4bh2 Citations

Receptor binding by a ferret-transmissible H5 avian influenza virus.

Abstract

Cell-surface-receptor binding by influenza viruses is a key determinant of their transmissibility, both from avian and animal species to humans as well as from human to human. Highly pathogenic avian H5N1 viruses that are a threat to public health have been observed to acquire affinity for human receptors, and transmissible-mutant-selection experiments have identified a virus that is transmissible in ferrets, the generally accepted experimental model for influenza in humans. Here, our quantitative biophysical measurements of the receptor-binding properties of haemagglutinin (HA) from the transmissible mutant indicate a small increase in affinity for human receptor and a marked decrease in affinity for avian receptor. From analysis of virus and HA binding data we have derived an algorithm that predicts virus avidity from the affinity of individual HA-receptor interactions. It reveals that the transmissible-mutant virus has a 200-fold preference for binding human over avian receptors. The crystal structure of the transmissible-mutant HA in complex with receptor analogues shows that it has acquired the ability to bind human receptor in the same folded-back conformation as seen for HA from the 1918, 1957 (ref. 4), 1968 (ref. 5) and 2009 (ref. 6) pandemic viruses. This binding mode is substantially different from that by which non-transmissible wild-type H5 virus HA binds human receptor. The structure of the complex also explains how the change in preference from avian to human receptors arises from the Gln226Leu substitution, which facilitates binding to human receptor but restricts binding to avian receptor. Both features probably contribute to the acquisition of transmissibility by this mutant virus.

Articles - 4bh2 mentioned but not cited (1)

  1. Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites. Winarski KL, Thornburg NJ, Yu Y, Sapparapu G, Crowe JE, Spiller BW. Proc Natl Acad Sci U S A 112 9346-9351 (2015)


Reviews citing this publication (44)

  1. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. de Graaf M, Fouchier RA. EMBO J 33 823-841 (2014)
  2. The sweet spot: defining virus-sialic acid interactions. Stencel-Baerenwald JE, Reiss K, Reiter DM, Stehle T, Dermody TS. Nat Rev Microbiol 12 739-749 (2014)
  3. Bat-derived influenza-like viruses H17N10 and H18N11. Wu Y, Wu Y, Tefsen B, Shi Y, Gao GF. Trends Microbiol 22 183-191 (2014)
  4. Enabling the 'host jump': structural determinants of receptor-binding specificity in influenza A viruses. Shi Y, Wu Y, Zhang W, Qi J, Gao GF. Nat Rev Microbiol 12 822-831 (2014)
  5. Virus-Receptor Interactions: The Key to Cellular Invasion. Maginnis MS. J Mol Biol 430 2590-2611 (2018)
  6. Entry of influenza A virus: host factors and antiviral targets. Edinger TO, Pohl MO, Stertz S. J Gen Virol 95 263-277 (2014)
  7. Viral determinants of influenza A virus host range. Cauldwell AV, Long JS, Moncorgé O, Barclay WS. J Gen Virol 95 1193-1210 (2014)
  8. Host adaptation and transmission of influenza A viruses in mammals. Schrauwen EJ, Fouchier RA. Emerg Microbes Infect 3 e9 (2014)
  9. The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase. Byrd-Leotis L, Cummings RD, Steinhauer DA. Int J Mol Sci 18 E1541 (2017)
  10. Transmission of influenza A viruses. Neumann G, Kawaoka Y. Virology 479-480 234-246 (2015)
  11. Influenza Hemagglutinin Structures and Antibody Recognition. Wu NC, Wilson IA. Cold Spring Harb Perspect Med 10 a038778 (2020)
  12. Influenza A Virus Hemagglutinin-Neuraminidase-Receptor Balance: Preserving Virus Motility. de Vries E, Du W, Guo H, de Haan CAM. Trends Microbiol 28 57-67 (2020)
  13. The WHO global influenza surveillance and response system (GISRS)-A future perspective. Hay AJ, McCauley JW. Influenza Other Respir Viruses 12 551-557 (2018)
  14. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. Richard M, Fouchier RA. FEMS Microbiol Rev 40 68-85 (2016)
