4bsu Citations

Structure of stem cell growth factor R-spondin 1 in complex with the ectodomain of its receptor LGR5.

Cell Rep 3 1885-92 (2013)
Related entries: 4bso, 4bsp, 4bsr, 4bss, 4bst

Cited: 54 times
EuropePMC logo PMID: 23809763

Abstract

Leucine-rich repeat-containing G protein-coupled receptors 4-6 (LGR4-LGR6) are receptors for R-spondins, potent Wnt agonists that exert profound trophic effects on Wnt-driven stem cells compartments. We present crystal structures of a signaling-competent fragment of R-spondin 1 (Rspo1) at a resolution of 2.0 Å and its complex with the LGR5 ectodomain at a resolution of 3.2 Å. Ecto-LGR5 binds Rspo1 at its concave leucine-rich-repeat (LRR) surface, forming a dimeric 2:2 complex. Fully conserved residues on LGR4-LGR6 explain promiscuous binding of R-spondins. A phenylalanine clamp formed by Rspo1 Phe106 and Phe110 pinches Ala190 of LGR5 and is critical for binding. Mutations related to congenital anonychia reduce signaling, but not binding of Rspo1 to LGR5. Furthermore, antibody binding to the extended loop of the C-terminal LRR cap of LGR5 activates signaling in a ligand-independent manner. Thus, our data reveal binding of R-spondins to conserved sites on LGR4-LGR6 and, in analogy to FSHR and related receptors, suggest a direct signaling role for LGR4-LGR6 in addition to its formation of Wnt receptor and coreceptor complexes.

Reviews - 4bsu mentioned but not cited (3)

  1. Structure and function of LGR5: an enigmatic G-protein coupled receptor marking stem cells. Kumar KK, Burgess AW, Gulbis JM. Protein Sci 23 551-565 (2014)
  2. In a Class of Their Own - RXFP1 and RXFP2 are Unique Members of the LGR Family. Petrie EJ, Lagaida S, Sethi A, Bathgate RA, Gooley PR. Front Endocrinol (Lausanne) 6 137 (2015)
  3. The structural biology of canonical Wnt signalling. Agostino M, Pohl SÖ. Biochem Soc Trans 48 1765-1780 (2020)

Articles - 4bsu mentioned but not cited (2)

  1. Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data. Nishito Y, Osana Y, Hachiya T, Popendorf K, Toyoda A, Fujiyama A, Itaya M, Sakakibara Y. BMC Genomics 11 243 (2010)
  2. Crystal structure of R-spondin 2 in complex with the ectodomains of its receptors LGR5 and ZNRF3. Zebisch M, Jones EY. J Struct Biol 191 149-155 (2015)


Reviews citing this publication (14)

  1. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Barker N. Nat Rev Mol Cell Biol 15 19-33 (2014)
  2. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. de Lau W, Peng WC, Gros P, Clevers H. Genes Dev 28 305-316 (2014)
  3. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. Novellasdemunt L, Antas P, Li VS. Am J Physiol Cell Physiol 309 C511-21 (2015)
  4. Reserve Stem Cells in Intestinal Homeostasis and Injury. Bankaitis ED, Ha A, Kuo CJ, Magness ST. Gastroenterology 155 1348-1361 (2018)
  5. Stem cells marked by the R-spondin receptor LGR5. Koo BK, Clevers H. Gastroenterology 147 289-302 (2014)
  6. Control of Wnt Receptor Turnover by R-spondin-ZNRF3/RNF43 Signaling Module and Its Dysregulation in Cancer. Hao HX, Jiang X, Cong F. Cancers (Basel) 8 E54 (2016)
  7. Wnt/β-Catenin Signaling and Obesity. Chen N, Wang J. Front Physiol 9 792 (2018)
  8. Extracellular modulators of Wnt signalling. Malinauskas T, Jones EY. Curr Opin Struct Biol 29 77-84 (2014)
  9. Tales from the crypt: intestinal niche signals in tissue renewal, plasticity and cancer. Spit M, Koo BK, Maurice MM. Open Biol 8 180120 (2018)
  10. WNT signalling events near the cell membrane and their pharmacological targeting for the treatment of cancer. Driehuis E, Clevers H. Br J Pharmacol 174 4547-4563 (2017)
  11. Emerging role for leucine-rich repeat-containing G-protein-coupled receptors LGR5 and LGR4 in cancer stem cells. Nakata S, Phillips E, Goidts V. Cancer Manag Res 6 171-180 (2014)
  12. Hepatocyte organoids and cell transplantation: What the future holds. Peng WC, Kraaier LJ, Kluiver TA. Exp Mol Med 53 1512-1528 (2021)
  13. R-spondin signaling as a pivotal regulator of tissue development and homeostasis. Nagano K. Jpn Dent Sci Rev 55 80-87 (2019)
  14. RSPO2 as Wnt signaling enabler: Important roles in cancer development and therapeutic opportunities. Srivastava A, Rikhari D, Srivastava S. Genes Dis 11 788-806 (2024)

