol Evol 22 36 (2022)