  15. Acid-induced membrane fusion by the hemagglutinin protein and its role in influenza virus biology. Russell CJ. Curr Top Microbiol Immunol 385 93-116 (2014)
  16. Cross-species transmission and emergence of novel viruses from birds. Chan JF, To KK, Chen H, Yuen KY. Curr Opin Virol 10 63-69 (2015)
  17. SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction. Kim CH. Int J Mol Sci 21 E4549 (2020)
  18. The ecology and adaptive evolution of influenza A interspecies transmission. Joseph U, Su YC, Vijaykrishna D, Smith GJ. Influenza Other Respir Viruses 11 74-84 (2017)
  19. Receptor-mediated cell entry of paramyxoviruses: Mechanisms, and consequences for tropism and pathogenesis. Navaratnarajah CK, Generous AR, Yousaf I, Cattaneo R. J Biol Chem 295 2771-2786 (2020)
  20. Binding Revisited-Avidity in Cellular Function and Signaling. Erlendsson S, Teilum K. Front Mol Biosci 7 615565 (2020)
  21. Investigational hemagglutinin-targeted influenza virus inhibitors. Zeng LY, Yang J, Liu S. Expert Opin Investig Drugs 26 63-73 (2017)
  22. Hemagglutinin Stability and Its Impact on Influenza A Virus Infectivity, Pathogenicity, and Transmissibility in Avians, Mice, Swine, Seals, Ferrets, and Humans. Russell CJ. Viruses 13 746 (2021)
  23. Anti-SARS-CoV-2 Natural Products as Potentially Therapeutic Agents. Kim CH. Front Pharmacol 12 590509 (2021)
  24. Emerging HxNy Influenza A Viruses. Liu WJ, Wu Y, Bi Y, Shi W, Wang D, Shi Y, Gao GF. Cold Spring Harb Perspect Med 12 a038406 (2022)
  25. Modulation of the pH Stability of Influenza Virus Hemagglutinin: A Host Cell Adaptation Strategy. Di Lella S, Herrmann A, Mair CM. Biophys J 110 2293-2301 (2016)
  26. Hemagglutinin Structure and Activities. Gamblin SJ, Vachieri SG, Xiong X, Zhang J, Martin SR, Skehel JJ. Cold Spring Harb Perspect Med 11 a038638 (2021)
  27. New insights into influenza A specificity: an evolution of paradigms. Ji Y, White YJ, Hadden JA, Grant OC, Woods RJ. Curr Opin Struct Biol 44 219-231 (2017)
  28. What adaptive changes in hemagglutinin and neuraminidase are necessary for emergence of pandemic influenza virus from its avian precursor? Gambaryan AS, Matrosovich MN. Biochemistry (Mosc) 80 872-880 (2015)
  29. Influence of Host Sialic Acid Receptors Structure on the Host Specificity of Influenza Viruses. Zhao C, Pu J. Viruses 14 2141 (2022)
  30. Influenza as a molecular walker. Hamming PHE, Overeem NJ, Huskens J. Chem Sci 11 27-36 (2020)
  31. Pathogenicity and virulence of influenza. Liang Y. Virulence 14 2223057 (2023)
  32. The structural variability of the influenza A hemagglutinin receptor-binding site. Lazniewski M, Dawson WK, Szczepinska T, Plewczynski D. Brief Funct Genomics 17 415-427 (2018)
  33. Membrane attachment and fusion of HIV-1, influenza A, and SARS-CoV-2: resolving the mechanisms with biophysical methods. Negi G, Sharma A, Dey M, Dhanawat G, Parveen N. Biophys Rev 14 1109-1140 (2022)
  34. A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike Protein at Its 22 N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins, and Antibody. Scheim DE. Int J Mol Sci 23 2558 (2022)
  35. Role of germinal centers for the induction of broadly-reactive memory B cells. Takahashi Y, Kelsoe G. Curr Opin Immunol 45 119-125 (2017)
  36. Surface Modification with Control over Ligand Density for the Study of Multivalent Biological Systems. Di Iorio D, Huskens J. ChemistryOpen 9 53-66 (2020)
  37. Electrostatic Surface Potential as a Key Parameter in Virus Transmission and Evolution: How to Manage Future Virus Pandemics in the Post-COVID-19 Era. Fantini J, Azzaz F, Chahinian H, Yahi N. Viruses 15 284 (2023)
  38. Single-virus force spectroscopy unravels molecular details of virus infection. Herrmann A, Sieben C. Integr Biol (Camb) 7 620-632 (2015)
  39. Why Do Exceptionally Dangerous Gain-of-Function Experiments in Influenza? Lipsitch M. Methods Mol Biol 1836 589-608 (2018)