Articles citing this publication (35)

  1. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Yan KS, Janda CY, Chang J, Zheng GXY, Larkin KA, Luca VC, Chia LA, Mah AT, Han A, Terry JM, Ootani A, Roelf K, Lee M, Yuan J, Li X, Bolen CR, Wilhelmy J, Davies PS, Ueno H, von Furstenberg RJ, Belgrader P, Ziraldo SB, Ordonez H, Henning SJ, Wong MH, Snyder MP, Weissman IL, Hsueh AJ, Mikkelsen TS, Garcia KC, Kuo CJ. Nature 545 238-242 (2017)
  2. Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Jiang X, Charlat O, Zamponi R, Yang Y, Cong F. Mol Cell 58 522-533 (2015)
  3. Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin. Zebisch M, Xu Y, Krastev C, MacDonald BT, Chen M, Gilbert RJ, He X, Jones EY. Nat Commun 4 2787 (2013)
  4. RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6. Szenker-Ravi E, Altunoglu U, Leushacke M, Bosso-Lefèvre C, Khatoo M, Thi Tran H, Naert T, Noelanders R, Hajamohideen A, Beneteau C, de Sousa SB, Karaman B, Latypova X, Başaran S, Yücel EB, Tan TT, Vlaminck L, Nayak SS, Shukla A, Girisha KM, Le Caignec C, Soshnikova N, Uyguner ZO, Vleminckx K, Barker N, Kayserili H, Reversade B. Nature 557 564-569 (2018)
  5. R-spondins can potentiate WNT signaling without LGRs. Lebensohn AM, Rohatgi R. Elife 7 e33126 (2018)
  6. RSPO2-LGR5 signaling has tumour-suppressive activity in colorectal cancer. Wu C, Qiu S, Lu L, Zou J, Li WF, Wang O, Zhao H, Wang H, Tang J, Chen L, Xu T, Sun Z, Liao W, Luo G, Lu X. Nat Commun 5 3149 (2014)
  7. Interaction with both ZNRF3 and LGR4 is required for the signalling activity of R-spondin. Xie Y, Zamponi R, Charlat O, Ramones M, Swalley S, Jiang X, Rivera D, Tschantz W, Lu B, Quinn L, Dimitri C, Parker J, Jeffery D, Wilcox SK, Watrobka M, LeMotte P, Granda B, Porter JA, Myer VE, Loew A, Cong F. EMBO Rep 14 1120-1126 (2013)
  8. Clostridioides difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease. Mileto SJ, Jardé T, Childress KO, Jensen JL, Rogers AP, Kerr G, Hutton ML, Sheedlo MJ, Bloch SC, Shupe JA, Horvay K, Flores T, Engel R, Wilkins S, McMurrick PJ, Lacy DB, Abud HE, Lyras D. Proc Natl Acad Sci U S A 117 8064-8073 (2020)
  9. Differential activities and mechanisms of the four R-spondins in potentiating Wnt/β-catenin signaling. Park S, Cui J, Yu W, Wu L, Carmon KS, Liu QJ. J Biol Chem 293 9759-9769 (2018)
  10. Structures of Wnt-antagonist ZNRF3 and its complex with R-spondin 1 and implications for signaling. Peng WC, de Lau W, Madoori PK, Forneris F, Granneman JC, Clevers H, Gros P. PLoS One 8 e83110 (2013)
  11. R-spondins engage heparan sulfate proteoglycans to potentiate WNT signaling. Dubey R, van Kerkhof P, Jordens I, Malinauskas T, Pusapati GV, McKenna JK, Li D, Carette JE, Ho M, Siebold C, Maurice M, Lebensohn AM, Rohatgi R. Elife 9 e54469 (2020)