  40. A Portrait of the Sialyl Glycan Receptor Specificity of the H10 Influenza Virus Hemagglutinin-A Picture of an Avian Virus on the Verge of Becoming a Pandemic? Schneider EK, Li J, Velkov T. Vaccines (Basel) 5 E51 (2017)
  41. Three-Dimensional Visualization of Viral Structure, Entry, and Replication Underlying the Spread of SARS-CoV-2. Saville JW, Berezuk AM, Srivastava SS, Subramaniam S. Chem Rev 122 14066-14084 (2022)
  42. Considerations for the rapid deployment of vaccines against H7N9 influenza. Chua BY, Brown LE, Jackson DC. Expert Rev Vaccines 13 1327-1337 (2014)
  43. Computational methods to study enveloped viral entry. Tuerkova A, Kasson PM. Biochem Soc Trans 49 2527-2537 (2021)
  44. The pathogenesis of influenza in intact alveoli: virion endocytosis and its effects on the lung's air-blood barrier. Hook JL, Bhattacharya J. Front Immunol 15 1328453 (2024)

Articles citing this publication (96)

  1. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeldt CJ, Cerikan B, Lu JM, Peukes J, Xiong X, Kräusslich HG, Scheres SHW, Bartenschlager R, Briggs JAG. Nature 588 498-502 (2020)
  2. Structural insights into coronavirus entry. Tortorici MA, Veesler D. Adv Virus Res 105 93-116 (2019)
  3. Structural basis for human coronavirus attachment to sialic acid receptors. Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, Boons GJ, Bosch BJ, Rey FA, de Groot RJ, Veesler D. Nat Struct Mol Biol 26 481-489 (2019)
  4. Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Justin N, Zhang Y, Tarricone C, Martin SR, Chen S, Underwood E, De Marco V, Haire LF, Walker PA, Reinberg D, Wilson JR, Gamblin SJ. Nat Commun 7 11316 (2016)
  5. Receptor binding by an H7N9 influenza virus from humans. Xiong X, Martin SR, Haire LF, Wharton SA, Daniels RS, Bennett MS, McCauley JW, Collins PJ, Walker PA, Skehel JJ, Gamblin SJ. Nature 499 496-499 (2013)
  6. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Linster M, van Boheemen S, de Graaf M, Schrauwen EJA, Lexmond P, Mänz B, Bestebroer TM, Baumann J, van Riel D, Rimmelzwaan GF, Osterhaus ADME, Matrosovich M, Fouchier RAM, Herfst S. Cell 157 329-339 (2014)
  7. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses. Shi Y, Zhang W, Wang F, Qi J, Wu Y, Song H, Gao F, Bi Y, Zhang Y, Fan Z, Qin C, Sun H, Liu J, Haywood J, Liu W, Gong W, Wang D, Shu Y, Wang Y, Yan J, Gao GF. Science 342 243-247 (2013)
  8. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Park YJ, Walls AC, Wang Z, Sauer MM, Li W, Tortorici MA, Bosch BJ, DiMaio F, Veesler D. Nat Struct Mol Biol 26 1151-1157 (2019)
  9. A structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine. Wu NC, Zost SJ, Thompson AJ, Oyen D, Nycholat CM, McBride R, Paulson JC, Hensley SE, Wilson IA. PLoS Pathog 13 e1006682 (2017)
  10. A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets. Imai M, Watanabe T, Kiso M, Nakajima N, Yamayoshi S, Iwatsuki-Horimoto K, Hatta M, Yamada S, Ito M, Sakai-Tagawa Y, Shirakura M, Takashita E, Fujisaki S, McBride R, Thompson AJ, Takahashi K, Maemura T, Mitake H, Chiba S, Zhong G, Fan S, Oishi K, Yasuhara A, Takada K, Nakao T, Fukuyama S, Yamashita M, Lopes TJS, Neumann G, Odagiri T, Watanabe S, Shu Y, Paulson JC, Hasegawa H, Kawaoka Y. Cell Host Microbe 22 615-626.e8 (2017)
  11. Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces. Guo H, Guo H, Rabouw H, Slomp A, Dai M, van der Vegt F, van Lent JWM, McBride R, Paulson JC, de Groot RJ, van Kuppeveld FJM, de Vries E, de Haan CAM. PLoS Pathog 14 e1007233 (2018)
  12. Three mutations switch H7N9 influenza to human-type receptor specificity. de Vries RP, Peng W, Grant OC, Thompson AJ, Zhu X, Bouwman KM, de la Pena ATT, van Breemen MJ, Ambepitiya Wickramasinghe IN, de Haan CAM, Yu W, McBride R, Sanders RW, Woods RJ, Verheije MH, Wilson IA, Paulson JC. PLoS Pathog 13 e1006390 (2017)
  13. MicroRNA-based strategy to mitigate the risk of gain-of-function influenza studies. Langlois RA, Albrecht RA, Kimble B, Sutton T, Shapiro JS, Finch C, Angel M, Chua MA, Gonzalez-Reiche AS, Xu K, Perez D, García-Sastre A, tenOever BR. Nat Biotechnol 31 844-847 (2013)
  14. Receptor binding by H10 influenza viruses. Vachieri SG, Xiong X, Collins PJ, Walker PA, Martin SR, Haire LF, Zhang Y, McCauley JW, Gamblin SJ, Skehel JJ. Nature 511 475-477 (2014)
  15. Viral factors in influenza pandemic risk assessment. Lipsitch M, Barclay W, Raman R, Russell CJ, Belser JA, Cobey S, Kasson PM, Lloyd-Smith JO, Maurer-Stroh S, Riley S, Beauchemin CA, Bedford T, Friedrich TC, Handel A, Herfst S, Murcia PR, Roche B, Wilke CO, Russell CA. Elife 5 e18491 (2016)
  16. Hemagglutinin receptor specificity and structural analyses of respiratory droplet-transmissible H5N1 viruses. de Vries RP, Zhu X, McBride R, Rigter A, Hanson A, Zhong G, Hatta M, Xu R, Yu W, Kawaoka Y, de Haan CA, Wilson IA, Paulson JC. J Virol 88 768-773 (2014)
  17. Immunodominance and Antigenic Variation of Influenza Virus Hemagglutinin: Implications for Design of Universal Vaccine Immunogens. Zost SJ, Wu NC, Hensley SE, Wilson IA. J Infect Dis 219 S38-S45 (2019)
  18. Influenza binds phosphorylated glycans from human lung. Byrd-Leotis L, Jia N, Dutta S, Trost JF, Gao C, Cummings SF, Braulke T, Müller-Loennies S, Heimburg-Molinaro J, Steinhauer DA, Cummings RD. Sci Adv 5 eaav2554 (2019)
  19. A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors. Zhang H, de Vries RP, Tzarum N, Zhu X, Yu W, McBride R, Paulson JC, Wilson IA. Cell Host Microbe 17 377-384 (2015)
  20. Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion. Peacock TP, Benton DJ, Sadeyen JR, Chang P, Sealy JE, Bryant JE, Martin SR, Shelton H, McCauley JW, Barclay WS, Iqbal M. Emerg Microbes Infect 6 e11 (2017)
  21. The Greater Affinity of JC Polyomavirus Capsid for α2,6-Linked Lactoseries Tetrasaccharide c than for Other Sialylated Glycans Is a Major Determinant of Infectivity. Ströh LJ, Maginnis MS, Blaum BS, Nelson CD, Neu U, Gee GV, O'Hara BA, Motamedi N, DiMaio D, Atwood WJ, Stehle T. J Virol 89 6364-6375 (2015)
  22. Improving pandemic influenza risk assessment. Russell CA, Kasson PM, Donis RO, Riley S, Dunbar J, Rambaut A, Asher J, Burke S, Davis CT, Garten RJ, Gnanakaran S, Hay SI, Herfst S, Lewis NS, Lloyd-Smith JO, Macken CA, Maurer-Stroh S, Neuhaus E, Parrish CR, Pepin KM, Shepard SS, Smith DL, Suarez DL, Trock SC, Widdowson MA, George DB, Lipsitch M, Bloom JD. Elife 3 e03883 (2014)
  23. Recent evolution of equine influenza and the origin of canine influenza. Collins PJ, Vachieri SG, Haire LF, Ogrodowicz RW, Martin SR, Walker PA, Xiong X, Gamblin SJ, Skehel JJ. Proc Natl Acad Sci U S A 111 11175-11180 (2014)
  24. Biophysical measurement of the balance of influenza a hemagglutinin and neuraminidase activities. Benton DJ, Martin SR, Wharton SA, McCauley JW. J Biol Chem 290 6516-6521 (2015)
  25. Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Jansen AJG, Spaan T, Low HZ, Di Iorio D, van den Brand J, Tieke M, Barendrecht A, Rohn K, van Amerongen G, Stittelaar K, Baumgärtner W, Osterhaus A, Kuiken T, Boons GJ, Huskens J, Boes M, Maas C, van der Vries E. Blood Adv 4 2967-2978 (2020)
  26. Structures of complexes formed by H5 influenza hemagglutinin with a potent broadly neutralizing human monoclonal antibody. Xiong X, Corti D, Liu J, Pinna D, Foglierini M, Calder LJ, Martin SR, Lin YP, Walker PA, Collins PJ, Monne I, Suguitan AL, Santos C, Temperton NJ, Subbarao K, Lanzavecchia A, Gamblin SJ, Skehel JJ. Proc Natl Acad Sci U S A 112 9430-9435 (2015)
  27. Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preference. Wang F, Qi J, Bi Y, Zhang W, Wang M, Zhang B, Wang M, Liu J, Yan J, Shi Y, Gao GF. EMBO J 34 1661-1673 (2015)
  28. Avian influenza A viruses: from zoonosis to pandemic. Richard M, de Graaf M, Herfst S. Future Virol 9 513-524 (2014)
  29. Combining confocal and atomic force microscopy to quantify single-virus binding to mammalian cell surfaces. Newton R, Delguste M, Koehler M, Dumitru AC, Laskowski PR, Müller DJ, Alsteens D. Nat Protoc 12 2275-2292 (2017)