  12. Updating the Wnt pathways. Yu J, Virshup DM. Biosci Rep 34 e00142 (2014)
  13. Regulation of the follistatin gene by RSPO-LGR4 signaling via activation of the WNT/β-catenin pathway in skeletal myogenesis. Han XH, Jin YR, Tan L, Kosciuk T, Lee JS, Yoon JK. Mol Cell Biol 34 752-764 (2014)
  14. RNF43 truncations trap CK1 to drive niche-independent self-renewal in cancer. Spit M, Fenderico N, Jordens I, Radaszkiewicz T, Lindeboom RG, Bugter JM, Cristobal A, Ootes L, van Osch M, Janssen E, Boonekamp KE, Hanakova K, Potesil D, Zdrahal Z, Boj SF, Medema JP, Bryja V, Koo BK, Vermeulen M, Maurice MM. EMBO J 39 e103932 (2020)
  15. Reconstitution of R-spondin:LGR4:ZNRF3 adult stem cell growth factor signaling complexes with recombinant proteins produced in Escherichia coli. Moad HE, Pioszak AA. Biochemistry 52 7295-7304 (2013)
  16. Unlike LGR4, LGR5 potentiates Wnt-β-catenin signaling without sequestering E3 ligases. Park S, Wu L, Tu J, Yu W, Toh Y, Carmon KS, Liu QJ. Sci Signal 13 eaaz4051 (2020)
  17. Tissue-targeted R-spondin mimetics for liver regeneration. Zhang Z, Broderick C, Nishimoto M, Yamaguchi T, Lee SJ, Zhang H, Chen H, Patel M, Ye J, Ponce A, Brady J, Baribault H, Li Y, Yeh WC. Sci Rep 10 13951 (2020)
  18. Crystal structure of LGR4-Rspo1 complex: insights into the divergent mechanisms of ligand recognition by leucine-rich repeat G-protein-coupled receptors (LGRs). Xu JG, Huang C, Yang Z, Jin M, Fu P, Zhang N, Luo J, Li D, Liu M, Zhou Y, Zhu Y. J Biol Chem 290 2455-2465 (2015)
  19. LGR5 is associated with tumor aggressiveness in papillary thyroid cancer. Michelotti G, Jiang X, Sosa JA, Diehl AM, Henderson BB. Oncotarget 6 34549-34560 (2015)
  20. Engineering high-potency R-spondin adult stem cell growth factors. Warner ML, Bell T, Pioszak AA. Mol Pharmacol 87 410-420 (2015)
  21. Canonical WNT/β-Catenin Signaling Activated by WNT9b and RSPO2 Cooperation Regulates Facial Morphogenesis in Mice. Jin YR, Han XH, Nishimori K, Ben-Avraham D, Oh YJ, Shim JW, Yoon JK. Front Cell Dev Biol 8 264 (2020)
  22. Protease associated domain of RNF43 is not necessary for the suppression of Wnt/β-catenin signaling in human cells. Radaszkiewicz T, Bryja V. Cell Commun Signal 18 91 (2020)
  23. A Wnt-Independent LGR4-EGFR Signaling Axis in Cancer Metastasis. Yue F, Jiang W, Ku AT, Young AIJ, Zhang W, Souto EP, Gao Y, Yu Z, Wang Y, Creighton CJ, Nagi C, Wang T, Hilsenbeck SG, Feng XH, Huang S, Coarfa C, Zhang XH, Liu Q, Lin X, Li Y. Cancer Res 81 4441-4454 (2021)
  24. Intrinsic disorder in spondins and some of their interacting partners. Alowolodu O, Johnson G, Alashwal L, Addou I, Zhdanova IV, Uversky VN. Intrinsically Disord Proteins 4 e1255295 (2016)