  30. A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors. de Vries RP, Tzarum N, Peng W, Thompson AJ, Ambepitiya Wickramasinghe IN, de la Pena ATT, van Breemen MJ, Bouwman KM, Zhu X, McBride R, Yu W, Sanders RW, Verheije MH, Wilson IA, Paulson JC. EMBO Mol Med 9 1314-1325 (2017)
  31. Structure and receptor binding of the hemagglutinin from a human H6N1 influenza virus. Tzarum N, de Vries RP, Zhu X, Yu W, McBride R, Paulson JC, Wilson IA. Cell Host Microbe 17 369-376 (2015)
  32. The 150-Loop Restricts the Host Specificity of Human H10N8 Influenza Virus. Tzarum N, de Vries RP, Peng W, Thompson AJ, Bouwman KM, McBride R, Yu W, Zhu X, Verheije MH, Paulson JC, Wilson IA. Cell Rep 19 235-245 (2017)
  33. Structure and receptor-binding properties of an airborne transmissible avian influenza A virus hemagglutinin H5 (VN1203mut). Lu X, Shi Y, Zhang W, Zhang Y, Qi J, Gao GF. Protein Cell 4 502-511 (2013)
  34. Fluorescent Trimeric Hemagglutinins Reveal Multivalent Receptor Binding Properties. Nemanichvili N, Tomris I, Turner HL, McBride R, Grant OC, van der Woude R, Aldosari MH, Pieters RJ, Woods RJ, Paulson JC, Boons GJ, Ward AB, Verheije MH, de Vries RP. J Mol Biol 431 842-856 (2019)
  35. A Novel, Multi-Target Natural Drug Candidate, Matrine, Improves Cognitive Deficits in Alzheimer's Disease Transgenic Mice by Inhibiting Aβ Aggregation and Blocking the RAGE/Aβ Axis. Cui L, Cui L, Cai Y, Cheng W, Liu G, Zhao J, Cao H, Tao H, Wang Y, Yin M, Liu T, Liu Y, Huang P, Liu Z, Li K, Zhao B. Mol Neurobiol 54 1939-1952 (2017)
  36. A Simple Model of Multivalent Adhesion and Its Application to Influenza Infection. Xu H, Shaw DE. Biophys J 110 218-233 (2016)
  37. Changes in the hemagglutinin of H5N1 viruses during human infection--influence on receptor binding. Crusat M, Liu J, Palma AS, Childs RA, Liu Y, Wharton SA, Lin YP, Coombs PJ, Martin SR, Matrosovich M, Chen Z, Stevens DJ, Hien VM, Thanh TT, Nhu le NT, Nguyet LA, Ha do Q, van Doorn HR, Hien TT, Conradt HS, Kiso M, Gamblin SJ, Chai W, Skehel JJ, Hay AJ, Farrar J, de Jong MD, Feizi T. Virology 447 326-337 (2013)
  38. Human-type sialic acid receptors contribute to avian influenza A virus binding and entry by hetero-multivalent interactions. Liu M, Huang LZX, Smits AA, Büll C, Narimatsu Y, van Kuppeveld FJM, Clausen H, de Haan CAM, de Vries E. Nat Commun 13 4054 (2022)
  39. Mutation W222L at the Receptor Binding Site of Hemagglutinin Could Facilitate Viral Adaption from Equine Influenza A(H3N8) Virus to Dogs. Wen F, Blackmon S, Olivier AK, Li L, Guan M, Sun H, Wang PG, Wan XF. J Virol 92 e01115-18 (2018)
  40. Structural basis for preferential avian receptor binding by the human-infecting H10N8 avian influenza virus. Wang M, Zhang W, Qi J, Wang F, Zhou J, Bi Y, Wu Y, Sun H, Liu J, Huang C, Li X, Yan J, Shu Y, Shi Y, Gao GF. Nat Commun 6 5600 (2015)
  41. N-glycolylneuraminic acid on human epithelial cells prevents entry of influenza A viruses that possess N-glycolylneuraminic acid binding ability. Takahashi T, Takano M, Kurebayashi Y, Masuda M, Kawagishi S, Takaguchi M, Yamanaka T, Minami A, Otsubo T, Ikeda K, Suzuki T. J Virol 88 8445-8456 (2014)
  42. Structural and Functional Studies of Influenza Virus A/H6 Hemagglutinin. Ni F, Kondrashkina E, Wang Q. PLoS One 10 e0134576 (2015)
  43. How virus size and attachment parameters affect the temperature sensitivity of virus binding to host cells: Predictions of a thermodynamic model for arboviruses and HIV. Gale P. Microb Risk Anal 15 100104 (2020)
  44. Towards a thermodynamic mechanistic model for the effect of temperature on arthropod vector competence for transmission of arboviruses. Gale P. Microb Risk Anal 12 27-43 (2019)
  45. Weak Multivalent Binding of Influenza Hemagglutinin Nanoparticles at a Sialoglycan-Functionalized Supported Lipid Bilayer. Di Iorio D, Verheijden ML, van der Vries E, Jonkheijm P, Huskens J. ACS Nano 13 3413-3423 (2019)
  46. Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation. Peng W, Bouwman KM, McBride R, Grant OC, Woods RJ, Verheije MH, Paulson JC, de Vries RP. J Virol 92 e02016-17 (2018)
  47. One-way trip: influenza virus' adaptation to gallinaceous poultry may limit its pandemic potential. Long JS, Benfield CT, Barclay WS. Bioessays 37 204-212 (2015)
  48. A GFP expressing influenza A virus to report in vivo tropism and protection by a matrix protein 2 ectodomain-specific monoclonal antibody. De Baets S, Verhelst J, Van den Hoecke S, Smet A, Schotsaert M, Job ER, Roose K, Schepens B, Fiers W, Saelens X. PLoS One 10 e0121491 (2015)
  49. Multivalent 9-O-Acetylated-sialic acid glycoclusters as potent inhibitors for SARS-CoV-2 infection. Petitjean SJL, Chen W, Koehler M, Jimmidi R, Yang J, Mohammed D, Juniku B, Stanifer ML, Boulant S, Vincent SP, Alsteens D. Nat Commun 13 2564 (2022)
  50. Coinfection of Chickens with H9N2 and H7N9 Avian Influenza Viruses Leads to Emergence of Reassortant H9N9 Virus with Increased Fitness for Poultry and a Zoonotic Potential. Bhat S, James J, Sadeyen JR, Mahmood S, Everest HJ, Chang P, Walsh SK, Byrne AMP, Mollett B, Lean F, Sealy JE, Shelton H, Slomka MJ, Brookes SM, Iqbal M. J Virol 96 e0185621 (2022)
  51. Force Spectroscopy Shows Dynamic Binding of Influenza Hemagglutinin and Neuraminidase to Sialic Acid. Reiter-Scherer V, Cuellar-Camacho JL, Bhatia S, Haag R, Herrmann A, Lauster D, Rabe JP. Biophys J 116 1037-1048 (2019)
  52. ACE2-containing defensosomes serve as decoys to inhibit SARS-CoV-2 infection. Ching KL, de Vries M, Gago J, Dancel-Manning K, Sall J, Rice WJ, Barnett C, Khodadadi-Jamayran A, Tsirigos A, Liang FX, Thorpe LE, Shopsin B, Segal LN, Dittmann M, Torres VJ, Cadwell K. PLoS Biol 20 e3001754 (2022)
  53. Enhanced human receptor binding by H5 haemagglutinins. Xiong X, Xiao H, Martin SR, Coombs PJ, Liu J, Collins PJ, Vachieri SG, Walker PA, Lin YP, McCauley JW, Gamblin SJ, Skehel JJ. Virology 456-457 179-187 (2014)
  54. Exploring the early stages of the pH-induced conformational change of influenza hemagglutinin. Zhou Y, Wu C, Zhao L, Huang N. Proteins 82 2412-2428 (2014)
  55. Mutation of the second sialic acid-binding site of influenza A virus neuraminidase drives compensatory mutations in hemagglutinin. Du W, Wolfert MA, Peeters B, van Kuppeveld FJM, Boons GJ, de Vries E, de Haan CAM. PLoS Pathog 16 e1008816 (2020)
  56. Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants. Zhu X, Viswanathan K, Raman R, Yu W, Sasisekharan R, Wilson IA. Cell Rep 13 1683-1691 (2015)
  57. Genetic determinants of receptor-binding preference and zoonotic potential of H9N2 avian influenza viruses. Peacock TP, Sealy JE, Harvey WT, Benton DJ, Reeve R, Iqbal M. J Virol 95 JVI.01651-20 (2021)
  58. Convergent Evolution in Breadth of Two VH6-1-Encoded Influenza Antibody Clonotypes from a Single Donor. Wu NC, Andrews SF, Raab JE, O'Connell S, Schramm CA, Ding X, Chambers MJ, Leung K, Wang L, Zhang Y, Mascola JR, Douek DC, Ledgerwood JE, McDermott AB, Wilson IA. Cell Host Microbe 28 434-444.e4 (2020)
  59. Hemagglutinin Traits Determine Transmission of Avian A/H10N7 Influenza Virus between Mammals. Herfst S, Zhang J, Richard M, McBride R, Lexmond P, Bestebroer TM, Spronken MIJ, de Meulder D, van den Brand JM, Rosu ME, Martin SR, Gamblin SJ, Xiong X, Peng W, Bodewes R, van der Vries E, Osterhaus ADME, Paulson JC, Skehel JJ, Fouchier RAM. Cell Host Microbe 28 602-613.e7 (2020)
  60. Hierarchical Multivalent Effects Control Influenza Host Specificity. Overeem NJ, Hamming PHE, Grant OC, Di Iorio D, Tieke M, Bertolino MC, Li Z, Vos G, de Vries RP, Woods RJ, Tito NB, Boons GPH, van der Vries E, Huskens J. ACS Cent Sci 6 2311-2318 (2020)
  61. Structural and Functional Analysis of Murine Polyomavirus Capsid Proteins Establish the Determinants of Ligand Recognition and Pathogenicity. Buch MH, Liaci AM, O'Hara SD, Garcea RL, Neu U, Stehle T. PLoS Pathog 11 e1005104 (2015)