  25. Cartilage organoids for cartilage development and cartilage-associated disease modeling. Lin W, Wang M, Xu L, Tortorella M, Li G. Front Cell Dev Biol 11 1125405 (2023)
  26. Drug Conjugates of Antagonistic R-Spondin 4 Mutant for Simultaneous Targeting of Leucine-Rich Repeat-Containing G Protein-Coupled Receptors 4/5/6 for Cancer Treatment. Cui J, Toh Y, Park S, Yu W, Tu J, Wu L, Li L, Jacob J, Pan S, Carmon KS, Liu QJ. J Med Chem 64 12572-12581 (2021)
  27. N-Glycosylation of Human R-Spondin 1 Is Required for Efficient Secretion and Stability but Not for Its Heparin Binding Ability. Chang CF, Hsu LS, Weng CY, Chen CK, Wang SY, Chou YH, Liu YY, Yuan ZX, Huang WY, Lin H, Chen YH, Tsai JN. Int J Mol Sci 17 E937 (2016)
  28. Dietary Interventions Ameliorate Infectious Colitis by Restoring the Microbiome and Promoting Stem Cell Proliferation in Mice. Ahmed I, Yusuf K, Roy BC, Stubbs J, Anant S, Attard TM, Sampath V, Umar S. Int J Mol Sci 23 339 (2021)
  29. Prognostic impact of mRNA levels of LGR5 transcript variants in OSCC patients. Rot S, Kaune T, Taubert H, Greither T, Kotrba J, Güttler A, Wichmann H, Bilkenroth U, Wienke A, Al-Nawas B, Bache M, Vordermark D, Wickenhauser C, Bethmann D, Eckert AW, Kappler M. BMC Cancer 19 155 (2019)
  30. Receptor control by membrane-tethered ubiquitin ligases in development and tissue homeostasis. Lebensohn AM, Bazan JF, Rohatgi R. Curr Top Dev Biol 150 25-89 (2022)
  31. Directional delivery of RSPO1 by mesenchymal stem cells ameliorates radiation-induced intestinal injury. Chen W, Ju S, Lu T, Xu Y, Zheng X, Wang H, Ge Y, Ju S. Cytokine 95 27-34 (2017)
  32. LGR4 and LGR5 form distinct homodimers that only LGR4 complexes with RNF43/ZNRF3 to provide high affinity binding of R-spondin ligands. Toh Y, Wu L, Park S, Wang A, Tu J, Yu W, Zuo M, Carmon KS, Liu QJ. Sci Rep 13 10796 (2023)
  33. Generation and characterization of monoclonal antibodies against human LGR6. Funahashi SI, Suzuki Y, Nakano K, Kawai S, Suzuki M. J Biochem 161 361-368 (2017)
  34. Novel immunotherapeutics against LGR5 to target multiple cancer types. Chen HC, Mueller N, Stott K, Kapeni C, Rivers E, Sauer CM, Beke F, Walsh SJ, Ashman N, O'Brien L, Rafati Fard A, Ghodsinia A, Li C, Joud F, Giger O, Zlobec I, Olan I, Aitken SJ, Hoare M, Mair R, Serrao E, Brenton JD, Garcia-Gimenez A, Richardson SE, Huntly B, Spring DR, Skjoedt MO, Skjødt K, de la Roche M, de la Roche M. EMBO Mol Med 16 2233-2261 (2024)
  35. R-Spondin 2 governs Xenopus left-right body axis formation by establishing an FGF signaling gradient. Lee H, Camuto CM, Niehrs C. Nat Commun 15 1003 (2024)