  62. Aerosol Transmission of Gull-Origin Iceland Subtype H10N7 Influenza A Virus in Ferrets. Guan M, Hall JS, Zhang X, Dusek RJ, Olivier AK, Liu L, Li L, Krauss S, Danner A, Li T, Rutvisuttinunt W, Lin X, Hallgrimsson GT, Ragnarsdottir SB, Vignisson SR, TeSlaa J, Nashold SW, Jarman R, Wan XF. J Virol 93 e00282-19 (2019)
  63. Alterations in hemagglutinin receptor-binding specificity accompany the emergence of highly pathogenic avian influenza viruses. Heider A, Mochalova L, Harder T, Tuzikov A, Bovin N, Wolff T, Matrosovich M, Schweiger B. J Virol 89 5395-5405 (2015)
  64. Defining the Specificity of Carbohydrate-Protein Interactions by Quantifying Functional Group Contributions. Sood A, Gerlits OO, Ji Y, Bovin NV, Coates L, Woods RJ. J Chem Inf Model 58 1889-1901 (2018)
  65. Unique Structural Features of Influenza Virus H15 Hemagglutinin. Tzarum N, McBride R, Nycholat CM, Peng W, Paulson JC, Wilson IA. J Virol 91 e00046-17 (2017)
  66. Structural and antigenic characterization of a computationally-optimized H5 hemagglutinin influenza vaccine. Bar-Peled Y, Huang J, Nuñez IA, Pierce SR, Ecker JW, Ross TM, Mousa JJ. Vaccine 37 6022-6029 (2019)
  67. Multivalent Affinity Profiling: Direct Visualization of the Superselective Binding of Influenza Viruses. Overeem NJ, Hamming PHE, Tieke M, van der Vries E, Huskens J. ACS Nano 15 8525-8536 (2021)
  68. Phenotypic Effects of Substitutions within the Receptor Binding Site of Highly Pathogenic Avian Influenza H5N1 Virus Observed during Human Infection. Eggink D, Spronken M, van der Woude R, Buzink J, Broszeit F, McBride R, Pawestri HA, Setiawaty V, Paulson JC, Boons GJ, Fouchier RAM, Russell CA, de Jong MD, de Vries RP. J Virol 94 e00195-20 (2020)
  69. Streptavidin Coverage on Biotinylated Surfaces. Hamming PHE, Huskens J. ACS Appl Mater Interfaces 13 58114-58123 (2021)
  70. Determinant of receptor-preference switch in influenza hemagglutinin. Ni F, Kondrashkina E, Wang Q. Virology 513 98-107 (2018)
  71. PB2 and HA mutations increase the virulence of highly pathogenic H5N5 clade 2.3.4.4 avian influenza virus in mice. Yu Z, Cheng K, Sun W, Zhang X, Xia X, Gao Y. Arch Virol 163 401-410 (2018)
  72. A Dual Motif in the Hemagglutinin of H5N1 Goose/Guangdong-Like Highly Pathogenic Avian Influenza Virus Strains Is Conserved from Their Early Evolution and Increases both Membrane Fusion pH and Virulence. Wessels U, Abdelwhab EM, Veits J, Hoffmann D, Mamerow S, Stech O, Hellert J, Beer M, Mettenleiter TC, Stech J. J Virol 92 e00778-18 (2018)
  73. Adsorptive mutation and N-linked glycosylation modulate influenza virus antigenicity and fitness. Sealy JE, Peacock TP, Sadeyen JR, Chang P, Everest HJ, Bhat S, Iqbal M. Emerg Microbes Infect 9 2622-2631 (2020)
  74. Complementary recognition of the receptor-binding site of highly pathogenic H5N1 influenza viruses by two human neutralizing antibodies. Zuo Y, Wang P, Sun J, Guo S, Wang G, Zuo T, Fan S, Zhou P, Liang M, Shi X, Wang X, Zhang L. J Biol Chem 293 16503-16517 (2018)
  75. Novel reassortant H5N5 viruses bind to a human-type receptor as a factor in pandemic risk. Li Q, Wang X, Gao Z, Sun Z, Cui Z, Duan Z, Li J, Gu M, Wang X, Hu J, Liu X, Liu X. Vet Microbiol 175 356-361 (2015)
  76. Plasticity of the Influenza Virus H5 HA Protein. Kong H, Burke DF, da Silva Lopes TJ, Takada K, Imai M, Zhong G, Hatta M, Fan S, Chiba S, Smith D, Neumann G, Kawaoka Y. mBio 12 e03324-20 (2021)
  77. Retrospective study of risk factors for mortality in human avian influenza A(H7N9) cases in Zhejiang Province, China, March 2013 to June 2014. Cheng QL, Ding H, Sun Z, Kao QJ, Yang XH, Huang RJ, Wen YY, Wang J, Xie L. Int J Infect Dis 39 95-101 (2015)
  78. Application of a Biologically Contained Reporter System To Study Gain-of-Function H5N1 Influenza A Viruses with Pandemic Potential. Spieler EE, Moritz E, Stertz S, Hale BG. mSphere 5 e00423-20 (2020)
  79. The mechanism of poly-galloyl-glucoses preventing Influenza A virus entry into host cells. Ge H, Liu G, Xiang YF, Wang Y, Guo CW, Chen NH, Zhang YJ, Wang YF, Kitazato K, Xu J. PLoS One 9 e94392 (2014)
  80. H7N9 Influenza Virus Containing a Polybasic HA Cleavage Site Requires Minimal Host Adaptation to Obtain a Highly Pathogenic Disease Phenotype in Mice. Chan M, Leung A, Hisanaga T, Pickering B, Griffin BD, Vendramelli R, Tailor N, Wong G, Bi Y, Babiuk S, Berhane Y, Kobasa D. Viruses 12 E65 (2020)
  81. Novel Mutations Evading Avian Immunity around the Receptor Binding Site of the Clade 2.3.2.1c Hemagglutinin Gene Reduce Viral Thermostability and Mammalian Pathogenicity. An SH, Lee CY, Hong SM, Song CS, Kim JH, Kwon HJ. Viruses 11 E923 (2019)
  82. Surfactant protein A alters endosomal trafficking of influenza A virus in macrophages. Yau E, Yang L, Chen Y, Umstead TM, Atkins H, Katz ZE, Yewdell JW, Gandhi CK, Halstead ES, Chroneos ZC. Front Immunol 14 919800 (2023)
  83. Virus-induced pathogenesis, vaccine development, and diagnosis of novel H7N9 avian influenza A virus in humans: a systemic literature review. Wang WH, Erazo EM, Ishcol MRC, Lin CY, Assavalapsakul W, Thitithanyanont A, Wang SF. J Int Med Res 48 300060519845488 (2020)
  84. Characterizing Receptor Flexibility to Predict Mutations That Lead to Human Adaptation of Influenza Hemagglutinin. Xu H, Palpant T, Weinberger C, Shaw DE. J Chem Theory Comput 18 4995-5005 (2022)
  85. Discovery of a New Chemoeffector for Escherichia coli Chemoreceptor Tsr and Identification of a Molecular Mechanism of Repellent Sensing. Chen X, Bi S, Ma X, Sourjik V, Lai L. ACS Bio Med Chem Au 2 386-394 (2022)
  86. Haemagglutinin substitutions N125D, D127E, D222G and R223Q improve replicative fitness and vaccine effectiveness of an A/H1N1pdm09 live attenuated influenza vaccine virus by enhancing α-2,6 receptor binding. Dempsey R, Tamburrino G, Schewe KE, Crowe J, Nuccitelli A, Dibben O. PLoS Pathog 18 e1010585 (2022)
  87. H3N2 Influenza Viruses with 12- or 16-Amino Acid Deletions in the Receptor-Binding Region of Their Hemagglutinin Protein. Kong H, Fan S, Takada K, Imai M, Neumann G, Kawaoka Y. mBio 12 e0151221 (2021)
  88. H7N9 influenza: something old, something new …. Stein RA. Int J Clin Pract 67 935-938 (2013)
  89. Vector Affinity and Receptor Distribution Define Tissue-Specific Targeting in an Engineered AAV Capsid. Martino RA, Wang Q, Xu H, Hu G, Bell P, Arroyo EJ, Sims JJ, Wilson JM. J Virol 97 e0017423 (2023)
  90. Effect of pH on the hinge region of influenza viral protein: a combined constant pH and well-tempered molecular dynamics study. Pathak AK. J Phys Condens Matter 30 195101 (2018)
  91. Engineering an Optimal Y280-Lineage H9N2 Vaccine Strain by Tuning PB2 Activity. An SH, Hong SM, Song JH, Son SE, Lee CY, Choi KS, Kwon HJ. Int J Mol Sci 24 8840 (2023)
  92. Multiple HA substitutions in highly pathogenic avian influenza H5Nx viruses contributed to the change in the NA subtype preference. Antigua KJC, Baek YH, Choi WS, Jeong JH, Kim EH, Oh S, Yoon SW, Kim C, Kim EG, Choi SY, Hong SK, Choi YK, Song MS. Virulence 13 990-1004 (2022)
  93. SARS-CoV-2 Binding to Terminal Sialic Acid of Gangliosides Embedded in Lipid Membranes. Negi G, Sharma A, Chaudhary M, Gupta D, Harshan KH, Parveen N. ACS Infect Dis 9 1346-1361 (2023)
  94. The potential of putative zinc-binding motifs of haemagglutinin (HA) protein for categorization and prediction of pathogenicity of H5 subtypes of avian influenza virus. Muraina IA, Meseko CA, Fasina FO. Med Hypotheses 144 109925 (2020)
  95. Avidin-biotin complex-based capture coating platform for universal Influenza virus immobilization and characterization. Trexler M, Brusatori M, Auner G. PLoS One 16 e0247429 (2021)
  96. Receptor Density-Dependent Motility of Influenza Virus Particles on Surface Gradients. Hamming PHE, Overeem NJ, Diestelhorst K, Fiers T, Tieke M, Vos GM, Boons GPH, van der Vries E, Block S, Huskens J. ACS Appl Mater Interfaces 15 25066-25076 (2023)